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 A B S T R A C T 

Different numerical models have been discussed in recent years to analyze the damage evolution in 

concrete structures. In this paper, a gradient-enhanced damage model formulation, which is applied 

to single edge-notched and L-shaped specimens, is explained. A new formulation of the finite 

element equations is derived, with attention to C0-continuity requirements. This paper focuses on the 

derivation of the governing equations as well as the implementation of the model with different mesh 

discretization and discuss the results of the two examples. The difference between non-local damage 

mechanics and gradient enhanced damage model is also discussed. The exponential softening 

evolution law is used to define the damage variable and Mazars model of local equivalent strain is 

applied to simulate the behavior of the problems. 
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 الملخص 

الخواص الفيزيائية والميكانيكية   لتحليل  رياضيةالعديد من النماذج ال  تطبيقتمت في السنوات الماضية مناقشة  

المنشـآت   في  الانهيار  انتشار  مراحل  تطور  دراسة  وبالأخص  تصنيفاتها،  بمختلف  والتنبؤ   الخرسانيةللمواد 

باتجاهات ومسارات هذه التشققات داخل مكونات الخرسانة. في هذه الورقة، تم تقديم التكوين الرياض ي لنموذج  

. تم تطوير  Vوأخرى محتوية على حافة بها حز على شكل    Lضرر تدريجي وتطبيقه على عينة على شكل حرف  

. تم التركيز في هذه الورقة على استنباط  oCتكوين جديد لمعادلات العناصر المحددة بمراعاة متطلبات اتصال  

المعادلات الحاكمة وعلى تطبيق النموذج باستخدام تقسيمات )شبكات( مختلفة ومناقشة النتائج المتحصل عليها  

غير  المنموذجين  المن   الضرر  ميكانيكية  بين  الفرق  مناقشة  كذلك  تم  والضرر ختلفين.   تم    المحلي  التدريجي. 

الأس ي   القانون  لتعريف  للانتشار استخدام  )  وذلك  نموذج  تطبيق  وتم  الضرر  للانفعالات Mazarsمتغيرات   )  

 المكافئة المحلية وذلك لمحاكاة سلوك هذه المواد. 

1. Introduction   

There are many contributions to improve models to describe 

continuum damage. Damage mechanics theories can be used to 

describe the failure of structural materials and components by 

accounting for the degradation of elastic properties due to accumulated 

damage. For quasi-brittle materials like concrete, these micro-damage 

processes represent the formation of micro-cracks that occur as the 

structure is subjected to loading. Regularization techniques are 

employed in continuum damage models to capture the nonlocal 

behavior of micro-cracks, which ensures that the governing equations 

are well-posed. In mechanics, this nonlocal behavior means that the 

level of damage at a specific point is influenced by the damage in the 

surrounding area. Alternatively to non-local softening models, there is 

another interest model called gradient enhanced damage model which 

presents more advantages over nonlocal models, since they are strictly 

local in a mathematical sense. The constitutive equations in gradient 

models are enhanced with additional spatial gradients of state 

variables [19]. 

This paper is organized as follows: A basic description of elasticity 

based on continuum damage model. A gradient formulation of a 

damage model is derived from the non-local theory. The report covers 

the numerical solutions by examining the spatial discretization of the 

governing equations and presenting a consistent procedure for solving 

the resulting equations. It describes the foundational models, including 

the continuum damage models as well as the nonlocal and gradient-

enhanced damage models. The report then progresses to derive the 

finite element formulation and conduct numerical validation. Finally, 

it concludes with results from numerical simulations used to validate 

http://www.sebhau.edu.ly/journal/CAS
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the model. 

2. Continuum Damage Theory  

The basic concept of continuum damage mechanics is that 

microstructural defects (micro cracks, micro voids) in a material. As it 

is illustrated in Figure (1), the microstructural defects can be 

represented by a set of continuous damage variables. The value of the 

damage variable ω at a specific point in the continuum indicates the 

quantity and magnitude of defects within a small volume at that 

location. 

 
Fig. 1: Damage variable as a representation of microstructural defects 

[14]. 

After a certain amount of loading, three regions can generally 

appeared in the material domain Ω as is shown in Figure (2). In part Ω0 

of the domain, no damage may have developed. The damage variable 

still has its initial value = zero in this region and the material properties 

still have the virgin values. In the second region  Ω𝑑 , damage has 

already occurred, but the damage is not yet critical (0 < ω < 1). The 

limiting value ω = 1 has been reached in the third region Ω𝑐, i.e., in 

this region the mechanical properties and strength have been 

completely lost. The completely damaged region  Ω𝑐 is the continuum 

damage representation of a crack [14]. 

 
Fig. 2: Damage distribution in a continuum [14]. 

2.1   Quasi-Brittle Damage: 

Quasi-brittle fracture refers to fracture processes where, although there 

is not significant large-scale plastic deformation, more energy is 

required to create the crack surface than is typically needed. Figure (3) 

illustrates the stress-strain response observed in tensile tests of 

concrete specimens when the load is removed at regular intervals (e.g., 

Mazars and Pijaudier-Cabot; Shah and Maji, 1989) [14]. In this 

diagram, the strain represented is an average strain [14]. A softening 

behavior in the damaged region can be caused by the decrease of 

stiffness after damage initiation. Softening means that the load-

carrying capacity will decrease with increasing deformation and its 

evolution depends on the material characteristics. 

 
Fig. 3: Stress-strain response of concrete in tension [14]. 

 

2.2   Nonlocal Damage Mechanics. 

In the standard damage model, damage tends to become localized in 

an increasingly small volume, often much smaller than the size of the 

microstructural elements. This localized damage distribution conflicts 

with the assumed smoothness of the damage variable [14]. Figure (4) 

illustrates how non-local models smooth deformation and prevent 

damage from localizing to a single surface. Instead of relying solely 

on the strain history at a specific point, these models also consider the 

strain field in the surrounding area. 

 
Fig. 4: local and nonlocal action [18]. 

 

In nonlocal damage theory, damage is determined not by the local 

equivalent strain 𝜀𝑒𝑞  but by its nonlocal equivalent  𝜀�̅�𝑞  . 

Consequently, the loading/unloading function is reformulated by 

substituting the local equivalent strain with its nonlocal counterpart, 

which are now expressed as:  𝑓 =  𝜀�̅�𝑞 − 𝜅 (1) 

2.4   Gradient-Enhanced Damage Model  

Since the nonlocal model has some disadvantages that the model has 

convergence problems due to inconsistent tangent operators. In the 

gradient enhancement model, the nonlocal model is transformed into 

a gradient-dependent formulation [13]. This is achieved by deriving a 

gradient formulation directly from the nonlocal theory, which involves 

expanding the local equivalent strain into a Taylor series as follows: 

𝜀𝑒𝑞(𝑥 + 𝜉) =  𝜀𝑒𝑞(𝑥) + ∇𝜀𝑒𝑞(𝑥). 𝜉 +  
1

2!
 ∇2𝜀𝑒𝑞(𝑥). 𝜉2 +

 
1

3!
 ∇3𝜀𝑒𝑞(𝑥). 𝜉3  +  

1

4!
 ∇4𝜀𝑒𝑞(𝑥). 𝜉4 + ⋯    (2) 

where ∇𝑛 represents the n𝑡ℎ -order gradient operator and  𝜉𝑛 denotes 

the n𝑡ℎ -order dyadic product of ξ, respectively. Applying some basic 

algebraic operations, a gradient formulation can be expressed as 

𝜀�̅�𝑞 =  𝜀𝑒𝑞 + 𝑐 ∇2𝜀𝑒𝑞 + 𝑑 ∇4𝜀𝑒𝑞 + ⋯  (3) 

The constants c and d involve the mathematical operation of 

integrating the weight function 𝑔(𝜉) with respect to the positive vector 

ξ. The last step is neglecting the higher order terms from expression 

(3) and gives the following definition [2]  

𝜀�̅�𝑞 =  𝜀𝑒𝑞 + 𝑐 ∇2𝜀𝑒𝑞 (4) 

In this expression, the nonlocal equivalent strain is expressed 

explicitly in terms of the local equivalent strain, leading to what is 

known as the explicit gradient-enhanced damage model. This model 

has a disadvantage that a high order interpolation for the displacement 

is required. To avoid this point, the implicit gradient enhanced damage 

model can be used where the nonlocal equivalent strain is written as 

an implicit form on the local field as 𝜀�̅�𝑞 − 𝑐 ∇2𝜀�̅�𝑞 =  𝜀𝑒𝑞       (5) 

which is the 𝐶0-continuity is required in the formulation. The constant 

parameter c can be defined from the square of the length scale as 

following  𝑐 = 0.5 .  𝑙𝑐
2   (6) 

In order to solve the partial differential equation (5), additional 

boundary conditions are required regarding the equivalent strain 𝜀�̅�𝑞 

have to be specified. Mathematically, the non-local equivalent strain 

𝜀�̅�𝑞 or the normal derivative ∇⃗⃗ 𝜀�̅�𝑞 . �⃗�  should be defined in every 

boundary condition. Although no physical foundation exists, the 

homogeneous Neumann condition has been proved to give reasonable 

results [15] ∇ .  𝜀�̅�𝑞  = 0         on  Γ  (7) 

3. Finite Element Implementation 

Since it is difficult to obtain an analytical solution of the governing 

equations with damage and fracture problems even for simple 

geometries and loading conditions, the numerical approach is required 

to solve the Practical problems with complex geometries and non-

uniform loading. The equilibrium partial differential equations are 

discretized in space by a finite element interpolation. An iterative 
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procedure is used to solve the resulting set of nonlinear algebraic 

equations [14].  

3.1   Governing Equations 

The governing equations for quasi-static solids with a gradient-

enhanced damage model ,summarized as follows, include the 

equilibrium equations and the implicit relationship between the 

nonlocal equivalent strain and the local equivalent strain. [12] 

- Equilibrium equation ∇ . 𝜎 + b = 0        in  Ω (8) 

-  Non-local equivalent strain 𝜀�̅�𝑞 − 𝑐 ∇2𝜀�̅�𝑞 =  𝜀𝑒𝑞     in  Ω (9) 

- Constitutive equation 𝜎𝑖𝑗 = (1 −  𝜔) 𝐶𝑖𝑗𝑘𝑙  𝜀𝑘𝑙 (10) 

- Damage evolution law 𝜔 = 𝑓(𝜅)  (11) 

- Loading function  𝑓 =  𝜀�̅�𝑞 − 𝑐  (12) 

- Loading/unloading condition (Kuhn-Tucker condition) 

𝑓 ≤ 0                𝜅  ̇ ≥ 0          𝑓 𝜅  ̇ = 0  (13) 

- Local equivalent strain 𝜀𝑒𝑞 = 𝑔(𝜀)  (14) 

- Boundary conditions u = u̅         on   Γ u  (15) 

n . σ = t̅         on   Γ t (16) 

∇ .  ε̅eq  = 0         on  Γ  (17) 

3.2   Discretization 

Transforming the governing equations into their weak form is used to 

reduce the order of the derivatives appearing in these equations. For 

this step, the Bubnov-Galerkin method is used to discretize the weak 

form of the governing equations. At the element level, the 

displacement and the nonlocal equivalent strain fields associated with 

the weight functions are discretized as follows: 

𝑢ℎ = 𝑁𝑢 u       , 𝑤𝑢
ℎ = 𝑁𝑢 𝑤𝑢   ,  𝜀�̅�𝑞 = 𝑁𝜀  𝜀�̅�𝑞 ,      𝑤 �̅�𝑒𝑞

ℎ = 𝑁 �̅�𝑒𝑞
 𝑤 �̅�𝑒𝑞

 ,    

∇𝑤𝑢
ℎ = 𝐵𝑢 𝑤𝑢, ∇𝑤 �̅�𝑒𝑞

ℎ = 𝐵 �̅�𝑒𝑞
 𝑤 �̅�𝑒𝑞

,        𝛻𝜀�̅�𝑞
ℎ = 𝐵 �̅�𝑒𝑞

 𝜀�̅�𝑞 (18)  

By substituting relations (18) into the weak formulation of the 

governing equations and expressing the stress and strain tensors in 

vector form, we obtain: 

∫ 𝑤𝑢
𝑇  𝐵𝑢

𝑇 𝜎 
 

Ω
𝑑Ω =  ∫ 𝑤𝑢

𝑇  𝑁𝑢
𝑇 𝑏 

 

Ω
𝑑Ω + ∫ 𝑤𝑢

𝑇  𝑁𝑢
𝑇 �̂� 

 

Γ𝑡
𝑑Γ  (19) 

∫ 𝑤 �̅�𝑒𝑞

𝑇  𝐵𝜀
𝑇 𝑐 𝐵𝜀

 

Ω
𝜀�̅�𝑞 𝑑Ω + ∫ 𝑤 �̅�𝑒𝑞

𝑇  𝑁𝜀
𝑇 𝑁𝜀 𝜀�̅�𝑞 𝑑Ω

 

Ω
=

 ∫ 𝑤 �̅�𝑒𝑞

𝑇  𝑁𝜀
𝑇 𝜀𝑒𝑞 

 

Ω
𝑑Ω      (20) 

which must be valid for any choice of 𝑤𝑢 and 𝑤 �̅�𝑒𝑞
. Consequently, the 

final discretized form of the governing equations is: [17] 

∫ 𝐵𝑢
𝑇  𝜎 

 

Ω
𝑑Ω =  ∫ 𝑁𝑢

𝑇  𝑏 
 

Ω
𝑑Ω + ∫ 𝑁𝑢

𝑇 �̂� 
 

Γ𝑡
𝑑Γ   (21) 

∫  𝐵𝜀
𝑇 𝑐 𝐵𝜀

 

Ω
𝜀�̅�𝑞 𝑑Ω + ∫ 𝑁𝜀

𝑇 𝑁𝜀 𝜀�̅�𝑞 𝑑Ω
 

Ω
= ∫ 𝑁𝜀

𝑇 𝜀𝑒𝑞 
 

Ω
𝑑Ω   (22) 

3.2    Linearization 

Equations (21, 22) are the coupled equations to be solved. Since they 

are nonlinear equations, they must be linearized. According to the 

Newton-Raphson method, the linearized change 𝛿𝜎𝑖  of the stress 

column 𝜎  in iteration i, is obtained starting from the matrix 

representation [15]  𝜎 = (1 −  𝜔) 𝐶  𝜀   (23) 

of the stress-strain relation. Differentiating equation (23) , we get: 

 �̇� = (1 − 𝜔) ℂ𝑒𝑙 𝜀̇ −   ℂ𝑒𝑙 𝜀 �̇� (24) 

For the first term on the right-hand side, applying  𝜀 = 𝑏(𝑢) = 𝐵 𝑢 

directly gives: [15]  𝛿𝜀𝑖 = 𝐵 𝛿𝑢𝑖  (25) 

where  𝐵𝜀 =   [ 

𝜕

𝜕𝑥
𝜕

𝜕𝑦

𝜕

𝜕𝑧

 ]  [𝑁1   𝑁2   ………  𝑁𝑛]  (26) 

and  

�̇� =  
𝜕𝜔

𝜕𝜅
 �̇�          

         =  
𝜕𝜔

𝜕𝜅
 

𝜕𝜅

𝜕𝜀𝑒𝑞
 𝜀�̇�𝑞 

              =
𝜕𝜔

𝜕𝜅
 

𝜕𝜅

𝜕𝜀𝑒𝑞
 
𝜕𝜀𝑒𝑞

𝜕𝜀
 𝜀̇

    (27) 

The Kuhn-Tucker relations (13) indicate that if damage increases 

(κ >0), the history parameter satisfies κ = 𝜀𝑒𝑞, so 𝛿𝜅 = 𝛿𝜀𝑒𝑞 . If no 

damage increase occurs, i is given by  = 0 . When damage does occur,  

i is determined by comparing the current value of the non-local 

equivalent strain to the converged value 𝜅𝑖 of the history parameter 

from the previous increment. Thus, the change in damage 𝛿𝜔𝑖  can be 

linearized as: 𝛿𝜔𝑖 = 
𝜕𝜔

𝜕𝜅
 𝜀 ̅�̇�𝑞 = 

𝜕𝜔

𝜕𝜅
 𝑁  𝜀 ̅�̇�𝑞  (28) 

The parameter   
𝜕𝜅

𝜕𝜀𝑒𝑞
   in eqn. (27) is equal to 1 for loading and 0 

otherwise. 

Combining (25) and (28) yields 

�̇� = (1 − 𝜔) ℂ𝑒𝑙 𝐵𝑢 u̇ −  
𝜕𝜔

𝜕𝜅
 

𝜕𝜅

𝜕𝜀𝑒𝑞
 ℂ𝑒𝑙 𝜀 𝑁𝜀 𝜀 ̅�̇�𝑞 (29) 

Thus, the iterative change in the internal nodal forces can be expressed 

as:𝛿𝑓𝑖𝑛𝑡
𝑢 = ∫ 𝐵𝑢

𝑇𝜎𝐵
 

Ω
𝑑Ω 𝛿𝑢 − ∫  𝐵𝑢

𝑇 ( ℂ𝑒𝑙 𝜀 
𝜕𝜔

𝜕𝜅
 

𝜕𝜅

𝜕�̅�𝑒𝑞
)

 

Ω
 𝑁𝜀𝑑Ω 𝛿𝜀�̅�𝑞 (30) 

Applying this expression to the discrete equilibrium equation for 

iteration 𝑖 results in: 

−𝐾𝑢𝑢  𝛿𝑢 − 𝐾𝑢𝜀  𝛿𝜀�̅�𝑞 =  𝑓𝑖𝑛𝑡
𝑢 − 𝑓𝑒𝑥𝑡

𝑢   (31) 

where the stiffness matrices read 

𝐾𝑢𝑢 = ∫  𝐵𝑢
𝑇   (( 1 −  𝜔) ℂ𝑒𝑙)

 

Ω
 𝐵𝑢  𝑑Ω   (32) 

𝐾𝑢𝜀 =  −∫  𝐵𝑢
𝑇   ( ℂ𝑒𝑙 𝜀 

𝜕𝜔

𝜕𝜅
 

𝜕𝜅

𝜕�̅�𝑒𝑞
)

 

Ω
 𝑁𝜀 𝑑Ω   (33) 

and the nodal force vectors are given by 

𝑓𝑒𝑥𝑡
𝑢 =  ∫ 𝑁𝑢

𝑇 𝑏 
 

Ω
𝑑Ω + ∫ 𝑁𝑢

𝑇 �̂� 
 

Γ𝑡
𝑑Γ  (34) 

𝑓𝑖𝑛𝑡
𝑢 = ∫ 𝐵𝑢

𝑇 𝜎 
 

Ω
𝑑Ω    (35) 

In the same manner, the linearization of the relation (22) gives 

𝐾𝜀𝑢  𝛿𝑢 − 𝐾𝜀𝜀 𝛿𝜀�̅�𝑞 = −𝐾𝜀𝜀  . 𝜀�̅�𝑞 + ∫ 𝑁𝜀
𝑇 𝜀𝑒𝑞 

 

Ω
𝑑Ω  (36) 

where  𝐾𝜀𝑢 = −∫  𝑁𝜀
𝑇   [ 

𝜕𝜀𝑒𝑞

𝜕𝜀
 ]

𝑇 

Ω
 𝐵𝑢  𝑑Ω  (37) 

𝐾𝜀𝜀 = ∫  ( 𝐵𝜀
𝑇 𝑐 𝐵𝜀 +  𝑁𝜀

𝑇  𝑁𝜀 )
 

Ω
 𝑑Ω    (38) 

The linearized equilibrium and diffusion equations are summarized by 

combining Equations (31) and (36) in the following system of 

equations [17]: 

[ 
𝐾𝑢𝑢 𝐾𝑢𝜀

𝐾𝜀𝑢 𝐾𝜀𝜀
 ]  [ 

𝛿𝑢   
𝛿𝜀

 ] =  [ 
𝑓𝑒𝑥𝑡

 
 

0
] −  [ 

𝑓𝑖𝑛𝑡
𝑢

 
𝑓𝑖𝑛𝑡

𝜀  ]  (39) 

with the internal nodal force vector 

𝑓𝑖𝑛𝑡
𝜀 = 𝐾𝜀𝜀  . 𝜀�̅�𝑞 − ∫ 𝑁𝜀

𝑇 𝜀𝑒𝑞 
 

Ω
𝑑Ω  (40) 

3.4   Derivatives of equivalent strain w.r.t strains 

The derivatives of the equivalent strain with respect to the strain vector 

are used to compute the tangent stiffness matrix in damage models, 

and they are given by: 

[
𝜕𝜀𝑒𝑞

𝜕𝜀
]
𝑇

= {
𝜕𝜀𝑒𝑞

𝜕𝜀1
,    

𝜕𝜀𝑒𝑞

𝜕𝜀2
,    

𝜕𝜀𝑒𝑞

𝜕𝜀3
}  (41) 

In this paper, the Mazars model will be used to define the equivalent 

strain criterion to simulate the behavior of specimens. 

3.4.1    Mazars equivalent strain 

In two dimensions, there are three principal strains. Two of these are 

solutions to the following quadratic equation: 

𝜀𝑖
2 − (𝜀𝑥𝑥 + 𝜀𝑦𝑦) 𝜀𝑖 + 𝜀𝑥𝑥𝜀𝑦𝑦 − 𝜀𝑥𝑦

2 = 0 (42) 

Namely  𝜀1,2 = 
(𝜀𝑥𝑥+ 𝜀𝑦𝑦) ± 𝑑

2
   (43) 

with d given by 𝑑 =  √(𝜀𝑥𝑥 + 𝜀𝑦𝑦)
2
+ 4 𝜀𝑥𝑦

2 (44) 

The last principal strain is 𝜀3 = − 
𝜈

1−𝜈
 (𝜀𝑥𝑥 + 𝜀𝑦𝑦) (45) 

3.5    Solution algorithm 

The algorithm for solving the system of equations with full Newton-

Raphson method is summarized in Box (1). Since fully coupled 

implicit models are more difficult to implement, the staggered 

approach is used to solve the system of equations. 

Box (1): Flowchart for gradient-enhanced damage model with full 

Newton-Raphson 

1. Initialization: u = 0, n = 0. 

2. using the displacement increment, Estimate next solution 𝑢𝑛𝑒𝑤 

3. in the increment step level 

3.1. Start the iterative process to solve for the displacement: 

3.1.1. Determine the stiffness matrix  𝐾𝑢𝑢. 

3.1.2. Determine the force vector  𝑓𝑖𝑛𝑡
𝑢 . 

3.1.3. Apply the essential boundary conditions. 

3.1.4. Solve the system of equation for  𝛿𝑢. 

3.1.5. Check for convergence, if not go to step 3.1.1. 

3.1.6. update the displacement quantities  𝑢𝑛+1 = 𝑢𝑛 +  𝛿𝑢 

3.2. Start the iterative process to solve the non-local equivalent strain: 

3.2.1. Use the updated displacement in the last iterative 

process 𝑢𝑛+1. 

3.2.2. Determine the stiffness matrix  𝐾𝜀𝜀. 

3.2.3. Determine the force vector  𝑓𝑖𝑛𝑡
𝜀 . 

3.2.4. Solve the system of equations for 𝛿𝜀�̅�𝑞. 

3.2.5. Check for convergence, if not go to step 3.2.2. 
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3.2.6. Update the non-local equivalent strain 

quantities   𝜀�̅�𝑞,𝑛+1 =  𝜀�̅�𝑞 +  𝛿𝜀�̅�𝑞,𝑛. 

4. Update displacement 𝑢𝑛+1 and non-local equivalent strain  𝜀�̅�𝑞,𝑛+1. 

5. Update the history parameter 𝜅𝑖  where 𝜅𝑖 = 𝜅𝑛 

*At the level of integration points in the iterative process to solve 

for the displacement: 

1- Compute the local equivalent strain  𝜀𝑒𝑞,𝑛 = 𝜀𝑒𝑞(𝜀𝑛) 

2- Evaluate the loading function   𝑓 =  𝜀�̅�𝑞 − 𝜅 

3- Check if loading or unloading 𝜅 = {  
𝜀�̅�𝑞   , if      𝑓 ≥  0

𝜅𝑖      , if      𝑓 < 0 
 

4- Compute the damage variable  𝜔 = 𝑓(𝜅) 

5- Compute the stress 𝜎 = (1 −  𝜔) ℂ𝑒𝑙
  𝜀  

4. Numerical Validation 

These two examples are solved by the gradient enhanced damage 

model that is discussed in this paper. 

4.1    L-shaped Panel Test 

The first example involves testing an L-shaped concrete specimen. 

The geometry and loading conditions for the L-shaped structure are 

illustrated in Figure (5). The concrete L-shaped specimen in Figure (5) 

has been also studied by Zreid, I. (2014) [21]. 

Fig. 5: The geometry and the loading conditions of the L-shaped 

structure, and experimentally observed crack pattern. 

This example is simulated using two different sets of material model 

and damage parameters for Model 1 and Model 2, as detailed in Table 

(1) [21]. The local equivalent strain is calculated using the Mazars 

definition, and the damage evolution follows an exponential softening 

law. The finite element discretization, consisting of 7500 elements, is 

depicted in Figure (6). 

 

Fig. 6: the element discretization for L-shaped. 

In this numerical example, the load is applied at the specified position 

with a displacement increment of 0.04 mm and over 150 steps. The 

specimen is fixed at the bottom. The nonlinear system has been solved 

with a full Newton-Raphson method. The convergence criterion is 

based on the norm of the internal force, with a tolerance of 1.0 × 

10−8 being selected. 

 

 

 

Table 1: Characterization of L-shaped panel test of Model 1 and 2 
Geometry 

and Model 
Parameters 

Quantity  

Value 

Unit 
Model 1 Model 2 

Geometry 
Width W 500 500 mm 

Length L 500 500 mm 

Elastic 
Parameters 

Young modulus E 25.85 18 GPa 
Poisson ratio ν 0.18 0.18 -- 

Nonlocal 

Material 
Parameter 

Gradient parameter c 1 5 mm² 

Damage 
law 

initial  damage value 𝜅𝑖 0.00125 0.0015 -- 

Softening 
Parameters 

α 0.96 0.96 -- 

β 160 450 -- 

 

The load-displacement results curves are presented for Model 1 and 

Model 2 in Figure (7) and Figure (8), respectively. 

Fig. 7: load-displacement curve for Model 1. 

Fig. 8: load-displacement curve for Model 2. 

 

The damage patterns at various loading stages for Model 1 are 

presented, and the displacements at the end of the fracture process, 

magnified by a factor of 10, are shown in Figure (9).  

 

Fig. 9: The damage evolution in the L-shaped structure-Model 1. 

 

where the blue colors indicate undamaged material and the reds refer 

to fully damaged material. It can be noted that the first damage stage 

is initiated with less than 90° then continued horizontally to the left 

edge. 

For Model 2, the damage evolution at several stages of loading are 

presented as well as the deformation at the end of the fracture process 

is showed with magnified by a factor 10, in Figure (10). 
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Fig. 10: The damage evolution in the L-shaped structure-Model 2. 

 

It can be observed that in this model, the damage evolution area is 

larger compared to the previous model, due to differences in the 

material parameters. 

A good convergence has been achieved for implementation of this 

code. This is illustrated in table (2) below. For example in Model 1, 

the residual in several steps in case of solving the updated 

displacement. 

Table 2:  Convergence at several steps of loading for L-shaped 

structure 

No. of 

Iterations 

Residual 

Step 80 Step 100 Step 120 

Iteration 1 0.13364 0.070672 0.035782 

Iteration 2 6.0515 e-13 7.9947 e-13 9.8526 e-13 

 

4.2    Single-edge notched Tension Test 

The second example involves testing a single-edge notched mortar 

specimen. The geometry and loading conditions for the single-edge 

notched specimen are illustrated in Figure (11). This test has been 

simulated using two different sets of material model parameters. The 

first is called (Model 1) and the other is (Model 2).  The material model 

parameters and damage parameters of Model 1 are taken from Nguyen, 

V. P [12] and are given in the Table (3) while the material model 

parameters of Model 2 are taken from Benvenuti, E et al [1] and are  

given in the Table (3) but with different softening parameters. 

 
Fig. 11: The geometry and the loading conditions of the Single-edge notched 

specimen. 
 

The geometry has been analyzed under plane stress conditions. Both 

models have been analyzed with two different finite element 

discretization with an increasing fineness of the element mesh in the 

fracture zone. These discretization meshes consist of 1185 and 3892 

elements, respectively. 

In this numerical example, a uniform vertical displacement is applied 

to the top of the specimen. The nodes along the bottom edge are fixed 

in the y-direction, while the node at the left corner is also fixed in the 

x-direction. Displacement control is used with increments of ∆u = 

0.0004 mm and 80 steps for Model 1. 

Table 3:  Characterization of the single edge notched test of Model 1 

and Model 2 
Geometry 
and Model 

Parameters 

Quantity  
Value 

Unit 
Model 1 Model 2 

Geometry 
Width W 100 100 mm 
Length L 100 100 mm 

Notch length d 50 50 Mm 

Elastic 

Parameters 

Young modulus E 35 32.9 GPa 

Poisson ratio ν 0.2 0.2 -- 

Nonlocal 

Material 

Parameter 

Gradient parameter c 1 1 mm² 

Damage 

law 

initial  damage value 𝜅𝑖 0.05 0.03 -- 

Softening 

Parameters 

α 0.96 5 -- 

β 100 0.8 -- 

 

For Model 1, the load-displacement results curve is depicted on a 

medium and a fine mesh in Figure (12) and Figure (13), respectively. 

Fig. 12: load-displacement curve for Model 1 – 1185 elements. 

Fig. 13: load-displacement curve for Model 1 – 3982 elements. 

 

Good convergence has been achieved for implementation of this code. 

Table (4) illustrates the convergence at three different steps. For 

Model 1 in case of solving for the updated displacement. 

Table 4:  The Convergence at several steps for the single edge notched 

structure 

No. of 

Iterations 

Residual 

Step 40 Step 50 Step 60 

Iteration 1 0.016338 0.022414 0.042863 

Iteration 2 4.1067 e-15 5.1836 e-15 6.809 e-15 

 

The nonlinear system has been solved with a full Newton-Raphson 

method. The convergence criterion is based on the norm of the internal 

force, with a tolerance of 1.0 × 10−8 being chosen. The local 

equivalent strain is calculated using the Mazars definition, and the 

damage evolution follows an exponential softening law. 

The damage patterns at several stages loading for Model 1 are 

presented for medium and fine mesh in Figure (14) and Figure (15), 

respectively. 
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Fig. 14: The damage evolution in the single edge notched with 

medium Mesh - Model 1. 

 

Fig. 15: The damage evolution in the single edge notched with 

fine Mesh - Model 1. 

 

It is evident that, in the initial stage of the fracture process, damage 

starts at the right side of the notch and progresses to the end of the 

right edge of the specimen.  

For Model 2, the displacement control is used with increments ∆u = 

0.0005 mm and 80 steps. And the other difference is that the softening 

parameter, which are used to define the damage variable, are changed. 

The local equivalent strain is calculated using the Mazars definition, 

and the damage evolution law follows an exponential softening 

equation. The load-displacement results curve is depicted on a medium 

and a fine mesh in Figure (16) and Figure (17), respectively.  

 
Fig. 16: load-displacement curve for Model 2 – 1185 elements. 

 

The damage patterns at several stages loading for Model 2 are 

presented for medium and fine mesh in Figure (18) and Figure (19), 

respectively.  

 

Fig. 17: load-displacement curve for Model 2 – 3982 elements. 

 

Fig. 18: The damage evolution in the single edge notched with 

medium Mesh - Model 2. 

 

Fig. 19: The damage evolution in the single edge notched with 

fine Mesh - Model 2. 

5. Conclusion  

The implicit gradient-enhanced damage model for quasi-brittle 

materials, based on non-local theory, has been shown through 

numerical simulations to accurately represent fracture processes. The 

explanation covers the implicit gradient enhancement, which 

improves the strain tensor. It also discusses the linear relationship 

between the history parameter and the damage variable. Additionally, 

the integral formulation of the non-local model has been substituted 

with a partial differential equation that must be solved alongside the 

equilibrium equation. The independent variables are interpolated 

separately and both discretization patterns need to satisfy C0 -

continuity. A system of equations is solved using a staggered scheme 

because fully coupled implicit models are more challenging to 

implement. This approach is detailed in the algorithm for this model. 
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