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 A B S T R A C T 

One of primary challenges in autonomous driving is high cost of electronic components, which can 

hinder widespread adoption and experimentation necessary for advancements in this field. Open-

source CARLA simulator provides a cost-effective and realistic environment for conducting 

experiments in autonomous driving, allowing for precise and efficient testing without need for 

expensive hardware .In this study, we focus on object detection within autonomous driving systems 

using CARLA simulator. Deep learning model YOLOv5 was employed to detect ten different 

objects: bike, motorcycle, person, traffic light green, traffic light orange, traffic light red, traffic sign 

30, traffic sign 60, traffic sign 90, and vehicle. Model was trained for 150 epochs using a dataset of 

1864 images, divided into 1600 images for training, 264 images for testing. Training results for all 

classes were  Precision (P) of 0.934, Recall (R) of 0.908, mAP@50 of 0.935 and mAP@50-95 of 

0.689. Test results for all classes were  Precision (P) of 0.93, Recall (R) of 0.892, mAP@50 of 0.93 

and mAP@50-95 of 0.675. These results demonstrate model's capability to accurately detect and 

retrieve objects. Additionally, external testing on model with new images showed good performance, 

successfully recognizing objects in various scenarios  .This research highlights potential of using 

CARLA simulator and YOLOv5 model for efficient and effective object detection in autonomous 

driving systems, paving way for further advancements in this critical field.  

    CARLAومحاكي  YOLOv5الكائنات الفعّال في أنظمة القيادة الذاتية باستخدام كشف 

   بدر نجيب عويدات

  ليبيا ترهونة، المعلومات،كلية تقنية  الزيتونة،جامعة 
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 نماذج التعلم العميق 

 الملخص 

تكلفة   عد 
ُ
يعيق الاستخدام  ت قد  الذاتية، مما  القيادة  في  التحديات الأساسية  العالية من  الإلكترونية  المكونات 

مفتوح المصدر بيئة فعّالة من   CARLA الواسع والتجارب اللازمة لتحقيق التقدم في هذا المجال. يوفر محاكي

حيث التكلفة وواقعية لإجراء التجارب في القيادة الذاتية، مما يسمح بإجراء اختبارات دقيقة وفعّالة دون الحاجة  

باستخدام   الذاتية  القيادة  أنظمة  داخل  الكائنات  كشف  على  نركز  الدراسة،  هذه  في  الثمن.  باهظة  أجهزة  إلى 

لكشف عشرة كائنات مختلفة: دراجة، دراجة   YOLOv5 تم استخدام نموذج التعلم العميق .CARLA محاكي

،  60، علامة مرور  30نارية، أشخاص، إشارة مرور خضراء، إشارة مرور صفراء، إشارة مرور حمراء، علامة مرور  

صورة،    1864دورة باستخدام مجموعة بيانات تتكون من  150، ومركبات. تم تدريب النموذج 90علامة مرور 

إلى   تقسيمها  لل  1600تم  وصورة  للاختبار.   264تدريب  الدقة    صورة  هي:  الفئات  لجميع  التدريب  نتائج  كانت 

الدقة عند  0.908، الاسترجاع  0.934 الدقة عند  0.935  50، متوسط  أما  0.689  95-50، ومتوسط   .

الدقة   فكانت:  الفئات  لجميع  الاختبار  الاسترجاع  0.93نتائج  عند  0.892،  الدقة  متوسط   ،50  0.93 ،

لنتائج قدرة النموذج على كشف واسترجاع الكائنات بدقة. . تُظهر هذه ا0.675  95-50ومتوسط الدقة عند  

تم  حيث  جيدًا،  أداءً  جديدة  صور  باستخدام  النموذج  على  الخارجية  الاختبارات  أظهرت  ذلك،  إلى  بالإضافة 

 CARLA تُبرز هذه الدراسة إمكانيات استخدام محاكي  التعرف بنجاح على الكائنات في سيناريوهات متنوعة.

https://cest.org.ly/
mailto:bader_najep@yahoo.com
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للكشف الفعّال والناجح عن الكائنات في أنظمة القيادة الذاتية، مما يمهد الطريق لمزيد من   YOLOv5 ونموذج

 .التقدم في هذا المجال الحيوي 

 
1. Introduction  
Object detection for autonomous driving is a cornerstone technology 

critical for ensuring safe, efficient, and reliable vehicle operation. 

Autonomous vehicles rely on accurate detection and classification of 

objects in their environment to make informed decisions, essential for 

collision avoidance and safe driving. This task encompasses several 

critical requirements, including high accuracy, real-time inference 

speed, small model size, and energy efficiency. Each of these factors 

significantly impacts effectiveness and safety of autonomous systems. 

2. Previous Advancements 

2.1 Weber et al. (2016) introduced DeepTLR, a deep convolutional 

network designed for real-time detection and classification of traffic 

lights [1]. This model established a foundation for subsequent 

enhancements in traffic light detection, addressing initial limitations 

of earlier models. 

2.2 Choi et al. (2019) proposed Gaussian YOLOv3, an improvement 

that incorporates Gaussian parameters into bounding box modeling to 

enhance detection accuracy and support real-time operation [2]. This 

advancement addressed several limitations observed in prior models, 

paving way for more robust object detection in complex environments. 

2.3 Sharma et al. (2022) showcased YOLOv5’s effectiveness for 

object detection and scene perception under diverse weather 

conditions, including challenging scenarios like heavy rain [3]. Their 

study highlighted model’s adaptability in real-time scenarios, 

demonstrating its capability to handle variations in environmental 

conditions. 

2.4 Kim et al. (2023) addressed challenge of detecting objects in heavy 

rain by developing a novel dataset from experimental raindrop data. 

This dataset, evaluated using  CARLA simulator, facilitated extensive 

testing of YOLO-Series models under different precipitation 

conditions. Study emphasized persistent difficulties encountered by 

YOLO-Series models in extreme weather scenarios [4]. 

3. Research Significance 

Ongoing research in object detection for autonomous driving focuses 

not only on refining existing technologies but also on tackling new 

challenges arising from diverse environmental conditions. Addressing 

these challenges is crucial for advancing autonomous vehicle systems 

and enhancing road safety. This research aims to contribute to field by 

exploring innovative solutions and refining current methodologies to 

improve object detection performance under various conditions.  

Table 1: Performance Metrics from Weber et al. (2016). 

Model 

DeepT
LR 

Precisio
n 

(640×4

80) 

Recall 

(640×4
80) 

F1-
Score 

(640×4

80) 

Precisio
n 

(1280×

960) 

Recall 

(1280×
960) 

F1-
Score 

(1280×

960) 

Base 70.4% 66.1% 68.2% 93.8% 73.1% 82.2% 

Pretrai
ned 

70.6% 68.3% 69.4% 94.8% 78.1% 85.6% 

Small 
Samples 

78.6% 87.4% 82.7% 93.7% 91.0% 92.4% 

Full 85.6% 90.7% 88.1% 95.6% 91.4% 93.5% 

Table 2: Performance Metrics from Choi et al. (2019). 
Dataset Input Size mAP (%) FPS 

KITTI Validation 512×512 83.61 43.13 
KITTI Validation 704×704 86.79 24.91 

BDD Test 512×512 18.4 42.5 

BDD Test 736×736 20.8 22.5 
COCO N/A 36.1 N/A 

COCO (AP75) N/A 39.0 N/A 

Table 3: Performance Metrics from Sharma et al. (2022). 

Class Images Labels Precision Recall 
mAP 

(0.5) 

all 239 1520 0.474 0.337 0.258 

biker 239 27 0.438 0.0741 0.0811 

car 239 1066 0.528 0.726 0.723 

pedestrian 239 156 0.22 0.308 0.186 

Traffic Light 239 41 0.308 0.415 0.297 

Traffic Light-
Green 

239 42 0.133 0.476 0.0956 

Traffic Light 

Green Left 
239 4 1 0 0.00756 

Traffic Light Red 239 91 0.378 0.714 0.468 

Traffic Light Red 

Left 
239 24 0.2 0.0833 0.128 

Traffic Light 

Yellow 
239 12 1 0 0.0169 

truck 239 57 0.532 0.578 0.573 

Table 4: Comparison of KITTI and CARLA dataset on normal 

weather condition from Kim et al. (2023). 

Model Class KITTI AP 
KITTI 

F1 

CARLA 

AP 

CARLA 

F1 

YOLOv4 Car 0.805 0.555 0.64 0.628 

YOLOv4 Person 0.569 0.379 0.771 0.699 

YOLOv5x Car 0.805 0.784 0.652 0.623 
YOLOv5x Person 0.559 0.602 0.738 0.746 

YOLOv7x Car 0.808 0.792 0.669 0.663 

YOLOv7x Person 0.561 0.603 0.731 0.786 

Table 5: AP score degradation of object detection performance 

according to precipitation from Kim et al. (2023). 
Model Condition Car Person Bicycle Motorcycle 

YOLOv4 Normal 0.64 0.771 0.913 0.263 

YOLOv4 100mm/h 0.424 0.469 0.677 0.0043 
YOLOv5x Normal 0.652 0.738 0.813 0.425 

YOLOv5x 100mm/h 0.452 0.427 0.614 0.0031 

YOLOv7x Normal 0.669 0.731 0.936 0.198 
YOLOv7x 100mm/h 0.46 0.51 0.693 0.00025 

Table 6: F1 score degradation of object detection performance 

according to precipitation from Kim et al. (2023). 
Model Condition Car Person Bicycle Motorcycle 

YOLOv4 Normal 0.629 0.699 0.802 0.179 

YOLOv4 100mm/h 0.477 0.414 0.627 0 

YOLOv5x Normal 0.623 0.746 0.724 0.415 
YOLOv5x 100mm/h 0.514 0.485 0.535 0 

YOLOv7x Normal 0.663 0.786 0.859 0.159 

YOLOv7x 100mm/h 0.533 0.549 0.522 0 

4. CARLA (CAR LEARNING ACT) 

CARLA, an open-source simulator for autonomous driving research. 

CARLA has been developed from ground up to support development, 

training, and validation of autonomous urban driving systems. In 

addition to open-source code and protocols, CARLA provides open 

digital assets (urban layouts, buildings, vehicles) that were created for 

this purpose and can be used freely [5]. 

 

Fig. 1 : CARLA client-server architecture [6]. 

5. Architecture of Autonomous Vehicle Systems in CARLA 

Environment 

5.1 Global Planner: Global Planner is responsible for determining 

overall path of journey based on set destination and road conditions. 

5.2 Waypoint Position Decision: Controls direction of vehicle and 

specifies specific locations along path. 

5.3 Obstacle Detection and Perception: Recognizes obstacles in 

environment and enhances vehicle's understanding of its surroundings. 

5.4 Sensors: Includes cameras, Global Positioning System (GPS), 

speed measurement units (Encoders), and wireless communication 

technology (G4). 

5.5 Self-Localization: Allows vehicle to accurately determine its 

position within environment. 
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5.6 Motion Control: Manages vehicle's control and regulates its 

movement based on decisions made. 

5.7 Local Planner: Determines a short and local path to assist in 

overcoming immediate obstacles. 

5.8 Collision Avoidance:  Controls vehicle's movement to avoid 

collisions with obstacles. 

These components collaborate to achieve a self-driving system in 

CARLA environment, enabling vehicle to control itself and adapt its 

movement based on surrounding conditions and specified objectives. 

 
Fig. 2: System architecture of autonomous vehicle [7]. 

6. Weather Presets: 

In CARLA, weather and lighting conditions can be customized through 

a selection of predefined settings. To choose a specific preset, adjust 

"WeatherId" key in configuration file "CarlaSettings.ini." Available 

presets are as follows: 

0 – Default, 1 - Clear Noon, 2 - Cloudy Noon, 3 - Wet Noon, 4 - Wet 

Cloudy Noon, 5 - Mid Rainy Noon, 6 - Hard Rain Noon, 7 - Soft Rain 

Noon, 8 - Clear Sunset, 9 - Cloudy Sunset, 10 - Wet Sunset, 11 - Wet 

Cloudy Sunset, 12 - Mid Rain Sunset, 13 - Hard Rain Sunset, 14 - Soft 

Rain Sunset. 

These presets offer a range of weather conditions and lighting scenarios 

for simulation purposes in CARLA environment. To apply a specific 

setting, refer to corresponding numerical identifier when configuring 

WeatherId parameter. 

 
Fig.3: Some weather conditions in CARLA. 

7. Camera In Carla: CARLA uses a variety of camera types to 

simulate driving scenes and artificial intelligence applications, 

including: 

7.1 RGB Camera: Type: RGB. Usage: Reproduces images using 

tricolor technology. Applications: Used for general vision and object 

recognition.  

7.2 Depth Camera: Type: Depth. Usage: Generates a depth map 

showing distance between objects. Applications: Distance 

measurement and object classification based on depth.  

7.3 Semantic Segmentation Camera: Type: Semantic Segmentation. 

Usage: Reproduces an image where a unique color is assigned to each 

object category. Applications: Accurate classification of objects using 

colors.  

7.4 DVS Camera:  Type: Dynamic Vision Sensor (DVS). Usage: 

Records dynamic changes in lighting only. Applications: Efficient 

motion tracking.  

7.5 Grayscale Camera: Type: Grayscale. Usage: Reproduces images 

in shades of gray. Applications: Used for general vision with less 

processing complexity.  

7.6 Distorted RGB Camera: Type: Distorted RGB. Usage: 

Reproduces images using tricolor technology with intentional 

distortion to simulate potential distortion effects. Applications: Used 

to simulate image distortion effects in realistic environments. Cameras 

in CARLA are used to generate simulation data for training artificial 

intelligence models for self-driving systems [8]. 

8. YOLOV5: YOLOv5 was proposed in 2020 by a person named 

Glenn Jocher. Model used in study is YOLOv5 (You Only Look Once 

version 5), which is commonly employed for object detection tasks in 

images and videos. YOLOv5 is fifth iteration of this model and is 

considered one of most efficient and fastest models in this field. 

Key features of YOLOv5: 

8.1 Speed: YOLOv5 is characterized by its high speed in image 

processing and object detection compared to many other models. 

8.2 Accuracy: It offers a good balance between speed and accuracy, 

making it suitable for real-time object detection applications. 

8.3 Ease of use: It provides an easy-to-use interface and comes with 

numerous ready-to-use examples, facilitating training and application 

process. 

8.4 Customization: Model can be easily modified to suit a wide range 

of applications by changing parameters and retraining model on 

customized datasets. 

In summary, YOLOv5 is a robust and efficient model for object 

detection, widely used in various practical applications. 

 
Fig. 4: default inference flowchart of YOLOv5[9]. 

9. Network Structure of Yolov5: Generally speaking, network 

structure of YOLOv5 refers to backbone and neck. 

9.1 Backbone: Backbone of YOLOv5 is shown in Figure 5. Main 

structure is stacking of multiple CBS (Conv + BatchNorm + SiLU) 

modules and C3 modules, and finally one SPPF module is connected. 

CBS module is used to assist C3 module in feature extraction, while 

SPPF module enhances feature expression ability of backbone [9]. 

 
Fig. 5: Default network structure of YOLOv5[9]. 

Therefore, in backbone of YOLOv5, most important layer is C3 

module. Basic idea of C3 comes from CSPNet (cross stage partial 

networks. C3 can actually be regarded as specific implementation of 

CSPNet. YOLOv5 uses idea of CSPNet to build C3 module, which not 

only ensures that backbone has excellent feature extraction ability, but 

also curbs problem of gradient information duplication in backbone 

[9]. 

9.2 Neck: In neck, YOLOv5 uses methods of FPN and PAN, as shown 

in Figure 6. Basic idea of FPN is to up-sampling output feature map 

(C3, C4, and C5) generated by multiple convolutions down sampling 

operations from feature extraction network to generate multiple new 

feature maps (P3, P4, and P5) for detecting different scales targets [9].  
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Fig. 6. Neck [9]. 

Feature fusion path of FPN is top-down. On this basis, PAN 

reintroduces a new bottom-up feature fusion path, which further 

enhance detection accuracy for different scales objects [9]. 

10. Experiment and Result Analysis: 
10.1 Parameter settings: Default hyperparameters for model were: 

Table 7: hyperparameters for model. 

epochs VALUES 

lr0 0.01 

lrf 0.01 

momentum 0.937 

weight_decay 0.0005 

warmup_epochs 3.0 

warmup_momentum 0.8 

warmup_bias_lr 0.1 

box 0.05 

cls 0.5 

cls_pw 1.0 

obj 1.0 

obj_pw 1.0 

iou_t 0.2 

anchor_t 4.0 

hsv_h 0.015 

hsv_s 0.7 

hsv_v 0.4 

translate 0.1 

scale 0.5 

fliplr 0.5 

mosaic 1.0 

batch 8 

epochs 150 

10. YOLOv5s model summary: 

YOLOv5s model summary is as follows is:  

10.1 Backbone: backbone is core feature extractor of YOLOv5 

model, responsible for processing input images through a series of 

convolutional and residual layers to extract hierarchical features used 

for object detection.  

Tabl 8: Backbone summary. 
Index Module Number Arguments From 

0 Conv 1 [64, 6, 2, 2] -1 

1 Conv 1 [128, 3, 2] -1 

2 C3 3 [128] -1 

3 Conv 1 [256, 3, 2] -1 

4 C3 6 [256] -1 
5 Conv 1 [512, 3, 2] -1 

6 C3 9 [512] -1 

7 Conv 1 [1024, 3, 2] -1 
8 C3 3 [1024] -1 

9 SPPF 1 [1024, 5] -1 

 

10.2 Head: head of YOLOv5 model takes extracted features from 

backbone and performs object detection tasks, involving upsampling, 

concatenation, and detection layers to predict bounding boxes and 

class probabilities. 

Table 9: Head Summary. 
Index From Number Module Arguments 

10 -1 1 Conv [512, 1, 1] 

11 -1 1 nn.Upsample [None, 2, "nearest"] 
12 [-1, 6] 1 Concat [1] 

13 -1 3 C3 [512, False] 

14 -1 1 Conv [256, 1, 1] 
15 -1 1 nn.Upsample [None, 2, "nearest"] 

16 [-1, 4] 1 Concat [1] 

17 -1 3 C3 [256, False] 
18 -1 1 Conv [256, 3, 2] 

19 [-1, 14] 1 Concat [1] 

20 -1 3 C3 [512, False] 

21 -1 1 Conv [512, 3, 2] 

22 [-1, 10] 1 Concat [1] 

23 -1 3 C3 [1024, False] 
24 [17, 20, 23] 1 Detect [80, anchors] 

11. Experimental Setup: experiments were conducted using Google 

Colab with a T4 GPU to ensure efficient training and evaluation of 

model. Details of hardware and software environment are as follows: 

11.1 Hardware 

11.1.1 GPU: T4 GPU provided by Google Colab. 

11.1.2 RAM: 16GB (Google Colab environment). 

11.2 Software: 

11.2.1 CUDA Version: 10.0 (provided by Google Colab). 

11.2.2 Python Version: 3.7 for run CARLA Environment. 

11.2.3 Deep Learning Framework: PyTorch for YOLOv5. 

11.3 Dataset: Dataset used for training and evaluation consisted of 

1864 images, which were divided into training and test sets as 

follows: 

11.3.1 Training Set: 1600 images (80%) 

11.3.2 Test Set: 264 images (20%) 

11.3.3 Validation Set: A diverse external set of images was used for 

validation to assess model's performance and ensure it generalizes 

well across various scenarios and object instances. Dataset included 

annotations for various object categories, which were used to train 

and evaluate model's performance. 

 
Fig. 7: Sample Images from Dataset. 

11. EVALUATION METRICS:  

Performance of YOLOv5s model was evaluated using following 

metrics: 

11.1 P (Precision): Precision measures proportion of true positive 

detections out of total positive detections made by model. A higher 

precision indicates fewer false positives. 

11.2 R (Recall): Recall measures proportion of true positive 

detections out of actual total positive instances. A higher recall 

indicates fewer false negatives. 

11.3 mAP50 (mean Average Precision at IoU 0.50): These metric 

averages precision scores at an IoU threshold of 0.50 across all classes. 

It provides a measure of how well model detects objects at a specific 

overlap threshold. 

11.4 mAP50-95 (mean Average Precision at IoU 0.50 to 0.95): 

These metric averages precision scores at multiple IoU thresholds 

(from 0.50 to 0.95 in increments of 0.05). It gives a comprehensive 

evaluation of model's performance across various levels of 

localization accuracy. 

12. Results: Trained YOLOv5s model was evaluated on training set. 

Detailed performance metrics, including precision, recall, mAP50, and 

mAP50-95 for each class, are summarized below: 

Table 10: Performance Metrics on Test Data. 
Metric Value 

Precision (P) 0.934 

Recall (R) 0.908 

mAP50 0.935 
mAP50-95 0.689 

Table 10 shows overall performance of YOLOv5s model on training 
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data. Precision and recall values indicate model's accuracy in detecting 

objects correctly, while mAP50 and mAP50-95 metrics provide a 

comprehensive measure of model's detection performance across 

different IoU thresholds. 

 
Fig. 8: Class-Specific Performance on Training. 

Figure 8 illustrates precision, recall, and mAP metrics for each object 

class in Training dataset. Figure helps in understanding how well 

model performs for each specific category, highlighting strengths and 

potential areas for improvement. Trained YOLOv5s model was also 

evaluated on validation set. 

Detailed performance metrics, including precision, recall, mAP50, and 

mAP50-95 for each class, are summarized below: 

Table 11: Performance Metrics on Test Data. 
Metric Value 

Precision (P) 0.93 
Recall (R) 0.892 

mAP50 0.93 

mAP50-95 0.675 

Results indicate that YOLOv5s model achieves high performance in 

terms of precision, recall, and mAP metrics across various object 

categories. Table 11 presents overall performance of YOLOv5s model 

on validation data. Similar to test data results, these metrics provide 

insights into model's accuracy and detection capabilities on unseen 

data used for tuning hyperparameters. 

Fig. 9: Class-Specific Performance on Validation Data. 

Figure 9 depicts precision, recall, and mAP metrics for each object 

class in testing dataset. This figure helps visualize model's 

performance across different categories, ensuring model is well-

tuned and generalizes well on new data. 

Training Performance: In addition to evaluating model on train and 

test sets, various performance metrics and curves were analyzed 

during training process. 

Confusion Matrix: Figure 10 shows confusion matrix, providing a 

detailed look at model's predictions versus actual labels, which helps 

identify specific classes that may be causing confusion. 

 
Fig. 10: Confusion Matrix. 

Precision-Recall Curve: Figure 11 illustrates precision-recall (PR) 

curve, showing trade-off between precision and recall for different 

thresholds. 

 
Fig. 11: PR Curve. 

F1 Curve: Figure 12 shows F1 curve, highlighting harmonic mean of 

precision and recall across different thresholds. 

 
Fig. 12: F1 Curve. 

Training Results: Figure 13 provides an overview of training results, 

including loss and accuracy metrics over epochs, demonstrating 

model's learning progress and convergence. These figures together 

provide a comprehensive overview of model's performance, both 

during training and on evaluation sets, allowing for a thorough 

analysis of YOLOv5s model's strengths and areas for potential 

improvement. 

 
Fig. 13: Training Results. 

Training Data Samples: To provide an overview of training data, we 

present a few samples from training batches. 



Efficient Object Detection in Autonomous Driving Systems Using YOLOv5 and CARLA Simulator                                                                      Awedat. 

CAS Vol.03 No.  3 2024                                                                                                                                                                            6  

 

Fig. 14: Sample Images from Training Batches. 
Validation Data Labels and Predictions To evaluate model's 

performance on validation set, we compare actual labels with model's 

predictions. 

 
Fig. 15: Actual Labels in Validation Batches. 

 
Fig. 16: Model Predictions in Validation Batches. 

These figures provide a visual comparison of ground truth and 

predictions made by model, highlighting its performance and areas 

where it may need improvement. 

Test Performance: During testing phase, model's performance was 

thoroughly assessed using various performance metrics and 

visualizations.  

Confusion Matrix: Figure 16 presents confusion matrix generated 

during validation phase. This matrix provides a detailed overview of 

model's predictions compared to actual labels in validation dataset. It 

helps identify classes where model may be struggling or making 

errors, thereby guiding further refinement efforts. 

Fig. 17: Confusion Matrix. 

Precision-Recall Curve: Figure 18 illustrates precision-recall (PR) 

curve computed during validation process. This curve showcases 

trade-off between precision and recall at different decision thresholds. 

It offers insights into how effectively model balances precision and 

recall for object detection tasks on validation dataset. 

 

 
Fig. 18: Precision-Recall Curve. 

F1 Curve: Figure 19 displays F1 curve calculated during validation 

phase. F1 curve depicts harmonic mean of precision and recall across 

various decision thresholds. Analyzing this curve helps gauge model's 

overall performance and convergence during validation. 

 
Fig. 19: F1 Curve. 

Precision Curve: Figure 20 represents precision curve obtained from 

validation phase. This curve plots precision against different decision 

thresholds and provides a closer look at model's precision performance 

on validation dataset. 

 
Fig. 20: Precision Curve. 

Recall Curve: Figure 21 show cases recall curve derived from 
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validation phase. By plotting recall against different decision 

thresholds, this curve offers insights into model's ability to correctly 

identify objects of interest across various recall levels during 

validation. 

 
Fig. 21: Recall Curve. 

These visualizations collectively offer a comprehensive understanding 

of YOLOv5s model's performance during validation phase, 

facilitating an in-depth analysis of its strengths and areas for potential 

enhancement. 

External Validation using Trained Model on Unseen Images: In this 

section, we present validation of our trained YOLOv5 model using 

external images that were not part of training or testing datasets. This 

step is crucial to evaluate generalization capability of model in 

detecting objects in unseen data, ensuring its robustness and reliability 

in real-world scenarios. 

To perform validation, we loaded trained model and applied it to a set 

of external images. Model processed each image and produced 

bounding boxes around detected objects, along with confidence scores 

and class labels. Table below showcases results for a sample image, 

detailing coordinates of bounding boxes (xmin, ymin, xmax, ymax), 

confidence scores, class indices, and corresponding object names. 

 

 

 

 

 

 

 

 

 

 

Fig. 22: Detected Objects with Confidence Scores and Bounding 

Boxes. 

Results indicate that model effectively detects and classifies objects 

such as vehicles, traffic lights, and motorbikes with high confidence. 

This external validation step demonstrates practical application of 

our model and its potential for deployment in real-world autonomous 

driving scenarios. 

We have included representative images with annotated detections to 

visually illustrate performance of our model. Each image is labeled 

with detected objects, showcasing model's accuracy and reliability. 

 
Fig. 23: Detected Objects with Confidence Scores and Bounding 

Boxes. 

13. Results Analysis: Model demonstrates high precision and recall 

in both training and testing phases. A slight decrease in recall and a 

minor difference in mAP@50-95 between training and testing 

indicate consistent performance across different datasets, suggesting 

model's stability and minimal susceptibility to bias.

 
Fig. 24: Performance metrics for all. 

13.1 Class-Specific Performance: 

Following results highlight model's performance across various object 

classes, showcasing its precision and recall during both training and 

testing phases: 

13.2 High Precision and Recall:  

These results indicate that model performs exceptionally well in 

detecting certain objects, showing high accuracy in both training and 

testing phases. 

13.2.1 Traffic light green:  

Precision: 1.0 (Training), 0.955 (Testing); Recall: 0.985 (Training), 

1.0 (Testing). 

13.2.2 Traffic light orange:  

Precision: 0.993 (Training), 0.991 (Testing); Recall: 1.0 (Training and 

Testing). 

13.2.3 Traffic light red:  

Precision: 1.0 (Training), 0.979 (Testing); Recall: 0.983 (Training and 

Testing). 

13.2.4 Person:  

Precision: 0.921 (Training), 1.0 (Testing); Recall: 0.96 (Training), 

0.973 (Testing). 

 

 

 

 
Fig. 25: High Precision and Recall. 

13.3 Moderate Performance: 

For certain classes, model shows moderate performance with slightly 

varying precision and recall between training and testing phases: 

13.3.1 bike:  

Precision: 0.818 (Training), 0.731 (Testing); Recall: 0.856 

(Training), 0.857 (Testing). 

13.3.2 Motobike: 

Precision: 0.956 (Training), 0.99 (Testing); Recall: 0.772 (Training), 

0.75 (Testing). 

13.4 Inference Speed: model demonstrates excellent execution 

speed, making it well-suited for real-time applications such as 

autonomous driving. High speed ensures efficient image processing, a 

critical requirement for real-time systems. 

13.5 Speed Details: Pre-processing takes 0.2ms, inference requires 

6.6ms, and Non-Maximum Suppression (NMS) consumes 5.0ms per 

image at a resolution of (32, 3, 640, 640). 
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14. Discussion 

Previous studies have made significant strides in enhancing object 

detection for autonomous driving. Weber et al. introduced DeepTLR, 

which demonstrated competitive performance metrics in real-time 

traffic light detection and classification [1]. This approach set a 

benchmark for subsequent advancements. 

Choi et al. further advanced field with Gaussian YOLOv3, utilizing 

Gaussian parameters to refine detection accuracy and speed, especially 

in complex driving environments [2]. Sharma et al. expanded on this 

by showcasing YOLOv5’s robustness under diverse weather 

conditions, including challenging scenarios like heavy rain [3]. 

In current study, training and testing YOLOv5 on CARLA dataset 

revealed strong performance metrics across multiple classes. High 

precision and recall were observed, particularly in detecting traffic 

lights and pedestrians. However, performance challenges persisted for 

smaller objects such as bicycles and motorcycles. These findings 

suggest that while YOLOv5 performs well in many scenarios, further 

optimization is needed to improve detection accuracy for smaller and 

more variable objects. 

When comparing these results with Kim et al.'s findings on YOLO-

Series models under heavy rain conditions, we observe similar 

challenges. Kim et al. identified significant performance degradation 

in adverse weather, a challenge that our study also encountered [4]. 

This parallel highlight ongoing difficulty in maintaining high 

detection accuracy in such conditions, underscoring need for 

continued research to enhance robustness. 

In conclusion, advancements in deep learning models like YOLOv5 

show considerable promise for real-time object detection in 

autonomous driving. Nonetheless, addressing specific challenges—

such as detecting smaller objects and performing reliably under 

adverse weather conditions—remains crucial. Future research should 

focus on refining these aspects to enhance overall effectiveness and 

safety of autonomous driving systems. 

15. Conclusion  

Model demonstrates strong overall performance with high precision 

and recall in both training and testing phases. Excellent performance 

in traffic signal and pedestrian categories highlights model's capability 

in recognizing these classes. However, some categories like bicycles 

and motorcycles could benefit from further improvements. High 

execution speed enhances model's efficiency for real-time 

applications. 

16. Recommendations 

15.1 A. Utilizing Attention Mechanisms to Enhance Model Accuracy 

and Pruning and Trimming Techniques to Reduce Model Size: It is 

advisable to explore attention mechanisms to improve model's 

accuracy by focusing on relevant features. Additionally, using pruning 

and trimming techniques can reduce model's size, making it easier to 

deploy in autonomous driving environments like CARLA. 

15.2 B. Training Model Locally on a Computer Instead of Google 

Colab: Training model on a local machine offers several advantages, 

including integrating trained model with graphical libraries such as 

tkinter or qt5. This increases model's portability and facilitates its 

integration into graphical interface applications, easing testing and 

deployment in simulation environments like CARLA. 

15.3 C. Using Larger and Diverse Weather Data Sets: Increasing 

volume and diversity of data used in training is crucial to improve 

model's generalization capabilities under varied weather conditions. 

Gathering additional data that represents a wide range of weather 

conditions such as heavy rain, fog, and bright sunlight will enhance 

model's ability to accurately detect targets in diverse and changing 

road conditions. 

References 

[1]- M. Weber, P. Wolf, and J. M. Zöllner, "DeepTLR: A Single 

Deep Convolutional Network for Detection and Classification 

of Traffic Lights," in *Proceedings of the 2016 IEEE 

Intelligent Vehicles Symposium (IV)*, 2016, pp. 342-348. 

(IF: 4). 

[2]- J. Choi, D. Chun, H. Kim, and H.-J. Lee, "Gaussian YOLOv3: 

An Accurate and Fast Object Detector Using Localization 

Uncertainty for Autonomous Driving," in *Proceedings of the 

IEEE/CVF International Conference on Computer Vision 

(ICCV)*, 2019. [Online]. Available: 

https://arxiv.org/abs/1904.04620. [Accessed: Apr. 9, 2019]. 

[Revised: Aug. 12, 2019]. 

[3]- Sharma, T.; Debaque, B.; Duclos, N.; Chehri, A.; Kinder, B.; 

Fortier, P. Deep Learning-Based Object Detection and Scene 

Perception under Bad Weather Conditions. Electronics 2022, 

11, 563. https://doi.org/10.3390/ electronics11040563. 

[4]- T. Kim, H. Jeon, and Y. Lim, "Challenges of YOLO Series for 

Object Detection in Extremely Heavy Rain: CALRA 

Simulator based Synthetic Evaluation Dataset," arXiv e-

prints, vol. 2312, Dec. 2023.the English citation first, 

followed by the original foreign-language citation [6]. 

[5]- A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. 

Koltun, “Carla: An open urban driving simulator,” in 

Conference on robot learning. PMLR, 2017, pp. 1–16. 

[6]- D. Zang, Z. Wei, M. Bao, J. Cheng, D. Zhang, K. Tang, and 

X. Li, “Deep learning–based traffic sign recognition for 

unmanned autonomous vehicles,” Proceedings of the 

Institution of Mechanical Engineers, Part I: Journal of 

Systems and Control Engineering, vol. 232, no. 5, pp. 497–

505, 2018. 

[7]- S. Malik, M. A. Khan, and H. El-Sayed, “Carla: Car learning 

to act—an inside out,” Procedia Computer Science, vol. 198, 

pp. 742–749, 2022. 

[8]- “CARLA documentation,” Online, available: 

https://carla.readthedocs.io/en/stable/carlas ettings/. 

[9]- Liu, H.; Sun, F.; Gu, J.; Deng, L. SF-YOLOv5: A Lightweight 

Small Object Detection Algorithm Based on Improved 

Feature Fusion Mode. Sensors 2022, 22, 5817. https: // 

doi.org/ 10.3390/ s22155817 

https://carla.readthedocs.io/en/stable/carlas%20ettings/

