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Autonomous Driving One of primary challenges in autonomous driving is high cost of electronic components, which can
Object Detection hinder widespread adoption and experimentation necessary for advancements in this field. Open-
CARLA Simulator source CARLA simulator provides a cost-effective and realistic environment for conducting
YOLOv5 experiments in autonomous driving, allowing for precise and efficient testing without need for
Deep Learning Models expensive hardware .In this study, we focus on object detection within autonomous driving systems

using CARLA simulator. Deep learning model YOLOV5 was employed to detect ten different
objects: bike, motorcycle, person, traffic light green, traffic light orange, traffic light red, traffic sign
30, traffic sign 60, traffic sign 90, and vehicle. Model was trained for 150 epochs using a dataset of
1864 images, divided into 1600 images for training, 264 images for testing. Training results for all
classes were Precision (P) of 0.934, Recall (R) of 0.908, mAP@50 of 0.935 and mAP@50-95 of
0.689. Test results for all classes were Precision (P) of 0.93, Recall (R) of 0.892, mAP@50 of 0.93
and mAP@50-95 of 0.675. These results demonstrate model's capability to accurately detect and
retrieve objects. Additionally, external testing on model with new images showed good performance,
successfully recognizing objects in various scenarios .This research highlights potential of using
CARLA simulator and YOLOV5 model for efficient and effective object detection in autonomous
driving systems, paving way for further advancements in this critical field.
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1. Introduction

Object detection for autonomous driving is a cornerstone technology
critical for ensuring safe, efficient, and reliable vehicle operation.
Autonomous vehicles rely on accurate detection and classification of
objects in their environment to make informed decisions, essential for
collision avoidance and safe driving. This task encompasses several
critical requirements, including high accuracy, real-time inference
speed, small model size, and energy efficiency. Each of these factors
significantly impacts effectiveness and safety of autonomous systems.
2. Previous Advancements

2.1 Weber et al. (2016) introduced DeepTLR, a deep convolutional
network designed for real-time detection and classification of traffic
lights [1]. This model established a foundation for subsequent
enhancements in traffic light detection, addressing initial limitations
of earlier models.

2.2 Choi et al. (2019) proposed Gaussian YOLOvV3, an improvement
that incorporates Gaussian parameters into bounding box modeling to
enhance detection accuracy and support real-time operation [2]. This
advancement addressed several limitations observed in prior models,
paving way for more robust object detection in complex environments.
2.3 Sharma et al. (2022) showcased YOLOVS’s effectiveness for
object detection and scene perception under diverse weather
conditions, including challenging scenarios like heavy rain [3]. Their
study highlighted model’s adaptability in real-time scenarios,
demonstrating its capability to handle variations in environmental
conditions.

2.4 Kim et al. (2023) addressed challenge of detecting objects in heavy
rain by developing a novel dataset from experimental raindrop data.
This dataset, evaluated using CARLA simulator, facilitated extensive
testing of YOLO-Series models under different precipitation
conditions. Study emphasized persistent difficulties encountered by
YOLO-Series models in extreme weather scenarios [4].

3. Research Significance

Ongoing research in object detection for autonomous driving focuses
not only on refining existing technologies but also on tackling new
challenges arising from diverse environmental conditions. Addressing
these challenges is crucial for advancing autonomous vehicle systems
and enhancing road safety. This research aims to contribute to field by
exploring innovative solutions and refining current methodologies to
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Table 4: Comparison of KITTI and CARLA dataset on normal
weather condition from Kim et al. (2023).

KITTI CARLA CARLA
Model Class KITTI AP F1 AP F1
YOLOv4 Car 0.805 0.555 0.64 0.628
YOLOv4  Person 0.569 0.379 0.771 0.699
YOLOvV5x Car 0.805 0.784 0.652 0.623
YOLOv5x  Person 0.559 0.602 0.738 0.746
YOLOvV7x Car 0.808 0.792 0.669 0.663
YOLOvV7x  Person 0.561 0.603 0.731 0.786

Table 5: AP score degradation of object detection performance
according to precipitation from Kim et al. (2023).

Model Condition Car  Person  Bicycle Motorcycle
YOLOv4 Normal 0.64 0.771 0.913 0.263
YOLOv4 100mm/h  0.424  0.469 0.677 0.0043
YOLOv5x Normal 0.652 0.738 0.813 0.425
YOLOv5x  100mm/h  0.452  0.427 0.614 0.0031
YOLOvVT7x Normal 0.669 0.731 0.936 0.198
YOLOv7x  100mm/h  0.46 0.51 0.693 0.00025

Table 6: F1 score degradation of object detection performance
according to precipitation from Kim et al. (2023).

Model Condition  Car  Person  Bicycle Motorcycle
YOLOv4 Normal 0.629  0.699 0.802 0.179
YOLOv4 100mm/h 0477 0.414 0.627 0
YOLOv5x Normal 0.623 0.746 0.724 0.415
YOLOv5x  100mm/h 0514  0.485 0.535 0
YOLOvV7x Normal 0.663 0.786 0.859 0.159
YOLOv7x  100mm/h 0533  0.549 0.522 0

4. CARLA (CAR LEARNING ACT)

improve object detection performance under various conditions.
Table 1: Performance Metrics from Weber et al. (2016).

Model Precisio Recall F1- Precisio Recall F1-
DeepT (640x4  SCOT (1280x  S%0r€
L (B40x4 TgpT (840x4 (1280x  NAT (1280x
80) 80) 960) 960)
Base  70.4%  66.1% 682% 938%  73.1%  822%
P;egga' 70.6%  68.3% 69.4%  94.8%  781%  85.6%
omal  78e%  87.4% 827%  937%  9L0%  924%
amples
Full 85.6% 90.7% 88.1% 95.6% 91.4% 93.5%
Table 2: Performance Metrics from Choi et al. (2019).
Dataset Input Size mAP (%) FPS
KITTI Validation 512x512 83.61 43.13
KITTI Validation 704x704 86.79 24.91
BDD Test 512x512 18.4 425
BDD Test 736x736 20.8 225
coco N/A 36.1 N/A
COCO (AP75) N/A 39.0 N/A
Table 3: Performance Metrics from Sharma et al. (2022).
Class Images Labels Precision Recall rgg)%l;
all 239 1520 0.474 0.337 0.258
biker 239 27 0.438 0.0741 0.0811
car 239 1066 0.528 0.726 0.723
pedestrian 239 156 0.22 0.308 0.186
Traffic Light 239 41 0.308 0.415 0.297
Traffic Light-
Green 239 42 0.133 0.476 0.0956

CARLA, an open-source simulator for autonomous driving research.
CARLA has been developed from ground up to support development,
training, and validation of autonomous urban driving systems. In
addition to open-source code and protocols, CARLA provides open
digital assets (urban layouts, buildings, vehicles) that were created for
this purpose and can be used freely [5].
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TCP
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Fig. 1: CARLA client-server architecture [6].

5. Architecture of Autonomous Vehicle Systems in CARLA
Environment

5.1 Global Planner: Global Planner is responsible for determining
overall path of journey based on set destination and road conditions.
5.2 Waypoint Position Decision: Controls direction of vehicle and
specifies specific locations along path.

5.3 Obstacle Detection and Perception: Recognizes obstacles in
environment and enhances vehicle's understanding of its surroundings.
5.4 Sensors: Includes cameras, Global Positioning System (GPS),
speed measurement units (Encoders), and wireless communication
technology (G4).

5.5 Self-Localization: Allows vehicle to accurately determine its
position within environment.
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5.6 Motion Control: Manages vehicle's control and regulates its
movement based on decisions made.

5.7 Local Planner: Determines a short and local path to assist in
overcoming immediate obstacles.

5.8 Collision Avoidance: Controls vehicle's movement to avoid
collisions with obstacles.

These components collaborate to achieve a self-driving system in
CARLA environment, enabling vehicle to control itself and adapt its
movement based on surroundlng conditions and specified objectives.
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Fig. 2: System architecture of autonomous vehicle [7].
6. Weather Presets:
In CARLA, weather and lighting conditions can be customized through
a selection of predefined settings. To choose a specific preset, adjust
"Weatherld" key in configuration file "CarlaSettings.ini." Available
presets are as follows:
0 — Default, 1 - Clear Noon, 2 - Cloudy Noon, 3 - Wet Noon, 4 - Wet
Cloudy Noon, 5 - Mid Rainy Noon, 6 - Hard Rain Noon, 7 - Soft Rain
Noon, 8 - Clear Sunset, 9 - Cloudy Sunset, 10 - Wet Sunset, 11 - Wet
Cloudy Sunset, 12 - Mid Rain Sunset, 13 - Hard Rain Sunset, 14 - Soft
Rain Sunset.
These presets offer a range of weather conditions and lighting scenarios
for simulation purposes in CARLA environment. To apply a specific
setting, refer to corresponding numerical identifier when configuring
Weatherld parameter.

Obstacle

detection

Fig.3: Some weather conditions in CARLA.
7. Camera In Carla: CARLA uses a variety of camera types to
simulate driving scenes and artificial intelligence applications,
including:
7.1 RGB Camera: Type: RGB. Usage: Reproduces images using
tricolor technology. Applications: Used for general vision and object
recognition.
7.2 Depth Camera: Type: Depth. Usage: Generates a depth map
showing distance between objects. Applications: Distance
measurement and object classification based on depth.
7.3 Semantic Segmentation Camera: Type: Semantic Segmentation.
Usage: Reproduces an image where a unique color is assigned to each
object category. Applications: Accurate classification of objects using
colors.
7.4 DVS Camera: Type: Dynamic Vision Sensor (DVS). Usage:
Records dynamic changes in lighting only. Applications: Efficient
motion tracking.
7.5 Grayscale Camera: Type: Grayscale. Usage: Reproduces images
in shades of gray. Applications: Used for general vision with less
processing complexity.
7.6 Distorted RGB Camera: Type: Distorted RGB. Usage:
Reproduces images using tricolor technology with intentional
distortion to simulate potential distortion effects. Applications: Used

to simulate image distortion effects in realistic environments. Cameras
in CARLA are used to generate simulation data for training artificial
intelligence models for self-driving systems [8].
8. YOLOV5: YOLOvV5 was proposed in 2020 by a person named
Glenn Jocher. Model used in study is YOLOV5 (You Only Look Once
version 5), which is commonly employed for object detection tasks in
images and videos. YOLOVS5 is fifth iteration of this model and is
considered one of most efficient and fastest models in this field.
Key features of YOLOV5:
8.1 Speed: YOLOVS5 is characterized by its high speed in image
processing and object detection compared to many other models.
8.2 Accuracy: It offers a good balance between speed and accuracy,
making it suitable for real-time object detection applications.
8.3 Ease of use: It provides an easy-to-use interface and comes with
numerous ready-to-use examples, facilitating training and application
process.
8.4 Customization: Model can be easily modified to suit a wide range
of applications by changing parameters and retraining model on
customized datasets.
In summary, YOLOVS5 is a robust and efficient model for object
detection, widely used in various practical applications.
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Fig. 4: default inference flowchart of YOLOV5[9].

9. Network Structure of Yolov5: Generally speaking, network
structure of YOLOVS5 refers to backbone and neck.

9.1 Backbone: Backbone of YOLOV5 is shown in Figure 5. Main
structure is stacking of multiple CBS (Conv + BatchNorm + SiLU)
modules and C3 modules, and finally one SPPF module is connected.
CBS module is used to assist C3 module in feature extraction, while
SPPF module enhances feature expression ability of backbone [9].
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Fig. 5: Default network structure of YOLOV5[9].

Therefore, in backbone of YOLOv5, most important layer is C3
module. Basic idea of C3 comes from CSPNet (cross stage partial
networks. C3 can actually be regarded as specific implementation of
CSPNet. YOLOV5 uses idea of CSPNet to build C3 module, which not
only ensures that backbone has excellent feature extraction ability, but
also curbs problem of gradient information duplication in backbone
[9].

9.2 Neck: In neck, YOLOVS5 uses methods of FPN and PAN, as shown
in Figure 6. Basic idea of FPN is to up-sampling output feature map
(C3, C4, and C5) generated by multiple convolutions down sampling
operations from feature extraction network to generate multiple new
feature maps (P3, P4, and P5) for detecting different scales targets [9].

CAS Vol.03 No. 3 2024
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16 [-1, 4] 1 Concat [1]
17 -1 3 c3 [256, False]
18 -1 1 Conv [256, 3, 2]
19 [-1, 14] 1 Concat [1]
20 -1 3 c3 [512, False]
21 -1 1 Conv [512, 3, 2]
22 [-1, 10] 1 Concat [1]
23 -1 3 C3 [1024, False]
24 [17,20,23] 1 Detect [80, anchors]

Yo @) (E5om)

[ : Backbone

Fig. 6. Neck [9].
Feature fusion path of FPN is top-down. On this basis, PAN
reintroduces a new bottom-up feature fusion path, which further
enhance detection accuracy for different scales objects [9].
10. Experiment and Result Analysis:
10.1 Parameter settings: Default hyperparameters for model were:
Table 7: hyperparameters for model.

epochs VALUES
Ir0 0.01
Irf 0.01
momentum 0.937
weight_decay 0.0005
warmup_epochs 3.0
warmup_momentum 0.8
warmup_bias_Ir 0.1
box 0.05
cls 0.5
cls_pw 1.0
obj 1.0
obj_pw 1.0
iou_t 0.2
anchor_t 4.0
hsv_h 0.015
hsv_s 0.7
hsv_v 0.4
translate 0.1
scale 0.5
fliplr 0.5
mosaic 1.0
batch 8
epochs 150

10. YOLOv5s model summary:
YOLOv5s model summary is as follows is:
10.1 Backbone: backbone is core feature extractor of YOLOvV5
model, responsible for processing input images through a series of
convolutional and residual layers to extract hierarchical features used
for object detection.

Tabl 8: Backbone summary.

Index Module Number Arguments From
0 Conv 1 [64, 6, 2, 2] -1
1 Conv 1 [128, 3, 2] -1
2 C3 3 [128] -1
3 Conv 1 [256, 3, 2] -1
4 C3 6 [256] -1
5 Conv 1 [512, 3, 2] -1
6 C3 9 [512] -1
7 Conv 1 [1024, 3, 2] -1
8 C3 3 [1024] -1
9 SPPF 1 [1024, 5] -1

10.2 Head: head of YOLOv5 model takes extracted features from
backbone and performs object detection tasks, involving upsampling,
concatenation, and detection layers to predict bounding boxes and
class probabilities.

Table 9: Head Summary.

Index From Number  Module Arguments

10 -1 1 Conv [512, 1,1]

11 -1 1 nn.Upsample  [None, 2, "nearest"]
12 [-1, 6] 1 Concat [1]

13 -1 3 C3 [512, False]

14 -1 1 Conv [256, 1, 1]

15 -1 1 nn.Upsample  [None, 2, "nearest"]

11. Experimental Setup: experiments were conducted using Google
Colab with a T4 GPU to ensure efficient training and evaluation of
model. Details of hardware and software environment are as follows:
11.1 Hardware

11.1.1 GPU: T4 GPU provided by Google Colab.

11.1.2 RAM: 16GB (Google Colab environment).

11.2 Software:

11.2.1 CUDA Version: 10.0 (provided by Google Colab).

11.2.2 Python Version: 3.7 for run CARLA Environment.

11.2.3 Deep Learning Framework: PyTorch for YOLOV5.

11.3 Dataset: Dataset used for training and evaluation consisted of
1864 images, which were divided into training and test sets as
follows:

11.3.1 Training Set: 1600 images (80%)

11.3.2 Test Set: 264 images (20%)

11.3.3 Validation Set: A diverse external set of images was used for
validation to assess model's performance and ensure it generalizes
well across various scenarios and object instances. Dataset included
annotations for various object categories, which were used to train
and evaluate model's performance.

Fig. 7: Sample Images from Dataset.

11. EVALUATION METRICS:
Performance of YOLOv5s model was evaluated using following
metrics:
11.1 P (Precision): Precision measures proportion of true positive
detections out of total positive detections made by model. A higher
precision indicates fewer false positives.
11.2 R (Recall): Recall measures proportion of true positive
detections out of actual total positive instances. A higher recall
indicates fewer false negatives.
11.3 mAP50 (mean Average Precision at loU 0.50): These metric
averages precision scores at an loU threshold of 0.50 across all classes.
It provides a measure of how well model detects objects at a specific
overlap threshold.
11.4 mAP50-95 (mean Average Precision at loU 0.50 to 0.95):
These metric averages precision scores at multiple loU thresholds
(from 0.50 to 0.95 in increments of 0.05). It gives a comprehensive
evaluation of model's performance across various levels of
localization accuracy.
12. Results: Trained YOLOv5s model was evaluated on training set.
Detailed performance metrics, including precision, recall, mAP50, and
mAP50-95 for each class, are summarized below:

Table 10: Performance Metrics on Test Data.

Metric Value
Precision (P) 0.934
Recall (R) 0.908
mAP50 0.935
mAP50-95 0.689

Table 10 shows overall performance of YOLOv5s model on training
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data. Precision and recall values indicate model's accuracy in detecting
objects correctly, while mAP50 and mAP50-95 metrics provide a
comprehensive measure of model's detection performance across
different loU thresholds.

"YOLOVSS summary: 157 layers, 7037095 parameters, @ gradients, 15.8 GFLOPs

Class Images Instances P R MAP5@  mAP5Q-95:

all 264 363 0.934 6.908 0.935 0.689

bike 264 21 0.818 0.856 0.859 0.592

motobike 264 28 0.956 0.772 0.899 0.636

person 264 25 0.921 0.96 0.989 0.656
traffic_light_green 264 36 1 0.985 0.995 0.682
traffic light orange 264 15 0.993 1 0,995 0.741
traffic light red 264 58 1 0.983 0.986 0.767
traffic_sign 30 264 2 0.846 8.818 8.783 8.545
traffic_sign_6@ 264 14 0.959 6.857 0.935 0.708
traffic sign 90 264 6 0.946 1 0.995 0.895
vehicle 264 138 @.907 0.845 0.911 0.666

Results saved to runs/train/carla_object_detection[

Fig. 8: Class-Specific Performance on Training.

Figure 8 illustrates precision, recall, and mAP metrics for each object
class in Training dataset. Figure helps in understanding how well
model performs for each specific category, highlighting strengths and
potential areas for improvement. Trained YOLOv5s model was also
evaluated on validation set.

Detailed performance metrics, including precision, recall, mAP50, and
mAP50-95 for each class, are summarized below:

Table 11: Performance Metrics on Test Data.

Metric Value
Precision (P) 0.93
Recall (R) 0.892
mAP50 0.93
mAP50-95 0.675

Results indicate that YOLOv5s model achieves high performance in
terms of precision, recall, and mAP metrics across various object
categories. Table 11 presents overall performance of YOLOv5s model
on validation data. Similar to test data results, these metrics provide
insights into model's accuracy and detection capabilities on unseen

data used for tuning hyperparameters.
YOLOVSs summary: 157 layers, 7837695 parameters, @ gradients, 15.8 GFLOPS
val: Scanning /content/drive/MyDrive/CARLADATASET/valid/labels.cache... 264 images, 69 backgrounds,

Class Images Instances P R mAPS®  mAP50-95; 1% 9/9
all 264 363 0.93 6.892 8.93 0.675
bike 264 21 8.731 8.857 0.773 0.567
motobike 264 28 0.99 a.75 0.886 0.622
person 264 25 1 0.973 0,995 0.672
traffic_light_green 264 36 9.955 1 8.995 8.594
traffic_light_orange 264 15 8.991 1 8,995 0.686
traffic_light red 264 58 8.979 0.983 0.994 0.724
traffic_sign 3@ 264 2 9.938 0.687 0.802 0,557
traffic_sign_6@ 264 14 9.881 6.857 8.95 0.759
traffic_sign_%e 264 6 8.931 1 0.995 0.916
vehicle 264 138 8.904 6.817 8.912 0.659

Speed: @.2ms pre-process, 6.6ms inference, 5.@ms WMS per image at shape (32, 3, 640, 640)
Results saved to /content/yolovs/runs/val/carla_object_detection3

Fig. 9: Class-Specific Performance on Validation Data.
Figure 9 depicts precision, recall, and mAP metrics for each object
class in testing dataset. This figure helps visualize model's
performance across different categories, ensuring model is well-
tuned and generalizes well on new data.
Training Performance: In addition to evaluating model on train and
test sets, various performance metrics and curves were analyzed
during training process.
Confusion Matrix: Figure 10 shows confusion matrix, providing a
detailed look at model's predictions versus actual labels, which helps
identify specific classes that may be causing confusion.

Confusion Matrix
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traffic_light_red -
traffic_sign_60 -
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vehicle -
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g
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Fig. 10: Confusion Matrix.
Precision-Recall Curve: Figure 11 illustrates precision-recall (PR)
curve, showing trade-off between precision and recall for different
thresholds.

1.0

Precision-Recall Curve

bike 0,852
motoblke 0.899

person 0.989
traffic_light_green 0.995
traffic_light_orange 0.995

o.6

v 11
—— =l classes 0.935 MAP@O.5

Precision

aa

0.z

0.0 0z 04 ole o8 1.0
Recall

Fig. 11: PR Curve.
F1 Curve: Figure 12 shows F1 curve, highlighting harmonic mean of
precision and recall across different thresholds.

F1l-Confidence Curve
1.0 —

—— bike
motobike

—— person

—— traffic_light_green
traffic_light_orange

—— traffic_light_red
traffic_sign_30

—— traffic_sign_60
traffic_sign_20

o8

oe{lf/
—— wehicle
—— all classes 0.92 at 0.596

0.4

0.z

0.0 0.2 0.4 0.6 0.8 1.0
Confidence

Fig. 12: F1 Curve.

Training Results: Figure 13 provides an overview of training results,
including loss and accuracy metrics over epochs, demonstrating
model's learning progress and convergence. These figures together
provide a comprehensive overview of model's performance, both
during training and on evaluation sets, allowing for a thorough
analysis of YOLOv5s model's strengths and areas for potential
improvement.
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Fig. 13: Training Results.
Training Data Samples: To provide an overview of training data, we

present a few samples from training batches.
e
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Fig. 14: Sample Images from Training Batches.

Validation Data Labels and Predictions To evaluate model's
performance on validation set, we compare actual labels with model's
predictions.
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Fig. 15: Actual Labels in Validation Batches.
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Fig. 16: Model Predictions in Validation Batches.
These figures provide a visual comparison of ground truth and
predictions made by model, highlighting its performance and areas
where it may need improvement.
Test Performance: During testing phase, model's performance was
thoroughly assessed wusing various performance metrics and
visualizations.
Confusion Matrix: Figure 16 presents confusion matrix generated
during validation phase. This matrix provides a detailed overview of
model's predictions compared to actual labels in validation dataset. It
helps identify classes where model may be struggling or making
errors, thereby guiding further refinement efforts.

Confusion Matrix
1.0

bike JUCECHN  c1s .07

motobike - ata 0.0s

person - Lon a6

traffic_light_grean - Lo .08

traffic_light_orange - 100 o6

traffic_light_red - 10 0.08

Predicted

traffic_sign_30 - ur: (ST vor | 0.4
traffic_sign_60 - EEe) o0z
traffic_sign_a0 - oo 001

-0z

vehicle

background -

2
H
=
s
3

- 0.0

bike -

motobike -
persan -
traffic_sign 60~
traffic_sign_80-
vehicle -
background -

traffic_light_red -

traffic_light_orange -

True

Fig. 17: Confusion Matrix.
Precision-Recall Curve: Figure 18 illustrates precision-recall (PR)
curve computed during validation process. This curve showcases
trade-off between precision and recall at different decision thresholds.
It offers insights into how effectively model balances precision and
recall for object detection tasks on validation dataset.

10 Precision-Recall Curve
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traffic_sign_90 0.995
wehicle 0,912

= all classes 0.930 MAP@0.5

I

0.8 L

0.6

Precision

0.4

0.2

0.0 0.2 0.4 0.6 0.8 1.0
Recall

Fig. 18: Precision-Recall Curve.
F1 Curve: Figure 19 displays F1 curve calculated during validation
phase. F1 curve depicts harmonic mean of precision and recall across
various decision thresholds. Analyzing this curve helps gauge model's
overall performance and convergence during validation.
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Fig. 19: F1 Curve.
Precision Curve: Figure 20 represents precision curve obtained from
validation phase. This curve plots precision against different decision
thresholds and provides a closer look at model's precision performance
on validation dataset.
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Fig. 20: Precision Curve.
Recall Curve: Figure 21 show cases recall curve derived from
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validation phase. By plotting recall against different decision
thresholds, this curve offers insights into model's ability to correctly
identify objects of interest across various recall levels during
validation.
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Fig. 21: Recall Curve.
These visualizations collectively offer a comprehensive understanding
of YOLOv5s model's performance during validation phase,
facilitating an in-depth analysis of its strengths and areas for potential
enhancement.
External Validation using Trained Model on Unseen Images: In this
section, we present validation of our trained YOLOvV5 model using
external images that were not part of training or testing datasets. This
step is crucial to evaluate generalization capability of model in
detecting objects in unseen data, ensuring its robustness and reliability
in real-world scenarios.
To perform validation, we loaded trained model and applied it to a set
of external images. Model processed each image and produced
bounding boxes around detected objects, along with confidence scores
and class labels. Table below showcases results for a sample image,
detailing coordinates of bounding boxes (xmin, ymin, xmax, ymax),
confidence scores, class indices, and corresponding object names.

Detected objects:

amin ynin xmax ymax confidence class name
183.728 218.180 11.207 278.378 0.968 9 vehicle
344,912 93.631 389,925 167.828 0.932 3 traffic_light green
83.693 214.0% 168.126 233.189 0.288 1 motobike

Inference time: 0.68343186378479 seconds

A lad s el s 5 foontent/sample_data/output.png’.

Results indicate that model effectively detects and classifies objects
such as vehicles, traffic lights, and motorbikes with high confidence.
This external validation step demonstrates practical application of
our model and its potential for deployment in real-world autonomous
driving scenarios.

We have included representative images with annotated detections to
visually illustrate performance of our model. Each image is labeled
with detected objects, showcasing model's accuracy and reliability.

Detected objects:

xmin ymin xinax ymax confidence class name

93.826 61.935 185. 488 91.470 8.779 2 person
44,621 13.479 55.367 52.453 8.779 2 person
150.689 99.900 257.885 168.008 8.331 9 vehicle
Inference time: @.31244635581970215 seconds
o el 5yl Wis st /content/sample_data/output.png’.
Fig. 23: Detected Objects with Confidence Scores and Bounding
Boxes.
13. Results Analysis: Model demonstrates high precision and recall
in both training and testing phases. A slight decrease in recall and a
minor difference in MAP@50-95 between training and testing
indicate consistent performance across different datasets, suggesting

model's stability and minimal susceptibility to bias.
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Fig. 24: Performance metrics for all.

13.1 Class-Specific Performance:

Following results highlight model's performance across various object
classes, showcasing its precision and recall during both training and
testing phases:

13.2 High Precision and Recall:

These results indicate that model performs exceptionally well in
detecting certain objects, showing high accuracy in both training and
testing phases.

13.2.1 Traffic light green:

Precision: 1.0 (Training), 0.955 (Testing); Recall: 0.985 (Training),
1.0 (Testing).

13.2.2 Traffic light orange:

Precision: 0.993 (Training), 0.991 (Testing); Recall: 1.0 (Training and
Testing).

13.2.3 Traffic light red:

Precision: 1.0 (Training), 0.979 (Testing); Recall: 0.983 (Training and
Testing).

13.2.4 Person:

Precision: 0.921 (Training), 1.0 (Testing); Recall: 0.96 (Training),

0.973 (Testing).
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Fig. 25: High Precision and Recall.
13.3 Moderate Performance:

For certain classes, model shows moderate performance with slightly
varying precision and recall between training and testing phases:
13.3.1 bike:

Precision: 0.818 (Training), 0.731 (Testing); Recall: 0.856
(Training), 0.857 (Testing).

13.3.2 Motobike:

Precision: 0.956 (Training), 0.99 (Testing); Recall: 0.772 (Training),
0.75 (Testing).

13.4 Inference Speed: model demonstrates excellent execution
speed, making it well-suited for real-time applications such as
autonomous driving. High speed ensures efficient image processing, a
critical requirement for real-time systems.

13.5 Speed Details: Pre-processing takes 0.2ms, inference requires
6.6ms, and Non-Maximum Suppression (NMS) consumes 5.0ms per
image at a resolution of (32, 3, 640, 640).
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14. Discussion
Previous studies have made significant strides in enhancing object
detection for autonomous driving. Weber et al. introduced DeepTLR,
which demonstrated competitive performance metrics in real-time
traffic light detection and classification [1]. This approach set a
benchmark for subsequent advancements.
Choi et al. further advanced field with Gaussian YOLOv3, utilizing
Gaussian parameters to refine detection accuracy and speed, especially
in complex driving environments [2]. Sharma et al. expanded on this
by showcasing YOLOvV5’s robustness under diverse weather
conditions, including challenging scenarios like heavy rain [3].
In current study, training and testing YOLOv5 on CARLA dataset
revealed strong performance metrics across multiple classes. High
precision and recall were observed, particularly in detecting traffic
lights and pedestrians. However, performance challenges persisted for
smaller objects such as bicycles and motorcycles. These findings
suggest that while YOLOVS5 performs well in many scenarios, further
optimization is needed to improve detection accuracy for smaller and
more variable objects.
When comparing these results with Kim et al.'s findings on YOLO-
Series models under heavy rain conditions, we observe similar
challenges. Kim et al. identified significant performance degradation
in adverse weather, a challenge that our study also encountered [4].
This parallel highlight ongoing difficulty in maintaining high
detection accuracy in such conditions, underscoring need for
continued research to enhance robustness.
In conclusion, advancements in deep learning models like YOLOV5
show considerable promise for real-time object detection in
autonomous driving. Nonetheless, addressing specific challenges—
such as detecting smaller objects and performing reliably under
adverse weather conditions—remains crucial. Future research should
focus on refining these aspects to enhance overall effectiveness and
safety of autonomous driving systems.
15. Conclusion
Model demonstrates strong overall performance with high precision
and recall in both training and testing phases. Excellent performance
in traffic signal and pedestrian categories highlights model's capability
in recognizing these classes. However, some categories like bicycles
and motorcycles could benefit from further improvements. High
execution speed enhances model's efficiency for real-time
applications.
16. Recommendations
15.1 A. Utilizing Attention Mechanisms to Enhance Model Accuracy
and Pruning and Trimming Techniques to Reduce Model Size: It is
advisable to explore attention mechanisms to improve model's
accuracy by focusing on relevant features. Additionally, using pruning
and trimming techniques can reduce model's size, making it easier to
deploy in autonomous driving environments like CARLA.

15.2 B. Training Model Locally on a Computer Instead of Google

Colab: Training model on a local machine offers several advantages,

including integrating trained model with graphical libraries such as

tkinter or qt5. This increases model's portability and facilitates its
integration into graphical interface applications, easing testing and
deployment in simulation environments like CARLA.

15.3 C. Using Larger and Diverse Weather Data Sets: Increasing

volume and diversity of data used in training is crucial to improve

model's generalization capabilities under varied weather conditions.

Gathering additional data that represents a wide range of weather

conditions such as heavy rain, fog, and bright sunlight will enhance

model's ability to accurately detect targets in diverse and changing
road conditions.
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