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 A B S T R A C T 

Implementing sensor less control in induction motor drives has significantly reduced expenses and 
hardware weight while enhancing reliability. Among the highly effective speed sensor less control 
techniques, the Extended Kalman Filter (EKF) is distinguished by its superior estimation accuracy. 
However, the efficiency of the EKF relies on the accurate determination of noise covariance 
matrices. Recently, many studies have aimed to optimize these matrices to enhance performance. In 
this research, we introduce a unique method for speed estimation in an induction motor drive using 
the Artificial Bee Colony (ABC) algorithm to maximize the performance of EKF. The effectiveness 
of the proposed method is validated by the Matlab/Simulink simulation of a constant Voltage/Hertz 
controller-based drive system at different operating conditions.    

في   للتحكم  الممتد  كالمان  مرشح  مستشعر سرعة  تحسين  بدون  الحثية  النحل    المحركات  مستعمرة  خوارزمية  باستخدام  السرعة 

 الاصطناعية

 ن محمد درفو و  أبوبكر حامد*

 الكهربائية، كلية التقنية الهندسية، هون، ليبيا. قسم الهندسة 
 

 الكلمات المفتاحية:   

 ABC خوارزمية 

EKF 

 تقدير السرعة

 المحركات الحثية 

 الملخص 

لقد أدى تطبيق نظم التحكم الغير معتمدة على مستشعرات السرعة في المحرك الحثي إلى تقليل التكاليف والوزن 

( من تقنيات EKFتعزيز الموثوقية في نفس الوقت.  يعتبر مرشح كالمان الممتد )الإجمالي للأجهزة بشكل كبير، مع  

التحكم بدون استخدام مستشعرات السرعة الأكثر فعالية حيث يتميز هذا المرشح بدقة تقدير فائقة. ومع ذلك،  

 لمصفوفات التباين الضوضائي. مؤخر فإن كفاءة هذا المرشح تعتمد على التحديد الدقيق  
 
، هدفت العديد من ا

الدراسات إلى تحسين هذه المصفوفات لتعزيز أداء المرشح في عملية تقدير السرعة. في هذا البحث، نقدم طريقة 

( لتحسين  ABCفريدة لتقدير السرعة في نظام محرك حثي باستخدام خوارزمية مستعمرة النحل الاصطناعية )

برنامج مرشح    أداء باستخدام  المحاكاة  خلال  من  المقترحة  الطريقة  فعالية  من  التحقق  تم  الممتد.  كالمان 

Matlab/Simulink  ( الجهد/التردد  بثابت  التحكم  على  يعتمد  تشغيلية Voltage/Hertzلنظام  ظروف  ظل  في   )

 مختلفة.

1. Introduction  

In modern induction motor (IM) control applications, speed 

measurement is critical to controlling rotor speed accurately. Rotor 

speed is typically determined by installing sensors or using calibration 

cables on the motor's rotating shaft. However, these measurements 

mounted on the shaft may reduce the drive system's reliability and 

robustness. Additionally, they can increase system costs and motor 

weight due to the extra space required for mounting [1]. As a result, 

sensor less control methods have been implemented to solve these 

problems. 

There has been a notable surge in interest recently in developing 

sensor less methods for IM. These methods are utilized to estimate the 

rotor speed. In addition, important information for the control system 

is provided through state variables of the IM, including rotor flux 

linkage, rotor current components, and electromagnetic torque, which 

are difficult to measure directly [2]. The sensor less methods have been 

categorized into two main classifications: the signal injection-based 

method and the model-based IM state equations method [3], [4]. 

The signal injection-based method is commonly employed in sensor 

less control applications for permanent magnet synchronous motors 

(PMSM). This method performs extremely well at low speeds and 

even at zero speed. Nevertheless, its performance becomes limited as 

the speed increases [5], [6]. Model-based methods are commonly used 

in sensor less IM applications for estimating speed and IM parameters, 

which primarily involve Sliding-Mode Observers [7], Artificial 

Neural Networks [8], and the Extended Kalman Filter [1], [2], [9], 

[10], [11], [12], [13], [14], [15], [16], [17]. These methods rely on the 
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mathematical model of the IM, with their estimation processes 

essentially depending on the back electromotive force (EMF) [6]. 

R.E. Kalman introduced the Kalman filter (KF), a linear recursive 

algorithm for stochastic dynamic systems, in 1960 [18]. R.E. Kalman 

and R.S. Bucy first introduced the EKF, a modified version of the KF, 

in 1961 [19]. Compared to other nonlinear model-based sensor less 

control methods, the EKF is a promising model-based method and one 

of the best estimating methods for a stochastic system, especially when 

the noise model and the system are undefined, such as in the IM [2] 

[9]. Consequently, over the past two decades, the EKF has emerged as 

the most widely used estimator for sensor less IM control applications 

[10]. In sensor less control applications of induction motors (IM) 

utilizing the EKF, the EKF offers superior noise filtering for both the 

system and measurements, provided the noise covariances are known. 

The system noise covariance is denoted by Q, while R represents the 

measurement noise covariance [11]. 

While the EKF has been successfully applied to speed sensor less 

control of IM, several challenges remain. One significant issue is 

accurately determining the filter noise covariance matrices to improve 

EKF performance. As a result, the noise matrices are treated as 

adjustable parameters that require careful fine-tuning [10]. These 

values are classically determined through a method of trial and error, 

which takes a lot of time and  tedious, and often fails to produce precise 

speed estimations [11], [12], [13], [14], [15]. 

Recently, several intelligent optimization algorithms have been 

developed to reduce the time and effort needed to find the best values 

for noise covariance matrices. These algorithms aim to find more 

efficient approaches for defining noise covariance matrices, leading to 

significant improvements in the process. 

The covariance matrix of measurement noise (R), and the covariance 

matrix of system noise (Q), and the statistical measure have all been 

optimized using the Genetic Algorithm (GA). weight matrix (G) for 

the EKF, aiming to estimate speed in closed-loop constant V/f control 

and field-oriented control of IM[11]. Recently, other evolutionary 

algorithms have been utilized for this purpose. For instance, Particle 

Swarm Optimization (PSO) has been used in closed-loop sensor less 

Direct Torque Control (DTC) [9], and a modified PSO was introduced 

in [16]. PSO has also been used without feedback control [10]. 

Additionally, the Enhanced Fireworks Algorithm (EFWA) has been 

investigated to improve the EKF's noise covariance matrices [12]. 

The ABC algorithm is a method that simulates an artificial bee colony 

has been effectively used to solve challenging issues [20], [21]. This 

approach is based on an evolutionary algorithm that was motivated by 

honey bees' hunt for the optimal food source [22]. In [17], the ABC-

based EKF for IM speed estimation is shown. But as far as the authors 

are aware, no one has used the ABC algorithm for EKF speed estimate 

in sensor less control systems of IM.  

In this paper, we integrated the ABC algorithm into a speed sensor less 

drive system to improve the optimization of noise covariance matrices. 

The EKF performs better with this new method, especially when it 

comes to speed estimation for sensor-less control of IM by optimizing 

the execution of  the EKF. The ABC algorithm is chosen for its 

efficiency in finding the optimal parameters that minimize estimation 

errors, leading to more accurate and reliable speed estimation under 

various operational conditions. By optimizing the noise covariance 

matrices, the EKF's sensitivity to model inaccuracies and external 

disturbances is significantly reduced, thereby improving the 

robustness and precision of the control system. This approach 

specifically addresses the challenges associated with the sensor less 

control of IM, ensuring that the EKF can maintain high performance 

even in the absence of direct speed measurements. The application of 

the ABC algorithm in this context is essential for achieving these 

improvements, and it highlights the potential of bio-inspired 

optimization techniques in enhancing traditional control methods. 

 Simulation studies were conducted on a constant V/f controlled IM 

drive with closed-loop control. The simulation results confirm that the 

ABC-optimized EKF effectively and accurately estimates speed for 

sensor less IM applications. 

The paper is structured into seven sections. The next section 

introduces the state model of the IM. Section III introduces the EKF 

algorithm. Sections IV and V discuss the ABC optimization method 

and its application in optimizing the EKF, respectively. Section VI 

covers simulations, Section VII discusses the results and performance 

analyses, and the conclusion is presented in Section VIII.  

2. State Model of Induction Motor 

It is an input-voltage continuous dynamic model used in the simulated 

system for IM. In this fifth-order IM model, the state variables of the 

model, represented by the d and q components in the are represented 

by the stator reference frame, and the mechanical variables are the 

rotor speed and stator currents and rotor fluxes. It is well known that 

in filtering applications, the measurements are available only at 

integral multiples of the sample time period (T). Consequently, the 

EKF is a discrete-time system, whereas the IM is a continuous-time 

system. To apply the EKF to the IM, the continuous-time system must 

be discretized using the Forward Euler method as follows [24]: 

𝑥𝑛+1 = 𝐴𝑛𝑥𝑛 + 𝐵𝑛𝑢𝑛 + 𝐺𝑛𝑤𝑛 (1) 

𝑦𝑛 = 𝐶𝑛𝑥𝑛 + 𝑣𝑛 (2) 

Where: 

𝑥𝑛 =

[
 
 
 
 
 
 𝑖𝑑𝑠

(𝑛)

𝑖𝑞𝑠
(𝑛)

𝜆𝑑𝑟
(𝑛)

𝜆𝑞𝑟
(𝑛)

𝜔𝑟
(𝑛)

]
 
 
 
 
 
 

      𝑢𝑛 = [
𝑉𝑑𝑠
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(𝑛)]         𝑦𝑛 = [
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𝐵𝑛 =

[
 
 
 
 
 
𝑇

𝐾𝑙
0

0
𝑇

𝐾𝑙

0 0
0 0
0 1]

 
 
 
 
 

          𝑐𝑛 = [
1 0 0 0 0
0 1 0 0 0

] 

Here are the variables and parameters used: 

𝑥𝑛  :represents the state variables of the IM ; 

𝑢𝑛 : represents the inputs of the IM at time n; 

𝑦𝑛 : represents the measured values of the IM; 

𝑖𝑑𝑠, 𝑖𝑞𝑠 : stator current components; 

𝜆𝑑𝑠, 𝜆𝑞𝑠 : rotor flux components; 

𝑉𝑑𝑠, 𝑉𝑞𝑠 : stator voltage components; 

𝜔𝑟 : the rotor speed;  

𝑇 : the sampling time; 

𝑅𝑠, 𝑅𝑟 : stator and rotor resistance respectively; 

𝐿𝑠, 𝐿𝑟 : stator and rotor inductance respectively; 

𝐿𝑚 : mutual inductance; 

𝑃 : number of poles; 

The following terms are derived from the above parameters: 

𝑲𝒓 = 𝑹𝒔 + 𝑳𝑴
𝟐 𝑹𝒓/𝑳𝒓

𝟐 

𝑲𝒍 = (𝟏 − 𝑳𝑴
𝟐 /𝑳𝒓/𝑳𝒔) × 𝑳𝒔 

𝝉𝒓 = 𝑳𝒓/𝑹𝒓 

Further, G is the noise-weight matrix in, and 𝑤 represents the noise 

matrix of the system, that is IM noise. The noise matrix of the observed 

output of the model reads, or measurement noise, is represented by 𝑣 in 

equation (2) [11]. It is assumed that 𝑤 and 𝑣 have zero-mean Gaussian 

distributions [12]. These noises' covariance matrices have the following 

definition [11]: 

𝑄 = 𝑐𝑜𝑣(𝑤) (3) 

𝑅 = 𝑐𝑜𝑣(𝑣) (4) 

Where:  

Q: covariance matrix of the induction motor noise. 

R: covariance matrix of the measurement noise. 

3. EKF Algorithm for Speed Estimation  
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The EKF algorithm employs recursive equations to compute predicted 

values based on IM inputs, which serve as one of the two EKF inputs. 

These predicted values are then compared with the measured values 

obtained from IM outputs, representing the second EKF input. The 

estimated state-space vector of the IM is computed using the error 

resulting from the previous comparison. This error is multiplied by a 

gain called the Kalman filter gain (K) to reduce it. This gain is 

calculated using the matrices G, Q, and R. Therefore, to accurately 

estimate the rotor speed, which is an element of the state vector in the 

IM, the values of these matrices must be chosen carefully. 

Since (1) represents the dynamic model of the IM and because the 

matrix (An) consists of the rotor speed, the IM becomes a nonlinear 

dynamic system [12]. The state transition function (Φ) represents the 

dynamics of the system (IM), describing how the state variables change 

over T as follows [12]: 

We can denote 𝑥𝑛+1 = Φ 

Where: 

Φ

=

[
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(5

) 

Since the EKF is processing measurements in discrete time, the EKF 

will linearize the nonlinear state transition function, Φ around the 

current estimate for every time step. One can do this through the 

Jacobian matrix [12]. 
𝜕Φ

𝜕𝑥

=

[
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(6

) 

The EKF process consists of two repeated steps [17]. The first step is 

the prediction, the estimated state matrix for the next time step (�̂�𝑛+1) 

is calculated using the estimated state matrix for the current time step 

(�̂�𝑛). This process can be represented mathematically as follows: 

�̂�𝑛+1 = 𝑓(�̂�𝑛   , 𝑢𝑛) (7) 

Initially, �̂�𝑛 is assumed to be a zero (5×1) matrix. Additionally, another 

prediction must be made for the error covariance matrix for the next 

time step (�̂�𝑛+1), as described in (8). 

�̂�𝑛+1 =
𝜕Φ

𝜕𝑥
|
𝑥=𝑥𝑛

  𝑃𝑛  
𝜕Φ𝑇

𝜕𝑥
|
𝑥=𝑥𝑛

   + 𝐺𝑄𝐺𝑇  (8) 

Here, 𝑃𝑛 is the estimated error covariance matrix for the current time, 

initially assumed to be a 5×5 unit matrix. Moreover, 𝑃𝑛+1 is used with 

the measurement noise to compute the Kalman gain (𝐾𝑛). 

𝐾𝑛 = 𝑃𝑛+1 𝑐𝑛
𝑇(𝑐𝑛   𝑃𝑛+1   𝑐𝑛

𝑇 + 𝑅)−1 (9) 

Here, 𝑐𝑛 is the measurement matrix, which specifies the state variables 

corresponding to the measured values. In this paper, the measured 

values are 𝑖𝑑𝑠 and 𝑖𝑞𝑠. Therefore, 𝑐𝑛 should be defined as follows: 

𝑐𝑛𝑥𝑛 = [
1 0 0 0 0
0 1 0 0 0

] ×

[
 
 
 
 
 
 𝑖𝑑𝑠

(𝑛)

𝑖𝑞𝑠
(𝑛)

𝜆𝑑𝑟
(𝑛)

𝜆𝑞𝑟
(𝑛)

𝜔𝑟
(𝑛)

]
 
 
 
 
 
 

= [
𝑖𝑑𝑠
(𝑛)

𝑖𝑞𝑠
(𝑛)] (10) 

The second step is the estimation, and once the Kalman gain is 

calculated, the updated state estimate (�̂�𝑛) can be calculated using the 

following expression: 

�̂�𝑛 = �̂�𝑛+1 + 𝐾𝑛[𝑦𝑛 − 𝑐𝑛�̂�𝑛+1] (11) 

From (11), It is worth noting here that the contribution of the Kalman 

gain is to mitigate the error obtained by comparing the true measured 

values 𝑦𝑛with the estimated measured values 𝑐𝑛�̂�𝑛+1. Moreover, the 

updated error covariance matrix 𝑃𝑛 is calculated through using the 

relation below: 

𝑃𝑛 = 𝑃𝑛+1 − 𝐾𝑛𝑐𝑛𝑃𝑛+1 (12) 

4. ABC Optimization  

The ABC technique is an optimization technique that draws inspiration 

from honeybee foraging behavior. Developed to mimic the way bees 

explore fields and search for the richest flowers, this algorithm is 

employed to solve by striking a balance between search space 

exploitation and exploration in complex optimization problems [22]. 

Three different bee species make up a honeybee swarm: worker bees, 

observer bees, and scout bees [25]. 

1. Employed bees: They conduct random searches for food 

sources (solutions) and communicate their findings, which 

include nectar amounts, to other bees in the hive through 

dancing. The duration of the dance reflects the nectar amount 

(fitness value) of the food source. 

2. Onlooker bees: They watch the dances of different working 

bees and choose good food sources according to their quality. 

3.  Scout bees: When an employed bee from an abandoned food 

supply randomly searches for a new food source, a scout bee is 

created. 

The Bees Algorithm relies on several key mathematical equations to 

execute its steps: 

Step 1. Initialization 

An initial population 𝑥𝑖𝑗  is generated randomly across the D-

dimensional problem space using (13): 

𝑥𝑖𝑗 = 𝑥𝑗
𝑚𝑖𝑛 + 𝑟𝑎𝑛𝑑[0,1] × ( 𝑥𝑗

𝑚𝑎𝑥 − 𝑥𝑗
𝑚𝑖𝑛  ) (13) 

Where, i = {1, 2, … , SN} represents the number of food sources, j = 

{1, 2, … , D} denotes the number of optimization parameters, 𝑥𝑗
𝑚𝑖𝑛 and 

𝑥𝑗
𝑚𝑎𝑥 are lower and upper boundary parameters for the solution 

respectively, rand [0,1] generates uniformly distributed random values 

between 0 and 1. 

Step2. Employed Bees 

Each bee sequentially visits a food source and explores the vicinity of 

the reference position to find an optimal new position 𝑣𝑖𝑗. Equation (14) 

is utilized for this search: 

𝑣𝑖𝑗 =  𝑥𝑖𝑗 + 𝜑𝑖𝑗 × ( 𝑥𝑖𝑗 − 𝑥𝑘𝑗 ) (14) 

Where, k = {1, 2, … , SN} and j = {1, 2, … , D} are randomly chosen 

indices, and k ≠ j, 𝜑𝑖𝑗 is a random number in the range [–1, 1], 𝑥𝑖𝑗  

represents the position of the reference food source and 𝑥𝑘𝑗 is a 

randomly selected food source in the same dimension. After updating, 

the new solution 𝑣𝑖𝑗 is compared with the reference 𝑥𝑖𝑗 . If the solution 

is as good as or better than the reference, it replaces the reference; 

otherwise, the reference is retained in a process known as greedy 

selection. 

Step 3. Onlooker Bees 

Observer bees use information from working bees to select food 

sources. They choose a food source based on a quality-related 

likelihood. Like working bees, every observer looks around its present 

location to come up with a fresh idea. After evaluating the new role, the 
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avaricious selection procedure is used. The probability that a food 

source 𝑥𝑖𝑗  is selected is determined by the expression: 

𝑥𝑖𝑗 = 
𝑓𝑖𝑡𝑖

∑ 𝑓𝑖𝑡𝑘
𝑆𝑁
𝑘=1

 (15) 

Where 𝑓𝑖𝑡𝑖 represents the fitness value of solution i, which is 

proportional to the nectar amount. SN is the number of food sources 

(equal to the number of employed bees). For minimization problems, 

𝑓𝑖𝑡𝑖 can be calculated using the expression: 

 

𝑓𝑖𝑡𝑖 = {

1

1 + 𝐹𝑖
           𝑖𝑓  𝐹𝑖  > 0

1 + 𝐹𝑖          𝑖𝑓  𝐹𝑖  < 0

 (16) 

 

Where 𝐹𝑖 is the goal function's value. 

Step 4. Scout Bees 

If onlookers and employed bees fail to enhance a food source's position 

within a specified number of cycles (Limit), that food source is deemed 

abandoned. The employed bees associated with it transition to scout 

bees, tasked with randomly exploring for new food sources using (13). 

This iterative process continues for the maximum number of rounds, 

in which the optimal solution was discovered in each iteration is 

retained. By the end of this process, the result ensures the discovery of 

the global solution. 

5. Optimization of EKF using ABC 

The EKF algorithm will be implemented in this article for a closed-

loop Voltage/Hertz controller; see Fig. 1. While the rotor speed is 

controlled by the PID speed control, the voltages that will be applied 

to the stator windings of the IM will be defined by the closed-loop 

Voltage/Hertz controller, represented as (𝑢𝑛) to match the intended 

reference speed instruction (𝜔∗). The measured values, denoted as 

(𝑦𝑛), correspond to the stator currents, as per (2) and (10). The EKF 

takes in currents and voltages from the stator as inputs. Using these 

inputs, the EKF calculates the IM's state, which includes the rotor 

speed (𝜔𝑒𝑠𝑡), and uses that information as feedback to adjust the 

speed controller. Consequently, the speed sensors can be eliminated, 

resulting in a sensor less control system. 

In this study, The dynamic performance of the Voltage/Hertz control is 

enhanced by optimizing the parameters G, Q, and R using the ABC 

algorithm. The ABC–EKF formula requires multiple iterations to reach 

the optimal solution. Consequently, the ABC-EKF algorithm is initially 

executed offline. Once the optimal values of G, Q, and R are 

determined, they are then applied online to the closed-loop IM. The 

ABC-EKF algorithm can be described as follows: 

1. Initialize the population: The 5 diagonal elements of G, the 5 

diagonal elements of Q, and the 2 elements of R are arranged 

into 12 dimensions. The ABC algorithm begins by randomly 

generating initial values for these 12 elements using (13). 

2. For each iteration: 

• Using the initial values of the covariance matrices, the 

rotor speed (𝜔𝑒𝑠𝑡), which represents the fifth element of 

the state (�̂�𝑛), is estimated by the EKF according to (11). 

• The fitness function, calculated as the mean square error 

(MSE) and shown in equation (17), is determined by the 

difference between (𝜔𝑒𝑠𝑡) and (𝜔𝑚𝑒𝑎𝑠). The MSE is 

utilized to evaluate the effectiveness of the various 

solutions obtained. 

𝑀𝑆𝐸 =
∑ (𝜔𝑚𝑒𝑎𝑠 − 𝜔𝑒𝑠𝑡)

2𝑖=𝑛
𝑖=1

𝑛
 (17) 

• Based on the lowest MSE, the ABC calculates the optimal 

12 elements of the covariance matrices using (14), (15), 

and (16). 

• The optimal 12 elements are then applied to update the 

EKF, leading to an update of the estimated speed using (8), 

(9), and (11). 

This procedure continues until a specific number of iterations has been 

achieved; in this study, the number is 100. The optimized the closed-

loop constant Voltage/Hertz control system with EKF is then operated 

using the values of G, Q, and R. in real-time to estimate the rotor speed. 

 

 
Fig. 1: Block diagram of a closed-loop constant Voltage/Hertz 

control system with ABC-EKF for speed estimation 
6. Simulation 

The system shown below serves as an example of the suggested 

technique for maximizing the covariance matrices. in Fig. 1 has been 

modeled in MATLAB/Simulink. Within the system illustrated in Fig. 

1, the IM is represented by a Simulink block, while the EKF is 

implemented as a MATLAB s-function block. Furthermore, the ABC 

and MSE are scripted in m-files. The MSE plays a crucial role by acting 

as the interface between the ABC and EKF codes [17]. Fig. 2  presents 

the closed-loop Voltage/Hertz control system with EKF speed estimate 

for the IM is implemented using Simulink. 

The application of the real-coded ABC to optimize the EKF was 

performed by taking advantage of Simulink/MATLAB environment. 

Measured stator currents and stator voltages of the IM are two inputs to 

EKF. A three-phase squirrel cage IM is used in this study whose 

parameters are given in Table 1. In the optimization of ABC-EKF, 

source position of food is set to 20. Population size is equal to 240, 

while the number of bees is 20, the number of iterations is 100, the 

dimensional problem size is 12, and the lower and upper range is 

between 0.0001 and 0.1. 

As an initial step, the ABC-EKF algorithm needs to be executed offline 

multiple times to converge to the optimal values of the noise matrices. 

This process was conducted using closed-loop V/f control of the IM 

drive, where the estimated speed is utilized as feedback for the input of 

the V/f controller. 

With a simulation time of 1.5 seconds, the EKF can finish a number of 

different speed situations, including transient and steady states, as well 

as acceleration and deceleration. The sampling time (T) has been set to 

1×10⁻⁵ seconds. After 100 iterations of the ABC-EKF optimization, the 

optimal diagonal elements, determined by minimizing the mean 

squared error (MSE), are found to be: 

 

𝐺 = 

[
 
 
 
 
0.0001 0 0 0 0

0 0.0487 0 0 0
0 0 0.0001 0 0
0 0 0 0.0001 0
0 0 0 0 0.0636]

 
 
 
 

 

 

𝑄 = 

[
 
 
 
 
0.0414 0 0 0 0

0 0.004 0 0 0
0 0 0.0001 0 0
0 0 0 0.0380 0
0 0 0 0 0.0755]

 
 
 
 

 

 

𝑅 =  [
0.0171 0

0 0.0154
] 

 

 

 
Fig. 2: Simulink model of closed-loop Voltage/Hertz control with 

ABC-EKF for speed estimation 

 

Table 1: Induction Motor Parameters [23] 
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7.5 Kw 220 V 6 poles 
1160 

rpm 
60 Hz 

Coefficient 

of friction 

Cf = 0.124 

Rs = 

0.282 

Ω/phase 

Rr = 

0.151 

Ω/phase 

Ls = 

0.0424 

H/phase 

Lr = 

0.0417 

H/phase 

Lm = 

0.0410 

H/phase 

Moment of 

inertia 

Jm = 0.4 
2kgm 

 

After optimizing the noise matrices, the next step is to apply these 

matrices online in the V/F closed-loop controller of the IM drive 

system. 

7. Results and Discussion 

To evaluate the efficacy of the ABC-EKF method for the constant V/f 

controller,  different operational modes and the impact of changes in 

machine parameters were tested. Varied speed operations were 

achieved through the utilization of various commands that control the 

reference speed.  .خطأ! لم يتم العثور على مصدر المرجع and   خطأ! لم يتم العثور على

المرجع.   display the estimated rotor speed (dotted line) obtained مصدر 

using the solid line is the optimized EKF with the actual rotor speed. 

The graphs show the relationship between the estimated and actual 

speeds during the acceleration mode, whether to 100 rad/sec or -100 

rad/sec. 

لم يتم العثور على مصدر المرجع. خطأ!    depicts the ABC-EKF's performance in 

both transient and steady-state scenarios, demonstrating precise speed 

tracking in these situations. 

Furthermore, a speed reversal command test was conducted from 120 

rad/sec to -120 rad/sec, and a standstill condition was applied as shown 

in  .خطأ! لم يتم العثور على مصدر المرجع and  .خطأ! لم يتم العثور على مصدر المرجع, 

respectively. The results demonstrate that accurate speed tracking has 

been achieved. 

Three tests with various stator and rotor resistance levels were carried 

out to look into how device parameters affected performance as a result 

of temperature rise and frequency shift of ABC-EKF for constant 

Voltage/Hertz controller, as Fig. 8 to 10 show. An analysis of the results 

of the tests indicates that: 

• Among them, it is very sure that even under the worst 

conditions, when stator resistance increases by half and rotor 

resistance is doubled, the precision of speed tracking is still 

high. 

• The EKF demonstrates the ability to reject disturbances caused 

by variations in machine parameters, as these variations are 

treated as noise in the algorithm used for speed estimation [9], 

[11]. 

All things considered, the ABC optimization approach for the EKF-

based speed estimate method demonstrates excellent performance 

across various operating conditions and adapts to changes in machine 

parameters. However, the reliance on offline methods may lead to 

under severe circumstances, the ABC-EKF sensor-less control system's 

performance deteriorates [6], which is a recognized limitation of the 

proposed approach. Future work will focus on developing an online 

method for determining the noise covariance matrix. 

Additionally, the iterative nature of the ABC algorithm may increase 

the computational burden. To mitigate this, a Reduced-order EKF 

(ROEKF) can be employed to reduce the computational demands while 

maintaining estimation accuracy, making it more suitable for real-time 

implementation in industrial applications with limited computational 

resources.  

Additionally, the model and its discretized form may have limited 

applicability in specific IM conditions, such as high-speed operations 

and field-weakening modes. In these situations, the increased 

nonlinearity may reduce the accuracy of the linear approximations used 

in the EKF, leading to potential suboptimal performance in speed 

estimation. Future research should focus on incorporating advanced 

nonlinear estimation techniques, such as the Unscented Kalman Filter 

(UKF), to improve performance and accuracy in these challenging 

operating conditions. 

 
Fig. 3: Assessment of the ABC-EKF performance for a constant 

Voltage/Hertz drive while accelerating to 100 rad/sec 

 
Fig. 4: Assessment of the ABC-EKF performance for a constant 

Voltage/Hertz drive while accelerating to -100 rad/sec. 

 
Fig. 5: Assessment of the ABC-EKF performance for a constant 
Voltage/Hertz drive during transient and steady-state conditions. 

 
Fig. 6: Assessment of the ABC-EKF performance for a constant 

Voltage/Hertz drive during speed reversal from 120 to -120 rad/sec 
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Fig. 7: Assessment of the ABC-EKF performance for a constant 

Voltage/Hertz drive during deceleration to a standstill 

 
Fig. 8: Assessment of the ABC-EKF performance for a constant 

Voltage/Hertz drive when the Rs is increased by 50% and the Rr is 
increased by 100% 

 
Fig. 9: Assessment of the ABC-EKF performance for a constant 

Voltage/Hertz drive when both the Rs and Rr are increased by 100% 

 
Fig. 10: Assessment of the ABC-EKF performance for a constant 

Voltage/Hertz drive when the Rs and Rr are both increased by 50% 
 

 

8. Conclusion  

This work presents a novel approach to improve the effectiveness of 

an EKF in determining an induction motor drive's speed. The weight 

and noise covariance matrices are optimally selected using the 

artificial bee colony method. Studies using a constant Voltage/Hertz 

regulated induction motor drive in simulation confirm the efficacy of 

the suggested approach. The results show that precise speed tracking 

can be achieved at various speeds and during standstill conditions. 

Moreover, the method maintains high accuracy in speed tracking even 

under different disturbances, such as variations in stator and rotor 

resistance. This approach can replace the traditional trial-and-error 

method. Furthermore, it has established a framework for practical 

implementation of digital signal processing (DSP) /microcontroller 

hardware, which can be utilized in future sensor less induction motor 

drive systems. 
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