Abstract
Leukaemia is a group of malignant neoplasms that arise from altered hematopoietic cells, leading to a diverse range of complex and heterogeneous diseases. Acquired chromosomal aberrations, including deletions, translocations, and amplifications, contribute to the emergence of various subtypes of leukaemia. As a result, karyotyping has become a crucial tool for diagnosing and classifying different forms of leukaemia. This study utilized the chromosomal G-banding method, a cross-sectional approach, to examine the karyotype of peripheral blood samples from five Libyan patients with leukaemia at the Benghazi Pediatric Hospital. The analysis successfully revealed several chromosomal abnormalities, and the patients were classified into the subclasses of B-ALL and AML leukaemia disorders. These findings highlight the significance of karyotyping in diagnosing and predicting leukaemia. Furthermore, this research illustrated how precise karyotyping analysis can provide invaluable information that can ultimately improve patient outcomes and treatment strategies.
References
Abushwereb, H., Zaroug, S., & Othman, S. (2016). A retrospective Study of Leukemia in Libyan children. Int J Clin Med Res, 3(3), 55-9.
Akkari, Y. M., Baughn, L. B., Dubuc, A. M., Dal Cin, P., & Xu, X. (2022). Guiding the global evolution of cytogenetic testing for hematologic malignancies. Blood, The Journal of the American Society of Hematology, 139(15), 2273-2284.
Arber DA, Orazi A, Hasserjian R, et al. (2015) The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood. 19;127(20):2391-405.
Asif, M., Hussain, A., Wali, A., Ahmed, N., Ali, I., Iqbal, Z., & Rasool, M. (2021). Molecular, cytogenetic, and haematological analysis of chronic myeloid leukaemia patients & discovery of two novel translocations. Analytical Cellular Pathology, 2021, 1-19.
Betz, B. L., & Hess, J. L (2010). Acute myeloid leukaemia diagnosis in the 21st century. Archives of pathology & laboratory medicine, 134(10), 1427-1433.
Calin GA, Dumitru CD, Shimizu M, et al. (2002). Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci U S A; 99: 15524-15529.
Cox CV & Blair A. A primitive cell origin for B-cell precursor ALL? (2005). Stem Cell Rev.1(3):189-96
D'Achille P, Seymour JF, Campbell LJ., (2006). Translocation (14;18) (q32; q21) in acute lymphoblastic leukemia: a study of 12 cases and review of the literature. Cancer Genet Cytogenet. Nov;171(1):52-6.
De Keersmaecker K, Marynen P, Cools J. (2005). Genetic insights in the pathogenesis of T-cell acute lymphoblastic leukemia. Haematologica. Aug;90(8):1116-27
Deininger, M. W., Goldman, J. M., & Melo, J. V. (2000). The molecular biology of chronic myeloid leukaemia. Blood, 96(10), 3343–3356.
Döhner H, Estey E, Grimwade D, (2017). Diagnosis and management of AML in adults: 2017 ELN recommendations from an international expert panel. Blood. Jan 26;129(4):424-47
Dozzo, A., Galvin, A., Shin, J. W., Scalia, S., O’Driscoll, C. M., & Ryan, K. B. (2023). Modeling acute myeloid leukaemia (AML): What’s new? A transition from the classical to the modern. Drug Delivery & Translational Research, 13(8), 2110-2141.
Edwards BK, Brown ML, Wingo PA, et al. Annual report to the nation on the status of cancer, 1975-2002, featuring population-based trends in cancer treatment. J Natl Cancer Inst. 2005 Oct 5;97(19):1407-27
Forestier E, Israeli S, Beverloo B, et al. Cytogenetic features of acute lymphoblastic and myeloid leukemias in pediatric patients with Down syndrome: an iBFM-SG study. Blood. 2008 Feb 1;111(3):1575-83
Gadhia, Pankaj & Vaniawala, Salil & Patel, Monika & Chavda, Pratik & Zaveri, Shivangi. (2017). The possible significance of trisomy 8 in acute myeloid leukemia. International Journal of Research in Medical Sciences. 5. 2652-2656.
Guilhot, F. (2016). Cytogenetics in CML: more important than you think. Blood, The Journal of the American Society of Hematology, 127(22), 2661-2662.
Gupta, M., Mahapatra, M., & Saxena, R. (2019). Cytogenetics' on the prognosis of acute myeloid leukemia. Journal of Laboratory Physicians, 11(02), 133-137.
Hoelzer D, Gökbuget N, Ottmann O, (2002). Acute lymphoblastic leukemia. Hematology Am Soc Hematol Educ Program. Jan;(1):162-92.
Jemal A, Siegel R, Ward E, Murray T, Xu J, Thun MJ. Cancer statistics, (2007). CA Cancer J Clin. 2007; 57:43-66.
Koppen IJ, Hermans FJ, Kaspers GJ. (2010). Folate related gene and susceptibility to develop childhood acute lymphoblastic leukemia. Br. J Haematol. Jan;148(1):3-14
Leone G, Pagano L, Ben-Yehuda D, et al. Therapy-related leukemia and myelodysplasia: susceptibility and incidence. Haematologica. 2007 Oct;92(10):1389-98.
Maciejewski JP, Risitano A, Sloand EM, (2002) Distinct clinical outcomes for cytogenetic abnormalities evolving from aplastic anemia. Blood. May 1;99(9):3129-35
Petridou E, Ntouvelis E, Dessypris N, (2005). Maternal diet and acute lymphoblastic leukemia in young children. Cancer Epidemiol Biomarkers Prev. Aug;14(8):1935-9.
Pui CH, Relling MV, Downing JR. Acute lymphoblastic leukemia. (2004). N Engl J Med. Apr 8;350(15):1535-48.
Safaei, A., Shahryari, J., Farzaneh, M. R., Tabibi, N., & Hosseini, M. (2013). Cytogenetic findings of patients with acute lymphoblastic leukemia in fars province. Iranian journal of medical sciences, 38(4), 301.
Siegel RL, Miller KD, Fuchs HE. Cancer statistics, (2021). CA Cancer J Clin. Jan;71(1):7-33. 27
Snyder DS, Stein AS, O'Donnell MR, (2005). Philadelphia chromosome-positive acute lymphoblastic leukemia secondary to chemoradiotherapy for Ewing sarcoma. Report of two cases and concise review of the literature. Am J Hematol. Jan;78(1):74-8.
Stock W., Current treatment options for adult patients with Philadelphia chromosome-positive acute lymphoblastic leukaemia. (2010). Leuk Lymphoma. Feb;51(2):188-98
Taub JW, Berman JN, Hitzler JK, (2017). Improved outcomes for myeloid leukaemia of Down syndrome: a report from the Children's Oncology Group AAML0431 trial. Blood. 2017 Jun 22;129(25):3304-13.
Zenz T, Vollmer D, Trbusek M., (2010) TP53 mutation profile in chronic lymphocytic leukaemia: evidence for a disease specific profile from a comprehensive analysis of 268 mutations. Leukemia; 24:2072-2079.
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Copyright (c) 2024 Sebha University Conference Proceedings