Impact of different humic acid levels and seaweed extract rates on productivity and economical value of khella (Ammi visnaga) plant
Main Article Content
Abstract
To enhance khella plant growth, yield components, chromone content, and economic value, a field experiment was conducted at the Farm of the Faculty of Agriculture, Al-Azhar University, Assiut, Egypt, over the two successive seasons of 2022/2023 and 2023/2024. The different humic acid levels (0.0, 5.0, 10.0, and 15.0 kg/ha), different seaweed extract rates (0.0, 1.0, 3.0, and 6.0 ml/L), and their combination treatments were studied. The obtained results were pointed out that utilizing humic acid (HA) at 15 kg level per hectare significantly increased khella growth (plant height, branches number and herb fresh and dry weights/ plant), fruit yield per plant and hectare and khellin, visnagin and total chromone percentages compared to control end the other levels under study. The highest values of growth traits, yield components, and chromone percentages were noticed when khella plants were sprayed with seaweed extract (SE) at 3 ml/l compared to the control. Generally, the best combination treatment between humic acid levels and seaweed extract rates regarding khella yield components was 15 kg/ha of HA + 6 ml/l of SE, compared to the other combination treatments under study in both seasons.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
References
References:
Saima, H., A. Jan, K. M. Bahadar and M. A. Khan (2014). Phytochemistry and medicinal properties of Ammi visnaga (Apiacae). Pak. J. Bot., 46 : 861-867. https://www.pakbs.org/pjbot/PDFs/46(3)/13.pdf
Akshaya, S. B., A. J. M. Al-Khatib, A. A. Elnour, N. M. S. Al Kalbani and A. Shehab (2015). Ammi visnaga in treatment of urolithiasis and hypertriglyceridemia. Pharmacognosy Res., 7: 397-400. https://pmc.ncbi.nlm.nih.gov/articles/PMC4660521/pdf/PR-7-397.pdf
Menesi, F.A. (1995). Effect of NPK fertilization on the growth of Ammi visnaga, L. plants. J. Agric. Res. Tanta Univ., 21 (4): 714-723. https://aasj.journals.ekb.eg/article_318552_e19636dd5f471c300ed880d5ffcea006.pdf
Evans, C.W. (1998). Trees and Evans, Pharmacognosy. Fourteenth Edition. Printed and Bound in Great Britain. Second Printing. pp. 251. https://search.worldcat.org/title/trease-and-evans-pharmacognosy/oclc/34974405
Plettenberg, H., A. Till and R. Thomas (2003). Childhood vitiligo and tacrolimus. Arch. Dermatol. 139 (5): 651–654. doi:10.1001/archderm.139.5.651. PMID 1275610
Anonymous, W.H.O. (2007). WHO monographs on selected medicinal plants, Vol 3. WHO Library Cataloguing in Publication Data. Pp 23-32. https://iris.who.int/bitstream/handle/10665/42052/9789241547024_eng.pdf
Valkova, S., M. Trashlieva and P. Christova (2004). Treatment of vitaligo with local khellin and UVA: Comparison with systemic PUVA. Clin. Exp. Dermatol., 29: 180-184. https://doi.org/10.1111/j.1365-2230.2004.01462.x
Mikkelsen, R. L. (2005). Humic materials for agriculture. Better Crops, 89 (3): 6-10. https://my.ucanr.edu/sites/nm/files/76657.pdf?fbclid=IwAR10xypBKpknPLHx3Ulq69uKu80uM-CxxB6svvvaykrK_jEcxzKaaZWKpQ8
Sangeetha, N., S. Palani and U. Ramar (2006). Effect of lignite humic acid and fertilizers on the yield of onion and nutrient availability.18th word congress of soil science, Philadelphia, Pencilvania ,USA. https://crops.confex.com/crops/wc2006/techprogram/P13539.HTM
Hoseini, M., F. Paknejad and M. N. Ilkaee (2023). Evaluation of humic acid and iron and zinc nanochelates effect on Italian basil (Ocimum basilicum L.) in salinity stress condition. Journal of Organic Farming of Medicinal Plants, 2(1): 44-51. https://jofmp.areeo.ac.ir/article_131630_935f12a6401538a2c0113085ab65b922.pdf
Feizi, H., S. Z. Hosseini and R. Moradi (2025). Synergistic effects of humic acid and foliar application of micronutrients (Fe, Zn, Mn, Cu) on saffron (Crocus sativus L.) growth and biochemical compounds. Journal of Agriculture and Food Research, 19: 1-11. https://doi.org/10.1016/j.jafr.2024.101601
Herna´ndez-Herrera, R. M., G. Virgen-Calleros, M. Ruiz-Lo´pez, J. Zañudo-Herna´ndez, J. P. De´lano-Frier, C. S. Herna´ndez (2014). Extracts from green and brown seaweeds protect tomato (Solanum lycopersicum) against the necrotrophic fungus Alternaria solani. Journal Applied Phycology, 26 (3):1607-1614. https://doi.org/10.1007/s10811-013-0193-2.
Spinelli, F., G. Fiori, M. Noferini, M. Sprocatti, G. Costa (2009). Perspectives on the use of a seaweed extract to moderate the negative effects of alternate bearing in apple trees. Journal of Horticultural Science Biotechnology, 84: 131–137. https://doi.org/10.1080/14620316.2009.11512610.
Khan, W., U. P. Rayirath, S. Subramanian, M. N. Jithesh, P. Rayorath and D. M. Hodges (2009). Seaweed extracts as biostimulants of plant growth and development. Journal of Plant Growth Regulation, 28: 386– 399. https://doi.org/10.1007/s00344-009-9103-x.
Karthikeyan, K. and M. Shanmugam (2016). Development of a protocol for the application of commercial bio-stimulant manufactured from Kappaphycus alvarezii in selected vegetable crops. Journal of Experimental Biology and Agricultural Sciences, 4 (1): 92–102. http://dx.doi.org/10.18006/2016.4(1).92.102.
Ali, O., A. Ramsubhag and J. Jayaraman (2019). Biostimulatory activities of Ascophyllum nodosum extract in tomato and sweet pepper crops in a tropical environment. PLoS One, 14 (5): 1-19. https://doi.org/10.1371/journal.pone.0216710
Ali, O., A. Ramsubhag and J. Jayaraman (2021). Biostimulant properties of seaweed extracts in plants: Implications towards sustainable crop production. Plants, 10 (3): 1-27. https://doi.org/10.3390/plants10030531
Chapman, H.D. and Pratt, P.F. (1978): Methods of Analysis for Soil, Plant and Water Calif. Univ. Division of Agric. Sci., 172-174.
Egyptian Pharmacopoeia (1984). General Organization for Governmental Printing Office, Ministry of Health, Cairo, Egypt, pp.31-33. https://healthresearchwebafrica.org.za/en/egypt/institution_54
Analytical Software (2008). Statistix Version 9, Analytical Software, Tallahassee, Florida, USA.
Akinci, S., T. Bueyuekkeskin, A. Eroğlu and B. E. Erdoğan (2009). The effect of humic acid on nutrient composition in broad bean (Vicia faba L.) roots. Notulae Scientia Biologicae, 1 (1): 81-87. file:///C:/Users/n/Downloads/The_Effect_of_Humic_Acid_on_Nutrient_Composition_i.pdf
Büyükkeskin, T. and Ş. Akinci (2011). The effects of humic acid on above-ground parts of broad bean (Vicia faba L.) seedlings under Al3+ toxicity. Fresenius Environmental Bulletin, 20 (3): 539-548.
Salama, M. M. A., J. A. Mansour, A. A. Mahmoud and E. A. Hassan (2023). Response of Nigella sativa L. plants to humic acid and seaweed extract treatments. International Journal of Chemical and Biochemical Sciences, 24 (12): 828-837. https://www.iscientific.org/wp-content/uploads/85-ijcbs-23-24-12-85n.pdf
Yakhin, O. I., A. A. Lubyanov, I. A. Yakhin and P. H. Brown (2017). Biostimulants in plant science: A global perspective. Frontiers in Plant Science, 7: 20-49. file:///C:/Users/n/Downloads/fpls-07-02049.pdf
Ronga, D., E. Biazzi, K. Parati, D. Carminati, E. Carminati and A. Tava (2019). Microalgal biostimulants and biofertilisers in crop productions. Agronomy, 192 (9): 2-22. https://doi.org/10.3390/agronomy9040192
Yusuf, R., A. Syakur, Y. Kalaba and F. Fatmawati (2020). Application of some types of local seaweed extract for the growth and yield of shallot (Allium wakegi). Aquaculture, Aquarium, Conservation & Legislation, 13 (4): 2203-2210. https://www.cabidigitallibrary.org/doi/pdf/10.5555/20203458456
Shafi, M.I., M. Adnan, S. Fahad, F. Wahid, A. Khan, Z. Yue, S. Danish, M. Zafar-ulHye, M. Brtnicky and R. Datta (2020). Application of single superphosphate with humic acid improves the growth, yield and phosphorus uptake of wheat (Triticum aestivum L.) in calcareous soil. Agronomy-Basel., 10: 1-15. https://doi.org/10.3390/agronomy10091224
Noroozisharaf, A. and M. Kaviani (2018). Effect of soil application of humic acid on nutrients uptake, essential oil and chemical compositions of garden thyme (Thymus vulgaris L.) under greenhouse conditions. Physiology and Molecular Biology of Plants, 24(3): 423-431. https://doi.org/10.1007/s12298-018-0510-y
Yogendra, N. D., P.R. Ravikumara, R.C. Padalia and A. Ghosh (2024). Effect of Kappaphycus alvarezii seaweed liquid extract on growth, yield and chemical constituents of geranium (Pelargonium graveolens l’ Herit. ex Aiton). Journal of Plant Nutrition, 48(6): 907–920. https://doi.org/10.1080/01904167.2024.2415478
Jamwal, S., A. Kumari, V. Veeragurunathan, K. Prasad, A. Ghosh and R. Kumar (2025). Enhancing growth, yield, essential oil content, and composition of holy basil (Ocimum tenuiflorum L.) using red algae-based bio-stimulant under acidic conditions of the Western Himalayas. BMC Plant Biology, 25(1): 1-11. file:///C:/Users/n/Downloads/s12870-025-06064-1%20(1).pdf
Canellas, L.P., D.M. Balmori, L.O. Me´dici, N.O. Aguiar, E. Campostrini, R.C. Rosa, A.R. Fac¸anha and F.L. Olivares (2013). A combination of humic substances and Herbaspirillum seropedicae inoculation enhances the growth of maize (Zea mays L.). Plant Soil, 366: 119–132. file:///C:/Users/n/Downloads/s11104-012-1382-5.pdf
Hernandez, O.L., A. Calderı´n, R. Huelva, D. Martı´nez-Balmori, F. Guridi, N.O. Aguiar, F.L. Olivares and L.P. Canellas (2015). Humic substances from vermicompost enhance urban lettuce production. Agron. Sustain. Dev., 35: 225–232. file:///C:/Users/n/Downloads/s13593-014-0221-x.pdf
Proklamasiningsih, E., P. Widodo and E. Sudiana, (2023). Effects of humic acid and planting media on antioxidant production in the medicinal plant valerian (Valeriana officinalis L.). Agriculturae Conspectus Scientificus, 88 (3): 193-197.
Khashan, A. A. A., H. S. M. Khalaf, A. A. Hassan and I. H. H. Al-Hilfy (2021). The effect of seaweed Spirulina platensis extract and micronutrients on wheat yield and yield components. IOP Conference Series: Earth and Environmental Science, 923(1): 1-10. https://doi:10.1088/1755-1315/923/1/012052.
Al-Taweel, S. K. and A. A. Mohammed (2023). Effect of exogenous application of nano fertilizers and seaweeds extract on the growth, yield, and total alkaloids content of Hyoscyamus niger. In IOP Conference Series: Earth and Environmental Science 1262 (5): 1-7. https://iopscience.iop.org/article/10.1088/1755-1315/1262/5/052010/pdf
file:///C:/Users/n/Downloads/A7AKINCI.pdf
Mafakheri, S. and B. Asghari (2018). Effect of seaweed extract, humic acid and chemical fertilizers on morphological, physiological and biochemical characteristics of Trigonella foenum-graecum L. Journal of Agricultural Science and Technology, 20 (7): 1505-1516. https://www.cabidigitallibrary.org/doi/pdf/10.5555/20193014622
Pljevljakušić, D. and S. Brkić (2020). Cultivation cost-benefit analysis of some important medicinal plants in Serbia. Natural Medicinal Materials, 40: 13-21. file:///C:/Users/n/Downloads/13_PljevljakusicandBrkic.pdf
Rathore, R. (2024). A review on cost and return of medicinal and aromatic plants cultivation in India. International Journal of Economic Plants, 11(1): 65-69.file:///C:/Users/n/Downloads/11+IJEP+Feb+2024+Vol+11_issue+1+Rathore.pdf