A Comparative study Between R-modules and Fuzzy R-modules

Main Article Content

Magida Mohamed Ali Alsowid
Almbrok Hussin Alsonosi Omar

Abstract

A comparative study on the concepts and structures of classical modules in crisp set theory and fuzzy modules is presented in this article. We discuss modules, fuzzy modules, fuzzy submodules, fuzzy module homomorphisms, and fuzzy quotient modules. The paper focuses on differences in definitions and basic properties of crisp and fuzzy modules. We show that the extension from classic to fuzzy modules is a natural one and that many module-theoretic notions in the classical case can be naturally extended to hold in the fuzzy case; this may be viewed as an indication that the class of fuzzy modules generalizes that of classical modules. This extension underscores the flexibility of module theory in fuzzy environments, accommodating uncertainty and imprecision at least.

Article Details

How to Cite
Alsowid , M. M. A., & Almbrok Hussin Alsonosi Omar. (2025). A Comparative study Between R-modules and Fuzzy R-modules. Sebha University Conference Proceedings, 4(3), 56–60. https://doi.org/10.51984/sucp.v4i3.4181
Section
Confrence Proceeding

References

Rasuli,R.(2018).c-Maximal,submodules,of,finitemodules. International ournal of Open Problems in Computer Science & Mathematics, 11(1).‏

Wisbauer, R. (2018). Foundations of module and ring theory. Routledge.‏

Zadeh,L. A. (1965). Fuzzy sets, information and control. Information and control, 8(3), 338-353.‏

Rosenfeld, A. (1971). Fuzzy groups. Journal of mathematical analysis and applications, 35(3), 512-517.‏

Negoita, C. V., Ralescu, D. A., & Gottwald, S. (1977). Applications of fuzzy sets to systems analysis. IEEE Transactions on Systems, Man, and Cybernetics, 7(9), 679-680.‏

Nanda, S. (1985). Fuzzy Modules over fuzzy rings (No. IC--85/237). International Centre for Theoretical Physics, Trieste (Italy).

Pan, F. Z. (1988). Fuzzy quotient modules. Fuzzy sets and Systems, 28(1), 85-90.‏

Tercan, A., & Yücel, C. C. (2016). Module theory. Extending Modules and Generalizations, Bassel: Birkhäuser–Springer.‏

Sidky, F. I. (2001). On radicals of fuzzy submodules and primary fuzzy submodules. Fuzzy sets and systems, 119(3), 419-425.‏

Yetkin, E., & Olgun, N. (2014). A new type fuzzy module over fuzzy rings. The Scientific World Journal, 2014(1), 730932.

Hamel, M. A., & Khalaf, H. Y. (2020). fuzzy Maximal Sub-modules. Iraqi Journal of science, 1164-1172.‏

Chemat, B., & Chinram, R. (2022). Properties of Uniform Fuzzy Modules and Semiuniform Fuzzy Modules. Journal of the Indonesian Mathematical Society, 133-146.‏

Priestley, H. A. (2011). Introduction to Groups, Rings and Fields. HT andTT,https://people.maths.ox.ac. uk/flynn/genus2/sheets0405/grfnotes1011. pdf.‏

Sillitto, R. M. (1978). Group theory.‏

Auslander, M., & Buchsbaum, D. (2014). Groups, rings, modules. Courier Corporation.‏

Bhattacharya, N. P., & Bhattacharya, P. (1986). Fuzzy groups: some group-theoretic analogs. Information Sciences, 39(3), 247-267.‏

Goldman, M. A. (2004). Ring theory.‏