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In this paper we investigate and define a general class of univalent Starlike functions with respect to
a convex domain contained in the right half plane. Also we establish some inclusion relationships
associated with the Ruscheweyh Linear operator. Some interesting integral — preserving properties

Hadmared product are also considered.
Briot-Bougquet differential

subordination
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1. Introduction:

Let h(z) be an analytic function with positive real part in the unit disk
U,h(0) =1 and h'(0) > 0, and map U onto a region starlike with
respect to 1 and symmetric with respect to the real axis. Ma and
Minda [1] introduced the classes S*(h) and C(h) by

s*(h) = {f € A: Z;(S) < h(z)}
e ={fea1+ZL D e
f' (@)

The classes S*(h) and C(h)include the subclasses of starlike and

convex functions as special cases when

1+Az
1+Bz

h(z) = (-1<B<AK<L1],

the classes S*(h) and C(h) reduce to the class S*[4, B] ofJanowski
starlike functions and the class C[A4, B] of Janowski convex functions
respectively [2]. Thus

S*[A,B] = S* (w) and C[A,B] = c(

1+Bz

Also

1+Az)
1+Bz)’

§*=511,-1] = 5" (22)and C = C[1,-1] = € (12),
are the familiar classes of starlike and convex functions respectively.

In this paper we investigate and consider these classes of univalent
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Starlike functions with the Ruscheweyh Linear operator.

Let H(U) be the set of functions which are regular in the unit disc
UA={feHU):f(0)=f'(0)=1=0},

since f € A then may given as a series of the form

flz)=z+ Z amz™, (1.1)
m=2

Let f;(2)(j = 1,2) in A be given by’
fi@)=z+ Z A 2™,
m

Then the Hadamard product (or convolution product) f; * f, of f;(z)
and £, (2) is defined by

D@ =2+ ) amaama2™,
m=2

Using the Ruscheweyh [3] Derivative D™ defined by D™: A — A;

Df(z) = me + f(2)
—z+ Z (n(:rnrf I)'l)' 2™, (1> —1), (1.2)

From (1.2), we have;
z(D"f(2)) = (n+ 1)D™1f(z) — nD"f(2), (13)
Definition 1.1 [4] (Subordination Principle). For two analytic
functions f(z) and F(z) in U we say that f () is
subordinate to F(z) written symbolically as follows:

f<FinUorf(z)<F(z)
if there exists a Schwarz function w(z) € 2 which (by
definition) is analytic in U with, w(0) = 0and
lw)| < 1(z€U).

(zeU),

Remark 1.1 ([4], [5]).
If f(z) € S, Ruscheweyh defined the symbol D™ f(z) by;

Z(Z"_lf(z))(")

n!

D™f(z) =
We note that:
D°f(2) = f(2), and Df(2) = zf'(2),...
We note that:
D°f(2) = f(2), and Df(2) = zf'(2),...

B ne NO = {0,1,2, ...},

2. Preliminary results
We recall here the definition of the well-known class of

Starlike functions:

={fEA:Re(fo£—S))> 0,z€ U}.

Let C denote the class of all convex functions in A. An analytic
description of the class C is given by
C ={f€A:Re(l+jj—{Zl;(z)> >0,z€ U}.
The classes S* and C were first introduced by Robertson [6].
Remark 2.1
By using the subordination relation, we may define the class
S*thusif f(z) = z+ a,z? + -,z € U, then f € S* if and only if

zf'(z) 1+z
@) 1-z’

Let consider the Libera-Pascu integral operator L,: A —» A

eVU.

defined as:

a€CRea=0,

f(@) =Laf (2) =

Lof(2) =z + i (111 _|+_ Z) a,z". (2.2)
n=2

In the case a = 1 this operator was introduced by R.J.
Libera and it was studied by many authors in different general cases.
In this general form (a € C,Re a = 0) was used first time by N. N.
Pascu in [7].
The next theorem is result of the so called “admissible functions
method" introduced by P.T. Mocanu and S.S. Miller (see [8],[91,[4]).
Lemma 2.1 [10]

Let h convex in U and R[Bh(z) +y] >0,z€ U.Ifp €
h(U) with p(0) = h(0) and p satisfied the Briot-Bouquet
differential subordination;

zp'(2)

Bp(2) +vy
3. Main results
Definition 3.1

Let h(z) € H(U), with h(0) = 1 and h(U) = D, where D
is a convex domain contained in the right half plane. We say that a
function f(z) € A is in the class S, (h) if

2(Df ()’

D™ f(2)
Remark 3.1

Geometric interpretation: f(z) € S;;(h) if and only if

p(2) + <h(z), then p(2) < h(2).

< h(2), z€U, 3.1

% take all valued in the convex domain D contained in the right
half-plane.
Remark 3.2

For n = 0 the class Starlike functions R (Z/fé(j)) >0. For
n = 1 the class of convex functions R (1 + Zf”(z)) > 0. In

f1(2)

terms of subordination;

zf'(z zf"(z 1+z

1 ) + and 1+ ¢ )< )

f(z ) 1- flz) 1-z
Ali [11] and Ma. And Minda [12].
Remark 3.3

For hy(z) < h,(z) we have S;(h,) C S;,(hy). From the

above we obtain;

1+z
S:) < $i (72
Theorem 3.1
If feAand n > —1, then
Sn(h) € Spa(h)
Proof:
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Let £(2) € Si(h),

and
@) = z(D"f(2))’
P D)
2(D*f(2))  (n+ DD™1f(2) — nD"f(2)
D"f(z) D"f(2)
_ (n+1)D™f(2)
D
=p(2),
n+1
DT (p(2) +n), 3.2)

D f(z)  (m+1)

Differentiating (3.2), Logarithmically with respect to z, we obtain

2(D™f (D) _
WEONE p(2) +

zp'(2)
p(@)+n

2(D™f(2))
Dn+1f(z) <
f(2) € Sy (R).
The proof of the Theorem 3.1 is completed.

zp'(2)
p(z) +n’

p(2) + < h(2),

h(z)

Corollary 3.1
1+z
Forn=0and h(z) = —, We have

s =S5 c Si(h),

Theorem 3.2
Letn > —1,if f(2) € S;(h), then L,f(z) € S;(h).
Proof:
From (2.2), we have
2(Lof @) = (1 + a)f @) — alof (2), (33)
Setting,
Z(Laf(Z))’ B
L@ p(2),

from (3.3), we have
o) = LH @)~ alaf @)
Laf(z)
p@+a_ f(2)
14+a Lof(2)’
By logarithmically differentiating both sides of (3.4), and multiplying

(34)

by z, we have;

2@ 7@
p)+a  fz) D
(D) 2f'(2)
POt S va” F

By lemma (2.1), p(2) < h(2),

2(Laf (@)’
Laf(Z)

< h(2).

< h(2),

So, Luf(z) € Sj(h).
The proof of the Theorem 3.2 is completed.
Conclusion

In this paper, analytic univalent functions defined on the unit
disc, are studied with help of Ruscheweyh linear operator. Using this
operator and the techniques of differential subordination we obtained
subordination theorems. Many interesting particular cases of main
them are emphasized in the form of corollaries.
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