

مجلة جامعة سيها للعلوم البحثة والتطبيقية Sebha University Journal of Pure & Applied Sciences

Journal homepage: www.sebhau.edu.ly/journal/index.php/jopas

A Class of Seventh Order Hybrid Extended Block Adams Moulton Methods for Numerical Solutions of First Order Delay Differential Equations

*C. Chibuisi¹, B. O. Osu², C. Granados³ and O. S. Basimanebotlhe⁴

¹Department of Insurance, University of Jos, Jos, Nigeria

²Department of Mathematics, Abia State University, Uturu, Nigeria

³Universidad de Antioquia Medell'ın Colombia.

⁴Department of Mathematics, University of Botswana, Gaborone, Botswana

Keywords:	ABSTRACT
First order delay differential	A class of seventh order Hybrid Extended Block Adams Moulton Methods (HEBAMM) is developed
equations	for the approximate solution of some first order delay differential equations (DDEs) without the
hybrid block method	introduction of interpolation formula in calculating the delay term. The delay term was evaluated by
off-grid points	a valid expression of sequence. By matrix inversion techniques, the discrete schemes of the proposed
extended future points	method were obtained through its continuous derivations with the help of linear multistep collocation
Adams Moulton Method	procedure. The convergence and stability analysis of the method were investigated. The results
	obtained show that the higher step number $k = 4$ performed better and faster than the lower step
	numbers $k = 3$ and 2 when compared with the exact solutions and other existing methods at fixed
	step size e

معادلة من الرتبة السابعة الهجينة الممتدة طرق آدمز مولتون للحلول العددية للمعادلات التفاضلية لتأخير الرتبة الأولى

O. S. Basimanebotlhe⁴ و C. Granados³ و B. O. Osu² و *C. Chibuisi¹

¹ قسم التأمين ، جامعة جوس ، نيجيريا

يبلدا ا\$به عدما؟ عا؟، 🕵

2 قسم الرياضيات ، جامعة ولاية أبيا ، أوتورو ، نيجيريا

³ يونيفرسيداد دي أنتيوكيا ميديلي في كولومبيا.

⁴ قسم الرياضيات ، جامعة بوتسوانا ، جابورون ، بوتسوانا

الملخص

معادلات تفاضلية تأخير م	تم تطوير فئة من طرق Hbrid Extended Block Extended Block Adams Moulton
الأولى	(HEBAMM) من الدرجة السابعة للحل التقريبي لبعض معادلات تفاضلية التأخير من الدرجة الأولى
طريقة الكتلة الهجينة	(DDEs) دون إدخال صيغة الاستيفاء في حساب مصطلح التأخير. تم تقييم مصطلح التأخير من خلال تعبير
نقاط خارج الشبكة	صالح للتسلسل. من خلال تقنيات انعكاس المصفوفة ، تم الحصول على المخططات المنفصلة للطريقة المقترحة
نقاط مستقبلية ممتدة	من خلال اشتقاقاتها المستمرة بمساعدة إجراء التجميع الخطي متعدد الخطوات. تم التحقيق في تقارب وتحليل
طريقة Adams Moulton.	الاستقرار للطريقة. تظهر النتائج التي تم الحصول عليها أن رقم الخطوة الأعلى $k=4$ كان يؤدي بشكل أفضل
	وأسرع من أرقام الخطوة السفلية ${ m k}=3$ و 2 عند مقارنته بالحلول الدقيقة والطرق الأخرى الموجودة بحجم
	خطوة ثابت

Introduction:

من الدرجة

Numerically, Scholars [1, 2, 3, 4, 5, 6] have solved some delay differential equations using interpolation techniques and encountered some challenges. One of the difficulties encountered by these scholars in the use of interpolation techniques to evaluate the delay term of DDEs was studied by [7] that the order of the interpolating polynomials should be at least equal to the computational method applied in solving DDEs to which is very difficult to arrive at; if not, the accuracy of the method will not be preserved.

In order to overcome the difficulty posed by using interpolation formula in computing the delay term, we shall apply the valid expression

*Corresponding author:

 $(O.\ S.\ Basimanebothe)\ carlos granados ortiz@outlook.es$

الكلمات المفتاحية:

Article History : Received 03 October 2021 - Received in revised form 08 April 2022 - Accepted 18 May 2022

E-mail addresses: chibuisichygoz@yahoo.com,(B. O. Osu) osu.bright@abiastateuniversity.edu.ng,

formulated by [8]. This approach has been successfully applied by [9, 10, 11, 12, 13, 14, 15] for numerical approximation of first order DDEs without applying interpolation formula in calculating the delay term.

In this research work, we shall formulate and apply hybrid extended block Adams Moulton Methods in solving some first order DDEs as developed by [16] $y'(t) = f(t, y(t), y(t-\tau))$, for $t > t_0, \tau > 0$ called the delay term and $y(t-\tau)$ is the solution of the delay term.

$$y'(t) = f(t, y(t), y(t - \tau)), \text{ for } t > t_0, \tau > 0$$

$$y(t) = a(t), \text{ for } t \le t_0$$
(1)

The results obtained after the implementation of the new method shall be compared to [8, 9, 13] to prove its advantage.

where a(t) is the initial function, τ is called the delay, $(t - \tau)$ is

Derivation of Linear Multistep Collocation Approach

k-step linear multistep collocation approach with collocation points formulated [16] The т was in as; r-1u-1

$$y(x) = \sum_{w=0}^{1} \alpha_w(x) y_{z+w} + e \sum_{w=0}^{n-1} \beta_w(x) f_{z+w}(x, y(x))$$
(2)

From (2) the continuous derivations of extended and hybrid extended block Adams Moulton Methods can be respectively expressed as

$$y(x) = \sum_{w=0}^{r-1} \alpha_w(x) y_{z+w} + e \sum_{w=0}^{u-1} \beta_w(x) f_{z+w}(x, y(x)) + e \sum_{w=0}^{u-1} \gamma_w(x) g_{z+w}(x, y(x))$$
(3)

$$y(x) = \sum_{w=0}^{r-1} \alpha_w(x) y_{z+w} + e \sum_{w=0}^{u-1} \beta_w(x) f_{z+w}(x, y(x)) + e \sum_{w=0}^{u-1} \gamma_w(x) g_{z+w}(x, y(x)) + e \sum_{w=0}^{u-1} \delta_w(x) l_{z+w}(x, y(x))$$
(4)

where $\alpha_w(x)$, $\beta_w(x)$, $\gamma_w(x)$ and $\delta_w(x)$ are continuous coefficients of the technique defined as

$$\alpha_{w}(x) = \sum_{g=0}^{r+u-1} \alpha_{w,g+1} x^{g} \text{ for } w = \{0, 1, \dots, r-1\}$$
(5)

$$e\beta_{w}(x) = \sum_{g=0}^{r+u-1} e\beta_{w,g+1} x^{g} \text{ for } w = \{0,1,\dots,u-1\}$$
(6)

$$e\gamma_{w}(x) = \sum_{g=0}^{r+u-1} e\gamma_{w,g+1} x^{g} \text{ for } w = \{0,1,\dots,u-1\}$$
(7)

$$e\gamma_{w}(x) = \sum_{g=0}^{r+u-1} e\gamma_{w,g+1} x^{g} \text{ for } w = \{0,1,\dots,u-1\}$$
(8)

where w = 0, 1, 2, ..., u - 1 are the *u* collocation points, x_{z+w} , w = 0, 1, 2, ..., r - 1 are the *r* arbitrarily picked interpolation points and *e* is the fixed step width.

To get $\alpha_w(x)$, $\beta_w(x)$, $\gamma_w(x)$ and $\delta_w(x)$, [17] developed a matrix equation of the form SE = I(9)

where I is the square matrix of dimension $(r+u) \times (r+u)$ while E and S are matrices defined as

$$E = \begin{bmatrix} 1 & X_{z} & X_{z}^{2} & \cdots & X_{z}^{r+u-1} \\ 1 & X_{z+1} & X_{z+1}^{2} & \cdots & X_{z+1}^{r+u-1} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & X_{z+r-1} & X_{z+r-1}^{2} & \cdots & X_{z+r-1}^{r+u-1} \\ 0 & 1 & 2X_{0} & \cdots & (r+u-1)X_{0}^{r+u-2} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 1 & 2X_{z-1} & \cdots & (r+u-1)X_{z-1}^{r+u-2} \end{bmatrix}$$
(10)

$$S = \begin{bmatrix} \alpha_{0,1} & \alpha_{1,1} & \cdots & \alpha_{r-1,1} & e\beta_{0,1} & \cdots & e\beta_{u-1,1} \\ \alpha_{0,2} & \alpha_{1,2} & \cdots & \alpha_{r-1,2} & e\beta_{0,2} & \cdots & e\beta_{u-1,2} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ \alpha_{0,r+u} & \alpha_{1,r+u} & \cdots & \alpha_{r-1,r+u} & e\beta_{0,r+u} & \cdots & e\beta_{u-1,r+u} \end{bmatrix}$$
(11)

From the matrix equation (9), the columns of $S = E^{-1}$ give the continuous coefficients of the continuous scheme of (4).

Derivation of HEBAMM Method with Integrated Three Off-grids Points for k = 2

Here, we integrated three off-grids extended future points at $x = \chi_{z+\frac{9}{4}}, x = \chi_{z+\frac{5}{2}}, x = \chi_{z+\frac{11}{4}}$ and one extended future point at $x = \chi_{z+3}$ as

collocation points, thus the interpolation points, r = 1 and the collocation points u = 7 are considered, therefore, (4) becomes $y(x) = \alpha_1(x)y_{z+1} + e[\beta_0(x)f_z + \beta_1(x)f_{z+1} + \beta_2(x)f_{z+2} + \beta_{\frac{9}{4}}(x)f_{z+\frac{9}{4}} + \beta_{\frac{5}{2}}(x)f_{z+\frac{5}{2}} + \beta_{\frac{11}{4}}(x)f_{z+\frac{11}{4}} + \beta_3(x)f_{z+3}]$ (12)

The matrix E in (9) becomes

$$E = \begin{pmatrix} 1 & x_{z} + e & (x_{z} + e)^{2} & (x_{z} + e)^{3} & (x_{z} + e)^{4} & (x_{z} + e)^{5} & (x_{z} + e)^{6} & (x_{z} + e)^{7} \\ 0 & 1 & 2x_{z} & 3x_{z}^{2} & 4x_{z}^{3} & 5x_{z}^{4} & 6x_{z}^{5} & 7x_{z}^{6} \\ 0 & 1 & 2x_{z} + 2e & 3(x_{z} + e)^{2} & 4(x_{z} + e)^{3} & 5(x_{z} + e)^{4} & 6(x_{z} + e)^{5} & 7(x_{z} + e)^{6} \\ 0 & 1 & 2x_{z} + 4e & 3(x_{z} + 2e)^{2} & 4(x_{z} + 2e)^{3} & 5(x_{z} + 2e)^{4} & 6(x_{z} + 2e)^{5} & 7(x_{z} + 2e)^{6} \\ 0 & 1 & 2x_{z} + \frac{9}{2}e & 3\left(x_{z} + \frac{9}{4}e\right)^{2} & 4\left(x_{z} + \frac{9}{4}e\right)^{3} & 5\left(x_{z} + \frac{9}{4}e\right)^{4} & 6\left(x_{z} + \frac{9}{4}e\right)^{5} & 7\left(x_{z} + \frac{9}{4}e\right)^{6} \\ 0 & 1 & 2x_{z} + 5e & 3\left(x_{z} + \frac{5}{2}e\right)^{2} & 4\left(x_{z} + \frac{5}{2}e\right)^{3} & 5\left(x_{z} + \frac{5}{2}e\right)^{4} & 6\left(x_{z} + \frac{5}{2}e\right)^{5} & 7\left(x_{z} + \frac{5}{2}e\right)^{6} \\ 0 & 1 & 2x_{z} + \frac{11}{2}e & 3\left(x_{z} + \frac{11}{4}e\right)^{2} & 4\left(x_{z} + \frac{11}{4}e\right)^{3} & 5\left(x_{z} + \frac{11}{4}e\right)^{4} & 6\left(x_{z} + \frac{11}{4}e\right)^{5} & 7\left(x_{z} + \frac{11}{4}e\right)^{6} \\ 0 & 1 & 2x_{z} + 6e & 3\left(x_{z} + 3e\right)^{2} & 4\left(x_{z} + 3e\right)^{3} & 5\left(x_{z} + 3e\right)^{4} & 6\left(x_{z} + 3e\right)^{5} & 7\left(x_{z} + 3e\right)^{6} \end{pmatrix}$$

The inverse of the matrix $S = E^{-1}$ is examined using Maple 18 from which the continuous scheme is obtained using (4), evaluating and simplifying it at $x = x_z$, $x = x_{z+2}$, $x = x_{z+\frac{9}{4}}$, $x = x_{z+\frac{5}{2}}$, $x = x_{z+\frac{11}{4}}$, $x = x_{z+3}$, the following discrete schemes are obtained

$$y_{z} = y_{z+1} - \frac{67031}{249480} ef_{z} - \frac{6037}{3528} ef_{z+1} + \frac{47129}{2520} ef_{z+2} - \frac{130048}{2835} ef_{z+\frac{9}{4}} + \frac{14296}{315} ef_{z+\frac{5}{2}} - \frac{510464}{24255} ef_{z+\frac{11}{4}} + \frac{28817}{7560} ef_{z+3}$$

$$y_{z+2} = y_{z+1} - \frac{799}{249480} ef_{z} + \frac{543}{1960} ef_{z+1} + \frac{3307}{840} ef_{z+2} - \frac{4096}{567} ef_{z+\frac{9}{4}} + \frac{216}{35} ef_{z+\frac{5}{2}} - \frac{20992}{8085} ef_{z+\frac{11}{4}} + \frac{3313}{7560} ef_{z+3}$$

$$y_{z+\frac{9}{4}} = y_{z+1} - \frac{40825}{12773376} ef_{z} - \frac{250055}{903168} ef_{z+1} + \frac{520375}{129024} ef_{z+2} - \frac{63755}{9072} ef_{z+\frac{9}{4}} + \frac{12325}{2016} ef_{z+\frac{5}{2}} - \frac{200125}{77616} ef_{z+\frac{11}{4}} + \frac{168625}{387072} ef_{z+3}$$

$$y_{z+\frac{5}{2}} = y_{z+1} - \frac{43}{13440} ef_{z} + \frac{1737}{6272} ef_{z+1} + \frac{18021}{4480} ef_{z+2} - \frac{724}{105} ef_{z+\frac{9}{4}} + \frac{219}{35} ef_{z+\frac{5}{2}} - \frac{636}{245} ef_{z+\frac{11}{4}} + \frac{1961}{4480} ef_{z+3}$$

$$y_{z+\frac{5}{2}} = y_{z+1} - \frac{5831}{1824768} ef_{z} + \frac{567}{2048} ef_{z+1} + \frac{123823}{30720} ef_{z+2} - \frac{44933}{6480} ef_{z+\frac{9}{4}} + \frac{1029}{160} ef_{z+\frac{5}{2}} - \frac{6559}{2640} ef_{z+\frac{11}{4}} + \frac{19707}{276480} ef_{z+3}$$

$$y_{z+3} = y_{z+1} - \frac{20}{6237} ef_{z} + \frac{611}{2205} ef_{z+1} + \frac{1264}{315} ef_{z+2} - \frac{19456}{2835} ef_{z+\frac{9}{4}} + \frac{1984}{315} ef_{z+\frac{5}{2}} - \frac{54272}{24255} ef_{z+\frac{11}{4}} + \frac{487}{945} ef_{z+3}$$
(14)

Derivation of HEBAMM Method with Integrated Two Off-grids Points for k = 3In this case, we integrated two off-grids extended future points at $x = x_{z+\frac{7}{2}}, x = x_{z+\frac{15}{4}}$ and one extended future point at $x = x_{z+4}$ as collocation points, thus the interpolation points, r = 1 and the collocation points u = 7 are considered, therefore, (4) becomes $y(x) = \alpha_2(x)y_{z+2} + e[\beta_0(x)f_z + \beta_1(x)f_{z+1} + \beta_2(x)f_{z+2} + \beta_3(x)f_{z+3} + \beta_{\frac{7}{2}}(x)f_{z+\frac{7}{2}} + \beta_{\frac{15}{4}}(x)f_{z+\frac{15}{4}} + \beta_4(x)f_{z+4}]$ (15) The matrix E in (9) becomes

$$E = \begin{bmatrix} 1 & x_{z} + 2e & (x_{z} + 2e)^{2} & (x_{z} + 2e)^{3} & (x_{z} + 2e)^{4} & (x_{z} + 2e)^{5} & (x_{z} + 2e)^{6} & (x_{z} + 2e)^{7} \\ 0 & 1 & 2x_{z} & 3x_{z}^{2} & 4x_{z}^{3} & 5x_{z}^{4} & 6x_{z}^{5} & 7x_{z}^{6} \\ 0 & 1 & 2x_{z} + 2e & 3(x_{z} + e)^{2} & 4(x_{z} + e)^{3} & 5(x_{z} + e)^{4} & 6(x_{z} + e)^{5} & 7(x_{z} + e)^{6} \\ 0 & 1 & 2x_{z} + 4e & 3(x_{z} + 2e)^{2} & 4(x_{z} + 2e)^{3} & 5(x_{z} + 2e)^{4} & 6(x_{z} + 2e)^{5} & 7(x_{z} + 2e)^{6} \\ 0 & 1 & 2x_{z} + 6e & 3(x_{z} + 3e)^{2} & 4(x_{z} + 3e)^{3} & 5(x_{z} + 3e)^{4} & 6(x_{z} + 3e)^{5} & 7(x_{z} + 3e)^{6} \\ 0 & 1 & 2x_{z} + 7e & 3\left(x_{z} + \frac{7}{2}e\right)^{2} & 4\left(x_{z} + \frac{7}{2}e\right)^{3} & 5\left(x_{z} + \frac{7}{2}e\right)^{4} & 6\left(x_{z} + \frac{7}{2}e\right)^{5} & 7\left(x_{z} + \frac{7}{2}e\right)^{6} \\ 0 & 1 & 2x_{z} + \frac{15}{2}e & 3\left(x_{z} + \frac{15}{4}e\right)^{2} & 4\left(x_{z} + \frac{15}{4}e\right)^{3} & 5\left(x_{z} + \frac{15}{4}e\right)^{4} & 6\left(x_{z} + \frac{15}{4}e\right)^{5} & 7\left(x_{z} + \frac{15}{4}e\right)^{6} \\ 0 & 1 & 2x_{z} + 8e & 3\left(x_{z} + 4e\right)^{2} & 4\left(x_{z} + 4e\right)^{3} & 5\left(x_{z} + 4e\right)^{4} & 6\left(x_{z} + 4e\right)^{5} & 7\left(x_{z} + 4e\right)^{6} \\ \end{bmatrix}$$

The inverse of the matrix $S = E^{-1}$ is examined using Maple 18 from which the continuous scheme is obtained using (4), evaluating and simplifying it at $x = x_z$, $x = x_{z+1}$, $x = x_{z+3}$, $x = x_{z+\frac{7}{2}}$, $x = x_{z+\frac{15}{4}}$, $x = x_{z+4}$, the following discrete schemes are obtained

$$y_{z} = y_{z+2} - \frac{3841}{13230} ef_{z} - \frac{5506}{3465} ef_{z+1} + \frac{962}{2205} ef_{z+2} - \frac{2582}{945} ef_{z+3} + \frac{14464}{2205} ef_{z+\frac{7}{2}} - \frac{434176}{72765} ef_{z+\frac{15}{4}} + \frac{997}{630} ef_{z+4}$$

$$y_{z+1} = y_{z+2} + \frac{127}{13230} ef_{z} - \frac{3461}{9240} ef_{z+1} - \frac{5659}{5880} ef_{z+2} + \frac{9307}{7560} ef_{z+3} - \frac{1864}{735} ef_{z+\frac{7}{2}} + \frac{159232}{72765} ef_{z+\frac{15}{4}} - \frac{467}{840} ef_{z+4}$$

$$y_{z+3} = y_{z+2} + \frac{2}{1323} ef_{z} - \frac{551}{27720} ef_{z+1} + \frac{6967}{17640} ef_{z+2} + \frac{8963}{7560} ef_{z+3} - \frac{3032}{2205} ef_{z+\frac{7}{2}} + \frac{77312}{72765} ef_{z+\frac{15}{4}} - \frac{629}{2520} ef_{z+4}$$

$$y_{z+\frac{7}{2}} = y_{z+2} + \frac{181}{125440} ef_{z} - \frac{471}{24640} ef_{z+1} + \frac{24429}{62720} ef_{z+2} + \frac{391}{280} ef_{z+3} - \frac{927}{980} ef_{z+\frac{7}{2}} + \frac{2416}{2695} ef_{z+\frac{15}{4}} - \frac{3921}{17920} ef_{z+4}$$

$$y_{z+\frac{15}{4}} = y_{z+2} + \frac{6419}{4423680} ef_{z} - \frac{77861}{4055040} ef_{z+1} + \frac{287567}{737280} ef_{z+2} + \frac{1536983}{1105920} ef_{z+3} - \frac{9359}{11520} ef_{z+\frac{7}{2}} + \frac{1526}{1485} ef_{z+\frac{15}{4}} - \frac{335111}{1474560} ef_{z+4}$$

$$y_{z+4} = y_{z+2} + \frac{19}{13230} ef_{z} - \frac{2}{105} ef_{z+1} + \frac{286}{735} ef_{z+2} + \frac{1322}{945} ef_{z+3} - \frac{128}{147} ef_{z+\frac{7}{2}} + \frac{8192}{6615} ef_{z+\frac{15}{4}} - \frac{29}{210} ef_{z+4}$$
(17)

Construction of HEBAMM Method with Integrated One Off-grid Point for k = 4With the same procedure, we integrated one off-grid extended future points at $x = x_{z+\frac{9}{2}}$ and one extended future point at $x = x_{z+5}$ as

collocation points, thus the interpolation points,
$$r = 1$$
 and the collocation points $u = 7$ are considered, therefore, (4) becomes

$$y(x) = \alpha_3(x)y_{z+3} + e[\beta_0(x)f_z + \beta_1(x)f_{z+1} + \beta_2(x)f_{z+2} + \beta_3(x)f_{z+3} + \beta_4(x)f_{z+4} + \beta_{\frac{9}{2}}(x)f_{z+\frac{9}{2}} + \beta_5(x)f_{z+5}]$$
(18)

The matrix E in (9) becomes

$$E = \begin{pmatrix} 1 & x_{z} + 3e & (x_{z} + 3e)^{2} & (x_{z} + 3e)^{3} & (x_{z} + 3e)^{4} & (x_{z} + 3e)^{5} & (x_{z} + 3e)^{6} & (x_{z} + 3e)^{7} \\ 0 & 1 & 2x_{z} & 3x_{z}^{2} & 4x_{z}^{3} & 5x_{z}^{4} & 6x_{z}^{5} & 7x_{z}^{6} \\ 0 & 1 & 2x_{z} + 2e & 3(x_{z} + e)^{2} & 4(x_{z} + e)^{3} & 5(x_{z} + e)^{4} & 6(x_{z} + e)^{5} & 7(x_{z} + e)^{6} \\ 0 & 1 & 2x_{z} + 4e & 3(x_{z} + 2e)^{2} & 4(x_{z} + 2e)^{3} & 5(x_{z} + 2e)^{4} & 6(x_{z} + 2e)^{5} & 7(x_{z} + 2e)^{6} \\ 0 & 1 & 2x_{z} + 6e & 3(x_{z} + 3e)^{2} & 4(x_{z} + 3e)^{3} & 5(x_{z} + 3e)^{4} & 6(x_{z} + 3e)^{5} & 7(x_{z} + 3e)^{6} \\ 0 & 1 & 2x_{z} + 8e & 3(x_{z} + 4e)^{2} & 4(x_{z} + 4e)^{3} & 5(x_{z} + 4e)^{4} & 6(x_{z} + 4e)^{5} & 7(x_{z} + 4e)^{6} \\ 0 & 1 & 2x_{z} + 9e & 3\left(x_{z} + \frac{9}{2}e\right)^{2} & 4\left(x_{z} + \frac{9}{2}e\right)^{3} & 5\left(x_{z} + \frac{9}{2}e\right)^{4} & 6\left(x_{z} + \frac{9}{2}e\right)^{5} & 7\left(x_{z} + \frac{9}{2}e\right)^{6} \\ 0 & 1 & 2x_{z} + 10e & 3(x_{z} + 5e)^{2} & 4(x_{z} + 5e)^{3} & 5(x_{z} + 5e)^{4} & 6(x_{z} + 5e)^{5} & 7(x_{z} + 5e)^{6} \\ \end{pmatrix}$$
(19)

The inverse of the matrix $S = E^{-1}$ is examined using Maple 18 from which the continuous scheme is derived using (4), evaluating and simplifying it at $x = x_z$, $x = x_{z+1}$, $x = x_{z+2}$, $x = x_{z+4}$, $x = x_{z+2}^9$, $x = x_{z+5}^9$, the following discrete schemes are obtained

A Class of Seventh Order Hybrid Extended Block Adams Moulton Methods for Numerical Solutions of First Order Delay... Chibuisi et al

$$y_{z} = y_{z+3} - \frac{1013}{3360}ef_{z} - \frac{11601}{7840}ef_{z+1} - \frac{45}{112}ef_{z+2} - \frac{689}{560}ef_{z+3} + \frac{1017}{1120}ef_{z+4} - \frac{464}{735}ef_{z+\frac{9}{2}} + \frac{153}{1120}ef_{z+5}$$

$$y_{z+1} = y_{z+3} + \frac{53}{5670}ef_{z} - \frac{808}{2205}ef_{z+1} - \frac{409}{315}ef_{z+2} - \frac{307}{945}ef_{z+3} - \frac{43}{630}ef_{z+4} + \frac{256}{3969}ef_{z+\frac{9}{2}} - \frac{1}{63}ef_{z+5}$$

$$y_{z+2} = y_{z+3} - \frac{311}{90720}ef_{z} + \frac{2647}{70560}ef_{z+1} - \frac{485}{1008}ef_{z+2} - \frac{10331}{15120}ef_{z+3} + \frac{2561}{10080}ef_{z+4} - \frac{3056}{19845}ef_{z+\frac{9}{2}} + \frac{61}{2016}ef_{z+5}$$

$$y_{z+4} = y_{z+3} - \frac{151}{90720}ef_{z} + \frac{1063}{70560}ef_{z+1} - \frac{361}{5040}ef_{z+2} + \frac{8021}{15120}ef_{z+3} + \frac{7169}{10080}ef_{z+4} - \frac{4336}{19845}ef_{z+\frac{9}{2}} + \frac{353}{10080}ef_{z+5}$$

$$y_{z+\frac{9}{2}} = y_{z+3} - \frac{151}{107520}ef_{z} + \frac{3231}{250880}ef_{z+1} - \frac{225}{3584}ef_{z+2} + \frac{9029}{17920}ef_{z+3} + \frac{35703}{35840}ef_{z+4} + \frac{22}{735}ef_{z+\frac{9}{2}} + \frac{153}{7168}ef_{z+5}$$

$$y_{z+5} = y_{z+3} - \frac{11}{5670}ef_{z} + \frac{38}{2205}ef_{z+1} - \frac{5}{63}ef_{z+2} + \frac{517}{945}ef_{z+3} + \frac{533}{630}ef_{z+4} + \frac{9472}{19845}ef_{z+\frac{9}{2}} + \frac{61}{315}ef_{z+5}$$
(20)

Convergence analysis

Here, the convergence analysis of (14), (17) and (20) shall be worked-out.

Order and Error Constant

In [18], the Linear Multistep Method is said to be of order d if $c_0 = c_1 = 0, \dots, c_p = 0$ but $c_{p+1} \neq 0$ and c_{p+1} is called the error constant. The order and error constants for (14) are obtained as follows

T

$$c_{0} = c_{1} = c_{2} = c_{3} = c_{4} = c_{5} = c_{6} = c_{7} = \begin{pmatrix} 0 & 0 & 0 & 0 & 0 \end{pmatrix}^{T} \text{ but}$$

$$c_{8} = \begin{pmatrix} -\frac{3751}{3386880}, -\frac{89}{1128960}, -\frac{872075}{11098128384}, -\frac{79}{1003520}, -\frac{5929}{75497472}, -\frac{67}{846720} \end{pmatrix}^{T}$$

Therefore, (14) has order p = 7 and the error constant is

3751	89	872075	79	5929	67
$\overline{},$	1100000,	11000100001	1002500,	75407470,	04070

3386880 1128960 11098128384 1003520 75497472 846720 Applying the same approach to (17), we obtained $\sim T$

$$c_{0} = c_{1} = c_{2} = c_{3} = c_{4} = c_{5} = c_{6} = c_{7} = \begin{pmatrix} 0 & 0 & 0 & 0 & 0 \end{pmatrix}^{2} \text{ but}$$

$$c_{8} = \begin{pmatrix} -\frac{787}{211680}, \frac{317}{376320}, \frac{773}{3386880}, \frac{1721}{8028160}, \frac{244853}{1132462080}, \frac{1}{4704} \end{pmatrix}^{2}$$

Therefore, (17) has order p = 7 and the error constant is

$$-\frac{787}{211680}, \frac{317}{276220}, \frac{773}{2286880}, \frac{1721}{8028160}, \frac{244853}{1122462080}, \frac{1}{4704}$$

211680 376320 3386880 8028160 1132462080 4704 Applying the same approach to (20), we obtained

$$c_{0} = c_{1} = c_{2} = c_{3} = c_{4} = c_{5} = c_{6} = c_{7} = \begin{pmatrix} 0 & 0 & 0 & 0 & 0 \end{pmatrix}^{T} \text{ but}$$
$$c_{8} = \begin{pmatrix} -\frac{57}{7840}, \frac{11}{10584}, -\frac{191}{211680}, -\frac{131}{211680}, -\frac{4017}{8028160}, -\frac{41}{52920} \end{pmatrix}^{T}$$

 $(\circ$

Therefore, (20) has order p = 7 and the error constants is

$$-\frac{57}{7840}, \frac{11}{10584}, -\frac{191}{211680}, -\frac{131}{211680}, -\frac{4017}{8028160}, -\frac{41}{52920}$$

Consistency

According to [18], a numerical method is said to be consistent if the order d is greater than 1 i.e. $p \ge 1$. Since the schemes in (14), (17) and

(20) satisfy the condition for consistency of order $p \ge 1$, then the method is consistent.

Stability Analysis

In [19], a numerical method is said to be zero stable if the roots $\mu_{a.}a = 1, 2, 3, ..., n$ of the first characteristic polynomial $\pi(\mu)$ expressed as (...) d_{-1} (..., \mathbf{T} ⁽¹⁾ \mathbf{T} ⁽¹⁾) ..., |...| < 11 1

$$\pi(\mu) = \det(\mu H_{2}^{(1)} - H_{1}^{(1)})$$
 satisfies $|\mu_{a}| \le 1$ and the roots $|\mu_{a}|$ is simple or distinct.

The zero stability for (14) is estimated as

$\begin{pmatrix} -1 & 0 \\ -1 & 1 \\ -1 & 0 \end{pmatrix}$	$\begin{array}{cccc} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{array}$	$ \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ \end{array} \right) \left(\begin{array}{c} y_{z+1} \\ y_{z+2} \\ y_{z+\frac{9}{4}} \end{array} \right) $	$ \begin{pmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{pmatrix} $	0 0 0 0 0 0	$ \begin{array}{c} 1\\ 0\\ 0 \end{array} \left(\begin{array}{c} y_{z-\frac{11}{4}}\\ y_{z-\frac{5}{2}}\\ \end{array}\right) $			
$\begin{vmatrix} 1 & 0 \\ -1 & 0 \end{vmatrix}$	0 1 0	$\begin{array}{c c} 0 \\ 0 \\ y_{z+\frac{5}{2}} \end{array}$	$= \begin{vmatrix} 0 & 0 \\ 0 & 0 \end{vmatrix}$	0 0 0	$\begin{array}{c} 0 \\ 0 \\ \end{array} \\ \begin{array}{c} y_{z-\frac{9}{4}} \\ \end{array} \\ \end{array}$			
-1 0	0 0 1	$0 \left\ \begin{array}{c} y_{z+\frac{11}{2}} \end{array} \right\ $	0 0	0 0 0	$0 \begin{vmatrix} y_{z-2} \\ y \end{vmatrix}$			
$\begin{pmatrix} -1 & 0 \end{pmatrix}$	0 0 0	$1 \int \begin{pmatrix} 4 \\ y_{z+3} \end{pmatrix}$	$\begin{pmatrix} 0 & 0 \end{pmatrix}$	0 0 0	$0 \int \left(\begin{array}{c} y_{z-1} \\ y_{z} \end{array} \right)$			
$\left(-\frac{603}{2}\right)$	7 47129	_130048	14296	510464	28817	$\left(0, 0 \right)$		67031
352	8 2520	2835	315	24255	7560		0000	249480
543	3307	_4096	216	20992	$3313 \int f_{z+1}$	(1) 0 0	0 0 0 0	$- \frac{799}{f_{z-\frac{11}{4}}}$
1960	840	567	35	8085	7560 $\int f_{z+}$	-2		249480 f^{5}
$\frac{25005}{22214}$	$\frac{5}{5}$ $\frac{520375}{100000}$	$\frac{63755}{2000}$	$\frac{12325}{2011}$ -	200125	$\frac{168625}{22727} \parallel f_{z+}$	$\frac{9}{1}$ 0 0	0 0 0 0	$-\frac{40825}{1000000000000000000000000000000000000$
$+e \begin{vmatrix} 90316 \\ 1727 \end{vmatrix}$	8 129024	9072	2016	77616	387072	$\binom{4}{5} + e$		$12773376 \mid f_{z-\frac{9}{4}}$
$\frac{1/3}{6272}$	$\frac{18021}{4480}$	$-\frac{724}{105}$	$\frac{219}{25}$	$-\frac{030}{245}$	$\frac{1901}{4480} \parallel J_{z+}$	$\left \begin{array}{c} \frac{3}{2} \\ 0 \end{array} \right = 0$	0 0 0 0	$-\frac{43}{12440} f_{z-2} $
567	123823	105	55 1029	243 6559	$\begin{array}{c} 4480\\ 119707 \end{array} \parallel f_{z^+} \end{array}$	$\frac{11}{4}$		$\begin{array}{c c} 13440 \\ 5831 \\ \end{array} \begin{array}{c c} f_{z-1} \\ f_{z-1} \end{array}$
$\frac{307}{2048}$	$\frac{123023}{30720}$	$-\frac{44935}{6480}$	$\frac{1029}{160}$	$-\frac{0000}{2640}$	$\frac{117707}{276480} \ f_{z} \ $	$\left \begin{array}{c} 0 \end{array} \right $	0 0 0 0	$-\frac{3631}{1824768} \left(\begin{array}{c} f_{z} \\ f_{z} \end{array} \right)$
611	1264	19456	1984	54272	487			20
$\left(\frac{1}{2205}\right)$	315	2835	315	24255	945	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	0 0 0 0	$-\frac{1}{6237}$
	(1)		0)	(0, 0)	0 0 0	1)		
			0					
			0					
Where $H_2^{(1)}$	$) = \begin{bmatrix} -1 & (\\ 1 & ($		$\begin{bmatrix} 0 \\ 0 \end{bmatrix}, H_1^{(1)}$	$= \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$	0 0 0			
	-1 (0	0 0	0 0 0			
			0		0 0 0			
	(-1 () 0 0 0	1)	$\begin{pmatrix} 0 & 0 \end{pmatrix}$	0 0 0	0)		
	6037	47129	_130048	14296	510464	28817)	
	3528	2520	2835	315	24255	7560		
	543	3307	_4096	216	_20992	3313		
	1960	840	567	35	8085	7560		
	$\frac{250055}{202162}$	$\frac{520375}{120024}$	$-\frac{63755}{0072}$	$\frac{12325}{2016}$	$-\frac{200125}{77616}$	$\frac{168625}{207072}$		
and $D_2^{(1)} =$	903168	129024	9072	2016	7/616	38/0/2		
	$\frac{1/37}{6272}$	$\frac{18021}{4480}$	$-\frac{724}{105}$	$\frac{219}{25}$	$-\frac{030}{245}$	$\frac{1901}{4480}$		
	567	4400 123823	103 44933	33 1029	243 6559	4480 119707		
	$\frac{307}{2048}$	30720	$-\frac{17733}{6480}$	$\frac{1027}{160}$	$-\frac{0.000}{2640}$	$\frac{117707}{276480}$		
	611	1264	19456	1984	54272	487		
	2205	315	2835	315	24255	945)		

$$\pi(\mu) = \det\left(\mu H_2^{(1)} - H_1^{(1)}\right)$$
$$= \left|\mu H_2^{(1)} - H_1^{(1)}\right| = 0.$$
We have,

(21)

π(μ)	$=\mu$	-1 -1 -1 -1 -1 -1	0 1 0 0 0	0 0 0 0 1 0 0 1 0 0 0 0	0 0 0 1 0	$\begin{bmatrix} 0\\0\\0\\0\\1 \end{bmatrix}$	$ \begin{bmatrix} 0\\0\\0\\0\\0\\0\\0\\0\\0\end{bmatrix} $	0 (0 0 (0 0 (0 0 (0 0 (0	0 0 0 0 0 0 0 0 0 0	0 0 0 0 0	$ \begin{array}{c} 1\\0\\0\\0\\0\\0\\0\end{array} \end{array} $	=	µ µ µ µ µ	0 (0 (0 (0 (0 (0 (0 (0 (0 0 0 0 0 <i>μ</i> 0 <i>μ</i> 0 0 0 0	0 0 0 0 <i>µ</i> 0	$ \begin{array}{c} 0\\ 0\\ 0\\ 0\\ 0\\ \mu \end{array} $	$\begin{bmatrix} 0\\0\\0\\0\\0\\0\\0\\0 \end{bmatrix}$	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	1 0 0 0 0 0 0		
$\Rightarrow \pi$ Using $\pi(\mu$	$f(\mu)$ (maple) = -	$= \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$	$-\mu$ $-\mu$ $-\mu$ $-\mu$ $-\mu$ $(\mu$	$\begin{array}{c} 0\\ \mu\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\$	0 0 µ 0 0 0 e, we	0 0 <i>µ</i> 0 0 obta	0 0 0 0 0 0 0 0 0		$ \begin{array}{c} 1 \\ 0 \\ 0 \\ 0 \\ t \end{array} \right) $																
\Rightarrow -	$-\mu^5(\mu$	u +	1) =	= 0												_									
$\Rightarrow \mu$ Imple	$\iota_1 = -$ mentii	-1, µ 1g th	$u_2 =$ ne sa	= 0, μ me ap	l ₃ = proa	0, μ ch, th	$t_4 = 0$ len (1), µ ₅ 7) is j	=0, presen	μ_6	=0 as).Sin	ce L	$ \iota_i < 1$	1, <i>i</i>	=1,	2,3,4	4,5,	6,0	(14)	is z	ero	stabl	e.	
(0	-1	0	0	0	0)	$\int y_z$	+1	(C	0	0	0	0	1	$\left(\cdot \right)$	$y_{z-\frac{15}{4}}$										
1	-1	0	0	0	0	<i>y</i> _z	+2	0	0	0	0	0	0		$y_{z-\frac{7}{2}}$										
0	-1	1	0	0	0	y_z	+3	_ 0	0	0	0	0	0		y _ 2										
0	-1	0	1	0	0	y_z	$+\frac{7}{2}$	- C	0	0	0	0	0		y_{z-3}										
$\begin{vmatrix} 0\\0 \end{vmatrix}$	-1 -1	0 0	0 0	1 0	$\begin{pmatrix} 0 \\ 1 \end{pmatrix}$	<i>y</i> _z .	$+\frac{15}{4}$		0	0 0	0 0) 0) 0	0 0		y_{z-1}										
	55	06	Ū	962		$\begin{pmatrix} y_z \\ -\frac{2}{2} \end{pmatrix}$	+4) 582	1	4464		_43	4176	5	ر <u>9</u>	<i>y_z</i> 97)			0	0	0	0	0	3841	_)
	34	65		220	5	9	<i>€</i> 45		2205		72	2765		6	30									13230	
	$-\frac{34}{02}$	<u>-61</u> 40		$-\frac{363}{500}$	<u>99</u> 20	93 75	507	_	$\frac{1864}{725}$	-	135	765			$\frac{16}{240}$		f_{z+1}		0	0	0	0	0	$\frac{127}{12220}$	$\int f_{z-\frac{15}{4}}$
	92 5'	40 51		500 696	50 7	89)00)63		3032		77	312		(540 529		f_{z+2}							15250	$\int \int f_{7-\frac{7}{2}}$
	$-\frac{1}{27}$	720		1764	0	75	560	_	2205	-	72	765		$-\frac{1}{2}$	520		f_{z+3}		0	0	0	0	0	1323	$\int_{-1}^{1} f$
+e	4′	71		2442	9	3	91	_	927		24	416		3	921		$f_{z+\frac{7}{2}}$	+e	0	0	0	0	0	181	$\int \int \frac{J}{f} dz = -3$
	240	540		6272	0	2	80		980		26	595		17	7920		$f_{z+\frac{15}{4}}$		Ū	U	U	U	U	125440	$\int \int \frac{f_{z-2}}{f_{z-1}}$
-	$-\frac{778}{4054}$	861		28750	<u>67</u>	$\frac{153}{110}$	6983	·	9359	-	$\frac{15}{14}$	526	-	$\frac{33}{147}$	5111		f_{z+4}		0	0	0	0	0	6419	$\frac{1}{2} \int \int \int \frac{f^{-1}}{f}$
	405:	504()	0	73728 28	80 6	110:	3920 372		128	J	14 81	185 192		14	/430 29		~ (I - 7)							442368)
	$-\frac{1}{10}$)5		$-\frac{20}{73}$	5	<u>-13</u> 9	45	-	120		66	515			210				0	0	0	0	0	$\frac{1}{13230}$	
		(0	-1	0	0	0	0)			(0	0	0	0	0	1)									
			1	-1	0	0	0	0			0	0	0	0	0	0									
where	LI ⁽²⁾		0	-1	1	0	0	0	$u^{(2)}$)	0	0	0	0	0	0									
where	112		0	-1	0	1	0	0	111	_	0	0	0	0	0	0									
			0	-1	0	0	1	0			0	0	0	0	0	0									
		(0	-1	0	0	0	1)			(0)	0	0	0	0	0)									

A Class of Seventh Order Hybrid Extended Block Adams Moulton Methods for Numerical Solutions of First Order Delay... Chibuisi et al

(5506	962	2582	14464	434176	997
	3465	2205	945	2205	72765	630
	3461	5659	9307	1864	159232	467
	9240	$-\frac{1}{5880}$	7560	735	72765	$-\frac{1}{840}$
	551	6967	8963	3032	77312	629
$1 D^{(2)}$	27720	17640	7560	$-\frac{1}{2205}$	72765	$-\frac{1}{2520}$
and $D_2^{\prime} =$	471	24429	391	927	2416	3921
	24640	62720	$\overline{280}$	$-\frac{1}{980}$	2695	$-\frac{1}{17920}$
	77861	287567	1536983	9359	1526	335111
-	4055040	737280	1105920	$-\frac{11520}{11520}$	1485	1474560
	2	286	1322	128	8192	29
l	$-\frac{105}{105}$	735	945	$-\frac{147}{147}$	6615	$-\frac{1}{210}$

$$\pi(\mu) = \det\left(\mu H_2^{(2)} - H_1^{(2)}\right)$$
$$= \left|\mu H_2^{(2)} - H_1^{(2)}\right| = 0.$$

We have,

ng Maple (18) softw5(1)

$$\pi(\mu) = \mu^{5}(\mu+1)$$
$$\Rightarrow \mu^{5}(\mu+1) = 0$$

 $\Rightarrow \mu_1 = -1, \mu_2 = 0, \mu_3 = 0, \mu_4 = 0, \mu_5 = 0, \mu_6 = 0.$ Since $|\mu_i| < 1, i = 1, 2, 3, 4, 5, 6$, (17) is zero stable. With the same procedure (20) can be presented as follows

JOPAS Vol.21 No. 1 2022

(22)

A Class of Seventh Order Hybrid Extended Block Adams Moulton Methods for Numerical Solutions of First Order Delay...

Chibuisi et al

+e	$\begin{bmatrix} -\frac{1160}{784} \\ -\frac{803}{220} \\ 2647 \\ 7056 \\ 1063 \\ 7056 \\ 3231 \\ 25088 \\ 38 \\ 2205 \end{bmatrix}$	$\frac{01}{0}$ $\frac{8}{05}$ $\frac{7}{0}$ $\frac{3}{0}$ $\frac{1}{30}$ $\frac{5}{5}$	$ \begin{array}{r} $	$-\frac{689}{560} \\ -\frac{307}{945} \\ -\frac{10333}{15120} \\ \frac{8021}{15120} \\ 9029 \\ 17920 \\ \frac{517}{945} \\ -\frac{517}{945} \\ -\frac{517}{500} \\$	$ \begin{array}{r} 1017\\1120\\-\frac{43}{630}\\-\frac{2561}{630}\\10080\\7169\\10080\\35703\\35840\\\frac{533}{630}\end{array} $	$-\frac{464}{735}$ $-\frac{256}{3969}$ $-\frac{3056}{19845}$ $-\frac{4336}{19845}$ $-\frac{22}{735}$ $-\frac{9472}{19845}$	$ \begin{array}{r} 153\\1120\\-\frac{1}{63}\\\hline 61\\2016\\353\\10080\\153\\\hline 7168\\\hline 61\\315\end{array}\right) $	$ \begin{pmatrix} f_{z+1} \\ f_{z+2} \\ f_{z+3} \\ f_{z+4} \\ f_{z+\frac{9}{2}} \\ f_{z+5} \end{pmatrix} + $	$e \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	$ \begin{array}{r} -\frac{1013}{3360} \\ 53 \\ 5670 \\ -\frac{311}{90720} \\ -\frac{151}{90720} \\ 151 \\ 107520 \\ -\frac{11}{5670} \\ \end{array} $	$\begin{pmatrix} f_{z-\frac{9}{2}} \\ f_{z-4} \\ f_{z-3} \\ f_{z-2} \\ f_{z-1} \\ f_{z} \end{pmatrix}$
wher	$H_2^{(3)}$	$= \begin{pmatrix} 0\\1\\0\\0\\0\\0\\0 \end{pmatrix}$	0 0 1 0 0 0	-1 0 0 -1 0 0 -1 0 0 -1 1 0 -1 0 1 -1 0 0	$\begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \end{pmatrix}, H_1^{(3)}$	$\mathbf{D}^{(0)} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{pmatrix}$	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	$ \begin{array}{ccc} 0 & 1 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{array} $							
and	$D_2^{(3)} =$	$ \begin{array}{c} -\frac{11}{78} \\ -\frac{8}{22} \\ \frac{26}{705} \\ \frac{10}{705} \\ \frac{32}{250} \\ \frac{3}{22} \\ \end{array} $	$ \begin{array}{r} 601 \\ \overline{340} \\ 08 \\ \overline{205} \\ 47 \\ \overline{560} \\ 63 \\ \overline{560} \\ 31 \\ \overline{880} \\ 8 \\ \overline{05} \\ \overline{55} \\ \hline $	$-\frac{45}{112} \\ -\frac{409}{315} \\ -\frac{485}{1008} \\ -\frac{361}{5040} \\ -\frac{225}{3584} \\ -\frac{5}{63}$	$-\frac{689}{560} \\ -\frac{307}{945} \\ -\frac{10331}{15120} \\ \frac{8021}{15120} \\ \frac{9029}{17920} \\ \frac{517}{945}$	$ \frac{1017}{1120} \\ -\frac{43}{630} \\ \frac{2561}{10080} \\ \frac{7169}{10080} \\ \frac{35703}{35840} \\ \frac{533}{630} $	$-\frac{464}{735}$ $\frac{256}{3969}$ $-\frac{3056}{19845}$ $-\frac{4336}{19845}$ $\frac{22}{735}$ $\frac{9472}{19845}$	$ \begin{array}{r} 153\\\hline 1120\\-1\\\hline 61\\\hline 2016\\\hline 353\\\hline 10080\\\hline 153\\\hline 7168\\\hline 61\\\hline 315\\\hline \end{array} $							
$\pi(\mu$	du = de	$et(\mu)$	$H_2^{(3)} - I$	$H_1^{(3)}$											(23)
We f $\pi(\mu$	$= \mu $ have, $\mu = \left \begin{array}{c} \mu \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$	$H_2^{(3)}$ -	$ \leftH_{1}^{(3)} \right \\ -1 0 \\ -1 0 \\ -1 1 \\ -1 0 \\ -1 0 $	$= 0.$ $\begin{pmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 1 & 0 \\ 0 & 1 \end{pmatrix} - \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	$\begin{vmatrix} 0 & 1 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ \end{vmatrix} = \begin{vmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{ccccccc} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ \mu & 0 & 0 \\ 0 & \mu & 0 \\ 0 & 0 & \mu \end{array}$	$ - \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} $	0 0 0 0 0 0	0 0 0 0 0	0 0 0 0 0 0 0 0 0 0	$ \begin{array}{cccc} 0 & 1 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ \end{array} $		()

$$\Rightarrow \pi(\mu) = \begin{pmatrix} 0 & 0 & -\mu & 0 & 0 & -1 \end{pmatrix} \\ \mu & 0 & -\mu & 0 & 0 & 0 \\ 0 & \mu & -\mu & 0 & 0 & 0 \\ 0 & 0 & -\mu & \mu & 0 & 0 \\ 0 & 0 & -\mu & 0 & \mu & 0 \\ 0 & 0 & -\mu & 0 & 0 & \mu \end{pmatrix}$$

Using Maple (18) software, we obtain

$$\pi(\mu) = -\mu^{5}(\mu+1)$$

$$\Rightarrow -\mu^{5}(\mu+1) = 0$$

$$\Rightarrow \mu_{1} = -1, \mu_{2} = 0, \mu_{3} = 0, \mu_{4} = 0, \mu_{5} = 0, \mu_{6} = 0.5$$

Convergence

The necessary and sufficient condition for a linear multistep method to be convergent is that it must be consistent and zero stable as stated by [19]. Since (14), (17) and (20) are both consistent and zero stable, therefore, the method is convergent.

Region of Absolute Stability

The regions of absolute stability of the numerical methods for DDEs are considered. We considered finding the P - and Q -stability by applying (14), (17) and (20) to the DDEs of this form

$$y'(t) = my(t) + ny(t-\tau), t \ge t_0$$

 $y(t) = a(t), t \le t_0$
(24)

where a(t) is the initial function, m, n are complex coefficients,

$$\tau = ze, z \in \mathbb{Z}^+$$
, *e* is the step size and $z = \frac{\tau}{e}, z$ is a positive

integer. Let $P_1 = em$ and $P_2 = en$, then

Making use of Maple 18 and MATLAB, the region of P - and Q - stability for (14), (17) and (20) are plotted and shown as Fig.1 to 6. The P -stability regions in Fig 1 to 3 lie inside the open-ended region while the Q-stability regions in Fig 4 to 6 lie inside the enclosed region as shown below

Fig.1.Region of P -stability (HEBAMM) in (14)

Chibuisi et al

Fig.4.Region of Q -stability (HEBAMM) in (14)

Fig.5.Region of Q -stability (HEBAMM) in (17)

Fig.6.Region of Q -stability (HEBAMM) in (20)

Numerical Implementations

In this section, some first-order delay differential equations shall be solved using (14), (17) and (20) of the discrete schemes that have been established. The delay termshall be evaluated using the expression developed by [8].

Example 1

y (t) =
$$-1000y(t) + y(t - (\ln(1000 - 1))),$$

 $0 \le t \le 3$
y (t) = $e^{-t}, t \le 0$
Exact solution y (t) = e^{-t} in [8]
Example 2

 $y'(t) = -1000y(t) + 997e^{-3}y(t-1) + (1000 - 997e^{-3}),$ $0 \le t \le 3$ $y(t) = 1 + e^{-3t}, t \le 0$

Exact solution $y(t) = 1 + e^{-3t}$ in [8]

Analysis and Comparison of Results

Here, the solutions of the schemes obtained in (14), (17) and (20), shall be investigated in solving the two examples above by estimating their absolute errors.

The results achieved after the application of the proposed method shall be compared to [9, 10, 13] to prove its superiority. The notations used in the table are stated below

HEABMM =Hybrid Extended Block Adams Moulton Methods for step numbers k = 2, 3 and 4.

RBBDFM = Reformulated Block Backward Differentiation Formulae Methods for step numbers k = 3 and 4 in [8].

TDBBDFM = Third Derivative Block Backward Differentiation Formulae Method for step numbers k = 2, 3 and 4 in [9].

CBBDFM = Conventional Block Backward Differentiation Formulae Method for step numbers k = 2 and 3 in [17].

MAXE = Maximum Error.

Table 4.1.1: Absolute Error of HEBAMM Method with
Integrated Off-grid Points of $k = 2, 3$ and 4 for Example 1

	8	, ,	- 1
Т	k = 2 Error	k = 3 Error	k = 4 Error
0.1	2.29627E-07	2.30E-08	2.30E-09
0.2	3.92953E-07	3.93E-08	3.93E-09
0.3	5.07362E-07	5.07E-08	5.07362E-09
0.4	5.86E-07	5.86E-08	5.85726E-09
0.5	6.37578E-08	6.38E-09	6.37578E-10
0.6	6.70E-08	6.70E-09	6.69971E-10
0.7	6.88E-08	6.88E-09	6.88128E-10
0.8	6.96E-08	6.96E-09	6.9591E-10
0.9	6.96E-08	6.96E-09	6.96174E-10
1	6.91E-08	6.91E-09	6.91031E-10
1.1	6.82E-09	6.82E-10	6.82E-11
1.2	6.07E-09	6.70E-10	6.70353E-11
1.3	6.57E-09	6.57E-10	6.56815E-11
1.4	6.42E-09	6.42E-10	6.42051E-11
1.5	6.27E-09	6.27E-10	6.26519E-11
1.6	6.11E-09	6.11E-10	6.10554E-11
1.7	5.94E-09	5.94E-10	5.94399E-11
1.8	5.78E-10	5.78E-11	5.78232E-12
1.9	5.62E-10	5.62E-11	5.62179E-12
2	5.46E-10	5.46E-11	5.46333E-12
2.1	5.31E-10	5.31E-11	5.30755E-12
2.2	5.15E-10	5.15E-11	5.15491E-12
2.3	5.01E-10	5.01E-12	5.00568E-13
2.4	4.86E-10	4.86E-12	4.86006E-13
2.5	4.72E-10	4.72E-12	4.71813E-13
2.6	4.58E-11	4.58E-12	4.57996E-13
2.7	4.45E-11	4.45E-13	4.44555E-14
2.8	4.31E-11	4.31E-13	4.31486E-14
2.9	4.19E-11	4.19E-13	4.18785E-14
3	4.06E-11	4.06E-13	4.06446E-14

Table 1: Absolute Error of HEBAMM Method with Integrated Off-grid Points of k = 2, 3 and 4 for Example 2

on gilu	2,2	and for Example	-
t	k = 2 Error	k = 3 Error	k = 4 Error
0.1	8.52E-08	8.52124E-09	8.52124E-10
0.2	1.61468E-08	1.61468E-09	1.61468E-10
0.3	2.29627E-08	2.29627E-09	2.29627E-10
0.4	2.90469E-08	2.90469E-09	2.90E-10
0.5	3.44699E-09	3.44699E-10	3.45E-11
0.6	3.92953E-09	3.92953E-10	3.92953E-11
0.7	4.35809E-09	4.35809E-10	4.35809E-11
0.8	4.73787E-09	4.73787E-10	4.74E-11
0.9	5.07362E-09	5.07362E-10	5.07362E-11
1	5.36958E-09	5.36958E-10	5.36958E-11
1.1	5.62963E-10	5.62963E-11	5.62963E-12
1.2	5.86E-10	5.85726E-11	5.85726E-12
1.3	6.06E-10	6.06E-11	6.06E-12
1.4	6.23E-10	6.22761E-11	6.22761E-12
1.5	6.37578E-10	6.37578E-11	6.37578E-12
1.6	6.50E-10	6.50247E-11	6.50247E-12
1.7	6.60981E-10	6.60981E-11	6.60981E-12
1.8	6.70E-11	6.69971E-12	6.69971E-13
1.9	6.77391E-11	6.77391E-12	6.77391E-13
2	6.83395E-11	6.83395E-12	6.83395E-13
2.1	6.88128E-11	6.88128E-12	6.88128E-13
2.2	6.91716E-11	6.91716E-12	6.91716E-13
2.3	6.94E-12	6.94275E-13	6.94275E-14
2.4	6.96E-12	6.9591E-13	6.9591E-14
2.5	6.97E-12	6.96716E-13	6.97E-14
2.6	6.96778E-12	6.96778E-13	6.97E-14
2.7	6.96E-13	6.96174E-14	6.96E-15
2.8	6.95E-13	6.95E-14	6.95E-15
2.9	6.93E-14	6.93E-15	6.9324E-16
3	6.91E-14	6.91E-15	6.91E-16

Table 2: Comparison between the Maximum Absolute Errors of

Chibuisi et al

HEBAMM k = 2, 3 and 4 with [8, 9,13] for constant step size d = 0.01 Using Example 1

- 0.01 Using Example 1.	
COMPUTATIONAL	COMPARED MAXEs WITH [8, 9,
METHOD	13]
HEBAMM MAXE for $k = 2$	4.58E-11
HEBAMM MAXE for $k = 3$	4.45E-13
HEBAMM MAXE for $k = 4$	4.45E-14
RBBDFMAXE for $k = 3$	4.88E-06
RBBDF MAXE for $k = 4$	4.38E-06
TDBBDFM MAXE for $k = 2$	3.44E-03
TDBBDFM MAXE for $k = 3$	6.32E-03
TDBBDFM MAXE for $k = 4$	9.64E-03
CBBDF MAXE for $k = 2$	8.96E-05
CBBDF MAXE for $k = 3$	9.39E-06

CPU time of HEAMM for k = 2 is 0.242s, k = 3 is 0.223s and k = 4 is 0.208s

Table 3: Compariso	n between the N	Maximum Abs	solute Errors of
EBAMM $k = 2, 3$	and 4 with [8, 9	9,13] for const	ant step size d =

0.01 Using Example 2.

COMPUTATIONAL	COMPARED MAXEs WITH [8, 9,
METHOD	13]
HEBAMM MAXE for $k = 2$	6.93E-14
HEBAMM MAXE for $k = 3$	6.93E-15
HEBAMM MAXE for $k = 4$	6.93E-16
RBBDFMAXE for $k = 3$	1.54E-09
RBBDF MAXE for $k = 4$	1.04E-09
TDBBDFM MAXE for $k = 2$	3.44E-03
TDBBDFM MAXE for $k = 3$	6.29E-03
TDBBDFM MAXE for $k = 4$	9.64E-03
CBBDF MAXE for $k = 2$	6.32E-06
CBBDF MAXE for $k = 3$	5.10E-07

CPU time of HEAMM for k = 2 is 0.240s, k = 3 is 0.220s and k = 4 is 0.205s

Conclusions

The discrete schemes of (14), (17) and (20), were developed and were examined to be convergent, P- and Q-stable. Also, it was noticed in Tables 1,2, 3 and .4 that the HEBAMM for k = 4 scheme performed better than the HEBAMM schemes for step numbers k = 3 and k = 2 when compared with other existing methods. It is recommended that the HEBAMM schemes of higher step numbers perform better than the HEBAMM schemes of lower step numbers and also the step numbers of k = 2, 3 and k = 4 are suitable for solving DDEs. Further studies should be carried-out for step numbers k = 5, 6, 7... on the derivations of DDEs without the application interpolation formula in computing the delay term.

References

- Evans, D. J., Raslan, K. R. (2005). The adomain decomposition method for solving delay differential equations. International Journal of Computer Mathematics., 82, 49-54.
- [2]- Seong, H.Y, Majid, Z.A. (2015). Solving second order delay differential equations using direct two-point block method. Ain Shams Engineering Journal 8(2),59-66.
- [3]- Tziperman, E., Stone, L., Cane, M. A., &Jarosh, H. (1994). El Nino chaos: Overlapping of resonances between the seasonal cycle and the Pacific Ocean-atmosphere oscillator. Science, 264, 72-74.
- [4]- Bocharov, G. A., Marchuk, G. I., &Romanyukha, A.A. (1996). Numerical solution by LMMs of stiff Delay Differential systems modeling an Immune Response.*Numer. Math.*, 73, 131-148.
- [5]- Bellman, R and Cooke, K. L. (1963). Differential equations. Academic press, New York.
- [6]- Oberle, H.J., & Pesh, H.J. (1981). Numerical treatment of delay differential equations by Hermiteinterpolation. *Numer. Math*, 37, 235–255.
- [7]- Majid, Z.A., Radzi, H.M.,& Ismail, F. (2012).Solving delay differential equations by the five-point one-step block method using Neville's interpolation. International Journal of Computer

Mathematics.http://dx.doi.org/10.1080/00207160.2012. 754015.

- [8]- Sirisena, U. W., &Yakubu S. Y. (2019). Solving delay differential equation using reformulated backward differentiation methods. Journal of Advances in Mathematics and Computer Science, 32(2), 1-15.
- [9]- Osu, B.O., Chibuisi, C., Okwuchukwu, N.N., Olunkwa, C., Okore, N.A (2020).Implementation of third derivative block backward differentiation formulae for solving first order delay differential equations without interpolation techniques. Asian journal of Mathematics and Computer Research (AJOMCOR) 27(4),1-26.
- [10]- Chibuisi, C., Osu, B.O., Ihedioha, S. A., Olunkwa, C., Okwuchukwu, N.N., Okore, N.A.(2020). The construction of extended second derivative block backward differentiation formulae for numerical solutions of first order delay differential equations. Journal of Multidisciplinary Engineering Science Studies (JMESS) 6(12), 3620-3631.
- [11]- Chibuisi, C., Osu, B.O., Amaraihu, S., Okore, N.A. (2020). Solving first order delay differential equations using multiple off-grid hybrids block simpson's methods. FUW Trends in Science and Technology Journal 5(3), 856-870.
- [12]- C. Chibuisi, B. O. Osu, S. O. Edeki, G..O. Akinlabi, C. Olunkwa and O. P. Ogundile (2022) .Implementation of Twostep Hybrid Block Adams Moulton Solution Methods for First Order Delay Differential Equations. Journal of Physics: Conference Series 2199 (2022) 012017. IOP Publishing: DOI:10.1088/1742-6596/2199/1/012017. 1-13.
- [13]- C. Chibuisi, B. O. Osu, S. A. Ihedioha, C. Olunkwa, E. E. Akpanibah, P. U. Uzoma .(2021).A class of sixth order hybrid extended block backward differentiation formulae for computational solutions of first order delay differential equations. Journal of Mathematics and Computer Sciences (JMS). 11(3), 3496-3534.
- [14]- C. Chibuisi, B. O. Osu, S. A. Ihedioha, C. Olunkwa, I. H. Onyekachukwu (2021) "The Introduction of Extrapolated Block Adams Moulton Methods for Solving First-order Delay Differential Equations. *Asian Journal of Mathematical Sciences (AJMS)*, 5(1), 39-48. (www.ajms.com).
- [15]- C. Chibuisi , B.O. Osu , and O.U. Solomon (2021). The Approximate Solution of First Order Delay Differential Equations Using Extended Third Derivative Block Backward Differentiation Formulae. Transactions of the Nigerian Association of Mathematical Physics ©Trans. of NAMP ,Volume 16, (July–Sept. 2021 Issue), 221–234.
- [16]- Ballen, A and Zennaro M. (1985). Numerical Solution of Delay Differential Equations by Uniform Corrections to an Implicit Runge-Kutta Method. *Numerische Mathematik*. 47(2), 301-316.
- [17]- Onumanyi P, Awoyemi D.O, Jator S.N, Sirisena U.W. New linear multistep methods with continuous coefficients for first order initial value problems. Journal of Nigerian Mathematical Society. 1994;13: 37-5
- [18]- J. D., Lambert (1973).Computational methods in ordinary differential equations, New York, USA. John Willey and Sons Inc.
- [19]- Dahlquist, G (1956). Convergence and stability in the numerical integration of Ordinary Differential Equations. Math, Scand, 4, 33-53.