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 A B S T R A C T 

We introduce results for the second part of our calculations for the action of a single atom and one 

photon micromaser when atoms are coherently injected into a microwave cavity, and for the case 

when the atomic probabilities  |α|≠0 and |β|≠0. During the presence of the atom inside the cavity 

the field couples to a heat bath at temperature T. The results of this second part and those of the first 

part of our work give a complete information for the behaviour of the micromaser field for the two 

cases of injected atoms namely|α|=1, |β|=0 and  |α|≠0 , |β|≠0 . We have found that the evolution 

of the field after a sufficient number of atoms had passed the cavity shows a steady state when the 

repetition time T_pis much greater than the interaction time t_int. We also found that the trapping 

state at n = 3 plays an important role in the early dynamics of the field within the cavity. Finally, we 

found that the field evolution towards a mixed state and not to a pure state. This prevention of purity 

because of: the presence of decay of the field inside the cavity, the presence of the trapping state at 

n = 3 (centered between the two trapping states at photon number n = 0 and at a photon number n = 

15) prevents the field from developing towards a pure state, and finally the presence of the black 

body radiation field initially in the cavity at temperature T. 

Acronyms  

Maser:  an acronym for microwave amplification by stimulated emission of   radiation, 

JCM: an acronym for Jaynes Cummings Model. 

  2الحسابات المضبوطة لميكروميزر الفوتون الواحد بمدخلات متماسكة

 علي م.  كريميد

 ليبيا ،قسم الفيزياء، كلية العلوم طرابلس، جامعة طرابلس

 

 الكلمات المفتاحية:  

 التراكب المتماسك

 حالات الاصطياد

 حالة الاستقرار

 زمن التفاعل

 زمن التكرار 

 عدد الفوتون 

 ميكروميزر

 الملخص 

نقدم نتائج الجزء الثاني للحسابات الخاصة بأداء ميكروميزر الذرة المفردة والفوتون الواحد عندما تحقن الذرات 

بشكل متماسك وفي الحالة التي تكون فيها الاحتمالات الذرية وحالاتها السفلية   الى داخل فجوة ميكروويفية

. عندما تكون الذرة داخل الفجوة يستمر الاقتران بالحمام الحراري عند درجة حرارة β|≠0و | α|≠0والعلوية |

Tالى نتائج الجزء الأول من بحثنا تعطي معلومات كافية ووافية عن تصرفات  . نتائج هذا الجزء الثاني  إضافة

  α|=1, |β|=0المجال الميكوميزري في جميع حالات الذرات المقذوفة داخل الفجوة وفي احتمالين إثنين الأول عندما |

ف من الذرات يظهر .  لقد وجدنا أن تطور المجال بالفجوة  بعد عبور عدد كا α|≠0  , |β|≠0عندما  | انيوالث

بين  t_intأكبر بكثير من زمن التفاعل  T_pحالة استقرار بالمجال وذلك عندما يكون الزمن بين الذرات المقذوفة 

ا   n = 3الذرة والمجال داخل الفجوة. وجدنا أيضا أن الحالة الأولى للاصطياد )الحالة الفخية( عند                   تلعب دور ا مهم 

ال داخل الفجوة. وأخيرا وجدنا أن تطور المجال في الغالب نحو حالة مختلطة وليس في الديناميكيات المبكرة للمج

نحو حالة نقية. وهذا المنع من الوصول للحالة النقية  بسبب  الآتي:  اضمحلال المجال داخل الفجوة ، ووجود 

الاصطياد عند العدد  )المتمركزة بين الحالتين الفخيتين أي حالتي n = 3حالة الاصطياد )الحالة الفخية( عند 
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(  تمنع المجال من التطور نحو حالة نقية، وأخيرا  وجود مجال إشعاع n = 15والعدد الفوتوني  n = 0الفوتوني 

 Tالجسم الأسود ابتدائيا في الفجوة الميكروويفيةعند درجة الحرارة .

Introduction 

The quantum theory of the micromaser was first developed by 

P.Filipowicz et. al.1986 [1]. This theory is a direct application of the 

quantum theory of the laser to a problem of two level Rydberg atoms 

interacting with a single mode radiation field in a microwave cavity 

[2-8]. In most studies of the one photon micromaser theory the 

injection of atoms assumes to have Poisson statistics and all atoms 

always entered the cavity in their excited (upper) states. 

     This device, the micromaser, exhibits highly non-classical 

features such as a sub-Poisson statistics for the field, quantum 

revivals and trapping states. The experimental realization of a 

micromaser has been made possible because of the enormous 

progress in both the construction of superconducting cavities and the 

progress in laser technology which have been offered a high 

excitation of Rydberg atoms (two-level atoms) that can be injected 

into a superconducting cavity of high enough quality factor Q to 

made the observation of these features of the micromaser are 

experimentally possible and realized [9-12]. 

In this second part of our work (following our first part 

A.M.Kremid,2019 [13]) we assume that the atoms are pumped into 

the cavity in a coherent superposition of their upper and lower atomic 

states , the cavity is at finite temperature T, and the coupling with a 

heat bath is on even when the cavity is empty of atoms. Our concern 

will be about the effects of the black body radiation in the cavity (as 

an initial thermal field 𝑛𝑡ℎ) and the effects of the damping rate on the 

evolution of the micromaser cavity field coupled to a heat bath at 

temperature T. for the measurement of the purity of the state reached 

by the cavity field we employ the entropy 𝑆 = 𝑇𝑟  𝜌 ln 𝜌   

The objectives of our present study are getting results when the 

injected atoms are pumped in their upper and lower states with 

probabilities |α|≠0 and |β|≠0 (with a condition |𝛼|2 + |𝛽|2 =
1) instead of the case of our first part where |α|=1 and |β|=0. 

This work is organized as following: first we will give the main 

equations of our model which are given in detail and calculated at our 

first part of this work A.M.Kremid, 2019[13], (we will repeat some 

of these equations and there solutions here for the benefit of readers), 

following that the solutions to those equations of motion will be 

introduced, and the numerical results and their discussions are given, 

then the conclusion to this work is given and at the last the references 

are introduced.  

 

 The Model 
    The original micromaser consists of two level Rydberg atomic 

beam pumped into a high-Q microwave cavity containing a single 

mode radiation field such that only one atom at any given time is 

present inside the cavity and the atom flies through the cavity in a 

very short time compared to the time between any two successive 

atoms in the atomic beam. It has been assumed in the original theory, 

that no coupling between the single mode and the heat bath during 

the interaction time 𝑡𝑖𝑛𝑡  so when the atom is inside the cavity the 

problem is well described by the Jaynes- Cummings Hamiltonian 

only and when the atom exits the cavity the coupling between the 

heat bath and the single mode is switched on. 

In this work we introduce a different approach to this problem where 

at any point in time of the motion we solve for the total density 

operator 𝜌 for the atom plus the field, namely, the coupling between 

the cavity field and the heat bath is switched on throughout the whole 

motion and not only when the cavity is empty of atoms. The damping 

process is governed by the master equation of the damped harmonic 

oscillator given by equation, G.S.Agarwal, 1974  [14] 

 

�̇�(𝑡) = −𝜅(𝑛𝑡ℎ + 1)[𝑎
†𝑎𝜌 + 𝜌𝑎†𝑎 + 𝑎𝜌𝑎†] −

                                 𝜅𝑛𝑡ℎ[𝑎𝑎
†𝜌 + 𝜌𝑎𝑎† +  𝑎𝜌𝑎†],                           (1) 

where 𝜌  is a density matrix operator,  𝜅 =  
1

2
𝜔𝑄−1  is the cavity 

damping constant with Q is the cavity quality factor. The cavity 

damping time is 𝑇𝑐 = (2𝜅)
−1 , 𝑎†  and  a are the creation and 

annihilation operators for the cavity field respectively and 𝑛𝑡ℎ is the 

average thermal photon number in the cavity 

We illustrate the case when atoms enter the cavity in a coherent 

superposition state, and we use the Jaynes Cummings model (JCM) 

[15] as a fundamental model where the total Hamiltonian of the 

system (atom + field) is given by E.T.Jaynes et. al. 1963 [15] 

𝐻 = ħ𝜔𝑎†𝑎 + ħ𝜔0𝜎𝑧 + ħ𝑔(𝑎
†𝜎− + 𝑎𝜎+)                      (2)                                                                                  

For the case of the single cavity mode is coupled to the heat bath at 

temperature T>0, and the atom is coupled to this bath only via this 

cavity mode, the total density operator 𝜌 for atom plus field satisfies 

the master equation for the high Q-cavity which is given by 

�̇�(𝑡) = −𝑖[𝐻 − 𝜌] − 𝜅(𝑛𝑡ℎ + 1)[𝑎
†𝑎𝜌(𝑡) − 2 𝑎𝜌(𝑡)𝑎† +

              𝜌(𝑡)𝑎†𝑎] − 𝜅𝑛𝑡ℎ[𝑎𝑎
† 𝜌(𝑡) − 2𝑎†𝜌(𝑡)𝑎 + 𝜌(𝑡)𝑎𝑎†]           

(3)     Where H is the J- C Hamiltonian eqn.(2) when and only when 

there is a single atom in the cavity. On the other hand when there is 

no atom in the cavity the above differential equation becomes: 

 

�̇�(𝑡) = −𝑖[𝐻0 − 𝜌]  − 𝜅(𝑛𝑡ℎ + 1)[𝑎
†𝑎𝜌(𝑡) − 2 𝑎𝜌(𝑡)𝑎† +

              𝜌(𝑡)𝑎†𝑎] − 𝜅𝑛𝑡ℎ[𝑎𝑎
† 𝜌(𝑡) − 2𝑎†𝜌(𝑡)𝑎 + 𝜌(𝑡)𝑎𝑎†]           

(4)       

where  𝐻0 = ħ𝜔𝑎
†𝑎 , is the single mode cavity field Hamiltonian. 

      Since the two–level atom is in a coherent stat i.e. 

     |𝜓 >=  𝛼 |𝑒 > +𝛽|𝑔 >                                                                  (5) 

   with 

  |𝛼|2 + |𝛽|2 = 1                                                                               (6) 

Since the coupling between the atom with upper state |𝑒 > and 

lower state |𝑔 > and the single mode radiation field is present during 

the motion, the space is spanned by states |𝑔 > |0 > , |𝑒 > |𝑛 > , 

|𝑔 > |𝑛 + 1 >    for n=0,1,2,….. here |0> is a vacuum state. In this 

case we should solve for the four coupled elements:  𝜌𝑒,𝑛;𝑒,𝑚 ,  

𝜌𝑔,𝑛+1;𝑔,𝑚+1  , 𝜌𝑒,𝑛;𝑔,𝑚+1  , 𝜌𝑔,𝑛+1;𝑒,𝑚   

The differential equations for these coupled elements can be 

written in matrix form as: 
 �̇�(𝑘)(𝑛, 𝑡) = �̅�(𝑘)(𝑛) 𝜓(𝑘)(𝑛, 𝑡) + 𝐵(𝑘)(𝑛) 𝜓(𝑘)(𝑛 + 1, 𝑡) +

                                     𝐶(𝑘)(𝑛) 𝜓(𝑘)(𝑛 − 1, 𝑡)                                    (7) 

In which the  𝜓(𝑘) ≡ 𝜓(𝑛,𝑚) and 𝑘 = 𝑚 − 𝑛 represents the degree 

of off-diagonality. 

The 4- column vectors 𝜓(𝑘)(𝑛, 𝑡) are 

𝜓(𝑘)(𝑛, 𝑡) = (

 𝜌𝑒,𝑛−1;𝑒,𝑚−1(𝑡)  
𝜌𝑔,𝑛;𝑔,𝑚(𝑡)  
𝜌𝑒,𝑛−1;𝑔,𝑚(𝑡)  
𝜌𝑔,𝑛;𝑔,𝑚−1(𝑡)  

),                                                 (8) 

and �̅�(𝑘)(𝑛) ,  𝐵(𝑘)(𝑛) , 𝐶(𝑘)(𝑛) are 4x4 matrices. 

For the complete calculations and manipulations of differential 

equations and adoption of some useful techniques for obtaining 

solution we refer to our first part, namely  A.M, Kremid. 2019 [13]. 

 

The Solution: 

Now we solve the equations of motion for the density matrix 𝜌 which 

are expressed in the matrix form eq.(7). 

First of all we assume that all atoms are prepared in the coherent 

superposition of their upper and lower states namely: 

 𝜌𝑎𝑡𝑜𝑚 = |𝜓 >< 𝜓|     
  𝜌𝑎𝑡𝑜𝑚 = |𝛼|

2𝜌𝑒,𝑒 + 𝛼
∗𝛽𝜌𝑔,𝑒 + 𝛼𝛽

∗𝜌𝑒,𝑔 + |𝛽|
2𝜌𝑔,𝑔              (9)    

where eq.(5) has been used and the single mode cavity radiation field 

is initially in a diagonal thermal state 

 𝜌𝑛,𝑚 = 𝛿𝑛,𝑚
(𝑛𝑡ℎ)

𝑛

(𝑛𝑡ℎ+1)
𝑛+1                                    (10)    

For n=0, m=0,  we put 

 𝜓(0)(0, 𝑡) = (

0
𝜌𝑔,0;𝑔,0  (𝑡)

0
0

)                                                   (11)        

     

At t=0 and for (n=0, m=0) 
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𝜓(0)(0,0) = (

0

|𝛽|2
1

(𝑛𝑡ℎ+1)

0
0

),                                                     (12)                   

and for (n>0 , m>0), 

𝜓(𝑘)(𝑛, 0) =

(

 
 

|𝛼|2
(𝑛𝑡ℎ)

𝑛−1

(𝑛𝑡ℎ+1)
𝑛

|𝛽|2
(𝑛𝑡ℎ)

𝑛

(𝑛𝑡ℎ+1)
𝑛+1

0
0 )

 
 

                                      (13)  

After some manipulations  we reach to an equation for the density 

matrix 𝜌  for the micromaser cavity field in photon number basis, the 

density matrix elements of the master equation for damping are, 

�̇�(𝑘)(𝑛, 𝑡) = 2𝜅(𝑛𝑡ℎ + 1) [√(𝑛 + 1)(𝑛 + 𝑘 + 1)𝜌
(𝑘)(𝑛 + 1, 𝑡) +

                      (𝑛 +
𝑘

2
)𝜌(𝑘)(𝑛, 𝑡)] + 2𝜅𝑛𝑡ℎ [√(𝑛)(𝑛 + 𝑘)𝜌

(𝑘)(𝑛 −

                      1, 𝑡) − (𝑛 + 1 +
𝑘

2
) 𝜌(𝑘)(𝑛, 𝑡)]                                 (14) 

The solution to the total differential equation of the field density 

matrix can be expressed as, P.Bogar, et. al., (1995) [16]:  

𝜌(𝑘)(𝑛, 𝑡) =

𝑒𝑥𝑝(−𝜅𝑘𝑡)∑ ∑ 𝐶𝑛,𝑗,𝑖
(𝑘) 𝐴𝑗

𝐵𝑗+𝑘+1
∞
𝑗=𝑛−𝑖 (

𝐴′

𝑨
)
𝑛−𝑖

(
𝐵′

𝑩
)
𝑖

𝜌(𝑘)(𝑛, 0)𝑛
𝑖=0     (15)           

where  

𝐶𝑛,𝑗,𝑖
(𝑘)

= (−1)𝑖 (
𝑖 + 𝑗 + 𝑘

𝑖
) (

𝑗
𝑛 − 𝑖

) (
(
𝑗+𝑘
𝑛+𝑘

)

(
𝑗
𝑛
)
)

1

2

,   

𝐴 = (𝑛𝑡ℎ + 1)(1 − exp (−2𝜅𝑡)),                                                                                  

𝐵 = 1 + 𝑛𝑡ℎ(1 − exp (−2𝜅𝑡)), 
𝐴′ = exp(−2𝜅𝑡) − 𝑛𝑡ℎ(1 − exp (−2𝜅𝑡))   and 

𝐵′ = −𝑛𝑡ℎ(1 − exp(−2𝜅𝑡)).                                                                                                                                                                         

After obtaining all 𝜓(𝑘)(𝑛, 𝑡) 's (n=0,1,2,….) we calculate the 

reduced density matrix elements of the cavity field by tracing over 

the atomic variables by using the relation  

𝜌𝑓
(𝑘)(𝑛) =  𝑇𝑟𝑎𝑡𝑜𝑚𝜌

(𝑘)(𝑛)                                                       (16)  

The diagonal elements of the density matrix 𝜌(0)(𝑛) can be used for 

the calculation of the following physical observables  

1- The average photon number of the micromaser field  

< 𝑛 >= 𝑇𝑟(𝑛𝜌(0)(𝑛))                                                    (17)                                                                                

2- The normalized variance in the photon number 

𝑣 = √
<𝑛2>−<𝑛>2

<𝑛>
                                                                    (18) 

 3-The entropy of the micromaser field  

       𝑆 = − 𝑇𝑟[𝜌 ln(𝜌)] 
   𝑆 = −∑ 𝜌𝑛𝑛

∞
𝑛=0 ln 𝜌𝑛𝑛                                    (19)

             

This equation is for the case when 𝜌 is diagonal that is when |𝛼|2 =
1  only but when |𝛼|2 ≠ 1 the density matrix becomes 𝜌𝑛𝑚 instead 

of 𝜌𝑛𝑛 namely 

𝑆 = −∑ 𝜌𝑛𝑚𝑛,𝑚 ln 𝜌𝑛𝑚                    (20)

  

 

 

Numerical Results and Discussion 

         We will now give numerical results for the case when .|𝛼| ≠ 0 

and |𝛽| ≠ 0, that is when the atoms are pumped into the cavity in a 

coherent superposition of their upper and lower states. The 

calculations we are working with will be in a two dimensional space, 

namely the computational work needs a dealing with every 

𝜌𝑛,𝑚where n and m are running from 0 to 40.  

For the quality factor of the cavity 𝑄 = 5 × 1010 ,   𝑔𝑡𝑖𝑛𝑡 = 1.54 ,
𝑔𝑇𝑝 = 308,   and the temperature of the cavity is T=0.5 K in which 

the initial average photon number inside the cavity is 𝑛𝑡ℎ = 0.15 and 

with regular inputs, the cavity field evolves towards a steady state as  

shown in Fig.(1). Initially the trapping state at n=m=3 for 𝑔𝑡𝑖𝑛𝑡 =
1.57   appears to play a significant role in the dynamics. The average 

photon number in the cavity field rapidly increases from black body 

at N=0  to reach <n> =2.31 at N=11 then rises steadily to higher 

values as N increases. 

 

 

 
Fig.(1) The average photon number  <n> in  the cavity field  as a 

function of the number of atoms N  for the case of regular inputs  

|𝛼|2=0.8 , 𝑄 = 5 × 1010, 𝑔𝑡𝑖𝑛𝑡 = 1.54, 𝑔𝑇𝑝 = 308 and the initial 

average thermal photon number in the cavity is 𝑛𝑡ℎ = 0.15 

 

The corresponding variance v Fig.(2), drops from black body  to  v = 

0.558 at N=11. Past this point v increases steadily to v=1.95 at 

N=169 then it decreases slowly afterwards. 

 
Fig.(2) The variance in the photon number as a function of the 

number of atoms N  for the case of regular inputs , the other  

parameters are those of Fig.(1) 

 

 For this set of parameters the field evolves towards a mixed state 

rather than a pure state as shown by the entropy (increasing S) in 

Fig.(3). 

 
Fig.(3) The entropy S  of the cavity field as a function of the number 

of atoms N  for the case of regular inputs , the other  parameters are 

those of Fig.(1) 

  

 Moreover, the probability that the atom exits the cavity in  its upper 

state  𝑆𝑧 ≡ 𝑃|𝑒>  is very small for 1 ≤ 𝑁 ≤ 4  as shown in Fig.(4), 

but very soon it becomes large and reaches its maximum at N=20 and 

beyond this point it decreases slowly as N increases 
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Fig.(4) The atomic probability of upper state  𝑆𝑧 ≡ 𝑃|𝑒>   as a 

function of the number of atoms N for the case of regular inputs, the 

other parameters are those of Fig.(1) 

  

 In Fig.(5) we show the moduli in the density matrix 𝜌𝑛,𝑚at the end 

of the 50th atom. It is evident from these figures that, the cavity field 

evolves towards a steady state regime rather than to a pure state or 

trapping state regime. In this steady state regime the down-going 

trapping state at n=m=0 is still effective even at this large number of 

atoms (but its probability is expected to be finished at very large N).  

 
Fig.(5) The Moduli of the density matrix elements after 50 atoms 

have passed the cavity the parameters are those of Fig.(1) 

 

However, the trapping state at n=m=3 (the first up-going trapping 

state ) apparently plays an important role for the evolution of the 

micromaser and since this trapping state lies in between a down 

trapping state at n=m=0 and an upper trapping state at n=m=15, then 

the situation becomes complicated and consequently no evolution 

towards a pure state J.J. Slosser, et. al., (1990) [17].  Later (after a 

large number of atoms have passed through the cavity) the trapping 

state at n=m=15 becomes important for the micromaser evolution as 

well (its probability increases). Therefore, up to this, (still limited), 

number of atoms, the evolution of the micromaser is apparently 

towards a steady state equilibrium where on one hand the trapping 

states at n=m=0 and at n=m=3 are slowly reduced. On the other 

hand, the trapping state at n=m=15 is still growing by increasing N. 

No other trapping states are expected to emerge and so finally a 

steady state regime will be reached. 

The presence of black body radiation initially in the cavity prevents 

the evolution towards a pure state because this radiation destroys the 

coherence induced in the cavity field. Furthermore there is another 

factor prevents the evolution of the cavity field towards a pure state 

which is the cavity field damping, L. Ladron et. al. (1997)[18], and 

since the coupling between the cavity field and the heat bath is 

switched on for all times then there is no chance at all for the 

evolution of the field to be towards a pure state. 

In future works we will try to eliminate those factors which prevent 

the evolution to a pure state to reach a trapping states regime rather 

than a steady state regime. 

 

Conclusion 

We conclude our work for the action of the one atom micromaser 

when the atoms inject coherently into a microwave cavity that 

coupled with a heat bath even when the cavity does not empty of 

atoms. The evolution of the cavity field shows a steady state 

equilibrium when the condition that the repetition time 𝑇𝑝 is much 

grater than the interaction time  𝑡𝑖𝑛𝑡. In this steady state regime the 

cavity field reaches a steady state after a sufficient number of atoms 

have passed through the cavity. Evidently the only responsible 

parameter for the qualitative changes is the repetition time 𝑇𝑝 namely 

when 𝑇𝑝 ≫ 𝑡𝑖𝑛𝑡   then the micromaser field evolution is towards a 

steady state equilibrium. We will investigate in another future work 

the case when the repetition time 𝑇𝑝 is reduced to the order of 

interaction time  𝑡𝑖𝑛𝑡  where we expect the evolution  of the cavity 

field is controlled by the trapping state dynamics and not by steady 

state one. 

Moreover the first going-up trapping state at n=3 plays a significant 

role in the early dynamics of the micromaser field for this type of 

injection of atoms i.e the coherent superposition case but the 

evolution to a pure state is failed or prevented by some factors like 

the presence of a cavity field damping , the presence of the trapping 

state at n=3 in between the n=0 trapping state and trapping state at 

n=15 prevents the field from evolving towards a pure state and finally 

the presence of black-body radiation field initially in the cavity 

destroys coherence induced in the field and no pure state reached by 

the field. 
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