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 A B S T R A C T 

In this work, the predator-prey model with the ratio-dependent functional response is considered,  where 

the randomness enters into the equations only through their initial conditions. It is done by assuming 
normal distribution as the initial states of the model to treat the randomness. The passage from the 
deterministic situation to the random one for these equations is also the most transparent. In addition, a 
numerical simulation will be offered using the modified approach founded on the fifth-order improved 
Runge-Kutta method. Furthermore, the stability of the equilibrium points, and certain statistical 
properties related to the random behaviour of predators and their prey, will be analyzed and discussed. 
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Introduction 

In statistics, uncertainty has been around for a long time. On the other 
hand, scientists and engineers have only recently begun carefully 
considering the consequences of stochastic in their various fields. 

They have realized that most real-world phenomena and physical tests 
cannot be adequately explained, partially because the complete 
information is not always accessible. Different types of uncertainty 
can be addressed in differential equations [1]. A random input phrase 
or source term distinguishes the first instance. The second scenario is 
when introduced via the parameters. Finally, when the beginning 
states are unpredictably variable. Fuzzy set theory is a helpful feature 
when ambiguous data cause uncertainty. The influence of fuzziness 

has been studied in [2-4], and the authors used different approaches to 

deal with uncertainty in the predator-prey model. Narayanamoorthy et 
al. analyzed the fractional-order predator-prey model by taking the 
initial conditions of the predator-prey model as fuzzy initial conditions 
[5]. Another powerful approach for dealing with uncertainty in models 
is probability theory, which is used when constructing a random 
mathematical model. Kegan and West investigated the effects of 

unexpected initial conditions on the simple epidemic deterministic 
model [6]. The beta distribution is assumed to be the initial proportion 
of susceptible; they define a distribution that describes the ratio of 

susceptible in a population at any time during an epidemic. 
Additionally, they discussed the statistical properties of the random 
behaviour of the epidemic. Omar and Abu-Hasan wrer numerically 
simulated the random SIR model with random initial states distributed 
as a beta distribution [7]. Pollett et al. described a general strategy for 
including random initial conditions in population models where a 
deterministic model is sufficient to represent population dynamics [8]. 
They also showed that the total variation of a broad class of stochastic 

models is the sum of variation due to random initial conditions and 
variation due to random dynamics, which allowing them to quantify 
the variation not accounted for when random dynamics are neglected. 
Tu and Wilman investigated stability conditions for a relatively 
general predator-prey model, which exhibits self-limiting density 
effects and minimum viable population levels for both the predator 
and the prey [9]. The intrinsic rates of increase in the two populations 
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were assumed to be known only with error. Omar and Abu-Hasan 
studied the effect of randomness on the simple predator-prey model 
by considering the normal distribution as the initial stats of the 
populations [10], [11]. Many versions of the Lotka-Volterra model are 
investigated for parameter uncertainty [12]. The simulation tool was 

based on differential inclusions instead of ordinary differential 
equations. Mondal et al. studied the predator-prey model by modifying 
the Lotka–Volterra model, taking appropriate biological parameters as 
intervals [13]. Barhagh et al. employed a system dynamics method 
based on the predator-prey approach to model the restoration 
possibilities of Urmia Lake. A Monte Carlo simulation investigated 
the effect of unclear parameters on the lake level [14]. 
In this study, the initial conditions of the system of the ratio-dependent 
predator-prey model are normally distributed. The fifth order 

improved Runge-Kutta method is modified to compute the random 
interaction between prey and predators. Simulation is provided, and 
the effect of random initial conditions on the interaction between prey 
and their predators is investigated 

Preliminary  
In this section, the deterministic model will be introduced. The normal 
distribution used to enter the randomness in the deterministic model 
will be offered. 

1. The Deterministic Predator-Prey Model with Ratio 

Functional Response 

The predator-prey model with the equivalent form of the Monod 
functional response (type II) has the form 

𝑑𝑥

𝑑𝑡
= 𝑎𝑥 (1 −

𝑥

𝐾
)−

𝑏𝑥𝑦

1 + 𝑏𝐻𝑥
,      𝑥(0) = 𝑥0 ≥ 0,          (1𝑎) 

𝑑𝑦

𝑑𝑡
=

𝑐𝑏𝑥𝑦

1 + 𝑏𝐻𝑥
− 𝑑𝑦,                     𝑦(0) = 𝑦0 ≥ 0.             (1𝑏) 

The parameters 𝑎, 𝑏, 𝑐,  and 𝑑  represent the intrinsic growth rate of 

prey, a total attack rate for the predator, interpreted as conversion 

efficiency (0<𝑐<1), and 𝑎 predator death rate in the absence of their 
prey, respectively. The parameters 𝐾,𝐻 denote the carrying capacity 

for the prey population and the time it takes a predator to digest one 

unit of prey. Equations 1 are sometimes called the traditional prey-
dependent predator-prey model. Recent evidence from biological and 
physiological communities supports the classic prey-dependent 
predator-prey model, which is verifiable in many circumstances, 
especially when food resources are scarce compared to predator 
population density and predators must search for that resource. 
Predators must share and compete for food in such a circumstance. To 
address this disadvantage, functional and numerical responses should 

depend on prey and predator populations. Arditi et al. proposed a 
simple way of incorporating predator reliance into the functional 

response by replacing 𝑥 with the ratio 
𝑥

𝑦
 in the functional response 

[15]. The dynamics of the so-called ratio-dependent predator-prey 

model can be represented as follows with these assumptions [16]: 
𝑑𝑥

𝑑𝑡
= 𝑎𝑥 (1 −

𝑥

𝐾
) −

𝑏𝑥𝑦

𝑦 + 𝑏𝐻𝑥
,      𝑥(0) = 𝑥0 ≥ 0,                               (2𝑎) 

𝑑𝑦

𝑑𝑡
=

𝑐𝑏𝑥𝑦

𝑦 + 𝑏𝐻𝑥
− 𝑑𝑦,                     𝑦(0) = 𝑦0 ≥ 0.                                (2𝑏) 

 
The possible population equilibriums of the model (2) can be 
calculated by setting 

𝑑𝑥

𝑑𝑡
= 0,                  

𝑑𝑦

𝑑𝑡
= 0.                                               (3) 

Substituting conditions 3 into the time-dependent population model  2 

yields the three equlibrioum points 
𝑒1 = (0,0),                                                                                         (4𝑎) 
𝑒2 = (𝐾,0),    𝑎𝑛𝑑                                                                            (4𝑏) 

𝑒3 = (
𝐾(𝑎𝑐 − 𝑏𝑐 + 𝑏𝑑𝐻)

𝑎𝑐
,
𝑏(𝑐 − 𝑑𝐻)𝑥∗

𝑑
).                               (4𝑐) 

According to [17], [18], [19] and [20], the origin 𝑒1  is a singular 

equilibria, which makes the model 2 is not able directly to linearize at 
this state. The equilibrium point 𝑒2 called axial equilibrium point and 

𝑒3 is called positive equilibrium point. The latter is equilibria without 

absences of any species (predator and prey), and it is more interesting 
from the viewpoint of ecologists. Generally, studying the stability of 

the predator prey model 2 allows us to understand what happens when 
we distribute the system near the equilibria 𝑒𝑖s. 

 
Fig. 1. The behaviours of prey and predators over time for the 

parametric values 𝑎 = 0.2, 𝑏 = 0.02,𝐻 = 3, 𝑐 = 0.95,𝑑 =
0.25,𝑎𝑛𝑑 𝐾 = 90,  

 
Fig. 2. The interaction of prey and predators over time for the 

parametric values 𝑎 = 0.2, 𝑏 = 0.02,𝐻 = 3, 𝑐 = 0.95,𝑑 =
0.25,𝑎𝑛𝑑 𝐾 = 90, where 𝑥(0) = 30 𝑎𝑛𝑑 𝑦(0) = 15. 

2. The Normal Distribution 

 
The normal distribution is the most widely known and used class of 
all statistical distributions. It is a continuous distribution for all values 
of 𝑋, and it is symmetric and has a bell-shaped curve with a single 

peak. The normal distribution is helpful for many reasons; for instance, 
it is directly related to some mathematical properties and is easy to 

work with mathematically. Also, many scientists have seen that many 
observations in various physical experiments and natural phenomena 
are normally distributed or close to normal. For example, the people 
population, the distributions of heights and weights are usually 
approximately close to normal.  Another reason is the advantage of the 
central limit theorem, which makes a powerful connection between the 
sample size and the extent to which a sampling distribution approaches 
the standard form. In other words, the distribution of the sample means 

will approximate the normality even though this random sample is 
taken from some distributions that are not approximately normal. The 
normal distribution often describes at least roughly any variable that 
clusters around the mean [21]. It is given by the following probability 
density function (PDF): 

𝑓(𝑥) =
1

𝜎√2𝜋
𝑒−

1
2
(
𝑥−𝜇
𝜎
)
2

.                                (5) 

The cumulative distribution function (CDF) is given by 

𝐹𝑋(𝑥) =
1

𝜎√2𝜋
∫𝑒

−
1
2
(
𝑡−𝜇
𝜎
)
2

𝑥

−∞

𝑑𝑡.                       (6) 

Methodology 

This section gives an outline that was followed in the study. It provides 
information on entering the randomness in the deterministic model 
through the initial conditions of the system of differential equations. 
Also, discuss the methods used to simulate the random model by using 
Mathematica software. 
 

1. The Predator-Prey Model with the Random Initial 

States  

In the nondimensional system 2, the initial sizes of 𝑥0  and 𝑦0  are 

nonnegative deterministic values. In this model, the initial states of 
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population processes may be available, but they cannot be known with 
certainty. We want to investigate the behaviour of the solutions when 
the initial populations' sizes are in the neighbourhood of the 
deterministic values 𝑥0 and 𝑦0 . We pick our neighborhoods to have 

symmetrical distributions of probabilities. For this reason, we will 
treat the initial population sizes as random variables with a certain 
probability distribution, namely the normal distribution. As was 

previously stated, the nondimensional random predator-prey model 
with the ratio-dependent functional response can be written as: 

𝑑𝑋

𝑑𝑇
= 𝑎𝑋 (1 −

𝑋

𝐾
) −

𝑏𝑋𝑌

𝑌 + 𝑏𝐻𝑋
,   𝑋(0) = 𝑋0~𝑁(𝜇1, 𝜎1),                (7𝑎) 

𝑑𝑌

𝑑𝑇
=

𝑐𝑏𝑋𝑌

𝑌 + 𝑏𝐻𝑋
− 𝑑𝑌,                     𝑌(0) = 𝑌0. ~𝑁(𝜇2, 𝜎2).               (7𝑏) 

 
The symbols  𝜇1 , 𝜎1 , 𝜇2 and 𝜎2 represent the means and the standard 

deviations of the normal distributions, where the mean determines the 
location, and the variance measures the width of the distribution.  

2. The numerical method 
The system 7 is a nonlinear differential equation system with no 
analytical solution. So, the method defined in [22] will be applied to 

solve the random system (7). The modified method is based on the 
fifth-order improved Runge-Kutta. 
To achieve that, we first consider the set 

{𝑋0
𝑞 ,𝑞 = 1,⋯ ,𝑚}, 

to be a random sample selected from a random variable 𝑋0, and the set 

{𝑌0
𝑞 , 𝑞 = 1,⋯ ,𝑚}, 

to be a random sample drawn from a random variable 𝑌0. Therefore, 
we can rewrite the equations 7 as follows 

𝑑𝑋

𝑑𝑇
= 𝑎𝑋 (1 −

𝑋

𝐾
) −

𝑏𝑋𝑌

𝑌 + 𝑏𝐻𝑋
,   𝑋(0) = 𝑋0

𝑞
, 𝑞 = 1, ⋯ ,𝑚,                (8𝑎) 

𝑑𝑌

𝑑𝑇
=

𝑐𝑏𝑋𝑌

𝑌 + 𝑏𝐻𝑋
− 𝑑𝑌,                     𝑌(0) = 𝑌0

𝑞
, 𝑞 = 1, ⋯ ,𝑚.               (8𝑏) 

 
By using the numerical method, the random solution of the equations 
8 seems to be a family of order pairs of curves 

{(𝑋𝑞(𝑇),𝑌𝑞(𝑇)):  𝑞 = 1,⋯ ,𝑚}. 
Where every pair of curves 

(𝑋𝑞
∗
(𝑇),𝑌𝑞

∗
(𝑇)), 𝑞∗ ∈ {1,… ,𝑚}, 

describe the behaviour of the prey and their predators over time for a 

specific initial populations size 

(𝑋0
𝑞∗
, 𝑌0
𝑞∗
) , 𝑞∗ ∈ {1,… ,𝑚}. 

For𝑞 = 1,… ,𝑚,the method defines an algebraic transformation of the 

random sample into 

{(𝑋𝑞(𝑇𝑟), 𝑌
𝑞(𝑇𝑟))}, ∀ 𝑇𝑟, 

starting from the random sample of the initial population's size 

{(𝑋0
𝑞 , 𝑌0

𝑞)}.  

The Results 

1. The effect of the randomness on the stability of the 

random system 
The points 𝑒1 , 𝑒2 and 𝑒3 that are defined in equations 𝟒𝒂, 𝟒𝒃, and 𝟒𝒄, 
respectively, represent the equilibrium points of the system of the 
equations 8 (For the random model we will denote to 𝑒1 , 𝑒2 and 𝑒3 by 

𝐸1 , 𝐸2  and 𝐸3 , respectively). The following formula can obtain the 

Jacobian matrix of the model 8 

(
𝑋𝑞
𝜕𝐹1(𝑋

𝑞 , 𝑌𝑞)

𝜕𝑋𝑞
+ 𝐹1(𝑋

𝑞 , 𝑌𝑞) 𝑋𝑞
𝜕𝐹1(𝑋

𝑞 , 𝑌𝑞)

𝜕𝑌𝑞

𝑌𝑞
𝜕𝐹2(𝑋

𝑞, 𝑌𝑞)

𝜕𝑋𝑞
𝑌𝑞
𝜕𝐹2(𝑋

𝑞 , 𝑌𝑞)

𝜕𝑌𝑞
+ 𝐹2(𝑋

𝑞 , 𝑌𝑞)

), 

where 𝑞 = 1,… ,𝑚. and 

𝐹1(𝑋
𝑞 , 𝑌𝑞) = 1 − 𝑋𝑞 −

𝑣𝑌𝑞

𝑋𝑄 +𝑌𝑞
 ,                         (9𝑎) 

𝐹2(𝑋
𝑞, 𝑌𝑞) =

𝛽𝑋𝑞

𝑋𝑄 +𝑌𝑞
− 𝛿.                                     (9𝑎) 

Thus, linearization of the equations 9 yields the given Jacobian 
matrices 

(

 
 
−𝑋𝑞 +

𝑣𝑌𝑞

(𝑋𝑄 + 𝑌𝑞)2
−

𝑣(𝑋2)𝑞

(𝑋𝑄 + 𝑌𝑞)2

𝛽(𝑌2)𝑞

(𝑋𝑄 +𝑌𝑞)2
𝛿𝑋𝑞𝑌𝑞

(𝑋𝑄 + 𝑌𝑞)2 )

 
 
;  𝑞 = 1,… ,𝑚, 

where for every 𝑞 = 1,… ,𝑚, the Jacobian matrix at the equilibrium 

point 𝐸2
𝑞(1,0) is 

(
−1 −𝑣
0 𝛽 − 𝛿

). 

Since this matrix only depends on the parameters 𝑣, 𝛽, and 𝛿for every 

𝑞 = 1,… ,𝑚, and according to [16], the equilibrium 𝐸2 = (1,0) is a 

saddle point. Hence, we can conclude that the equilibrium 𝐸2 = (1,0)  
is a saddle point for the random interaction as well, and it is stable 
along the 𝑥-direction and is not for the 𝑦-direction. 

At the most exciting equilibrium points 

𝐸3
𝑞 = (1 − [

𝑣(𝛽 − 𝛿)

𝛽
] ,
(𝛽 − 𝛿)𝑋𝑞

𝛿
);  𝑞 = 1,… ,𝑚. 

The Jacobian matrices can be defined as 

(

  
 
−𝑋∎

𝑞 +
𝑣𝑌∎

𝑞

(𝑋∎
𝑞 + 𝑌∎

𝑞)
2 −

𝑣(𝑋∎
2)𝑞

(𝑋∎
𝑞 + 𝑌∎

𝑞)
2

𝛽(𝑌∎
2)𝑞

(𝑋∎
𝑞 +𝑌∎

𝑞)
2

𝛿𝑋∎
𝑞𝑌∎

𝑞

(𝑋∎
𝑞 + 𝑌∎

𝑞)
2
)

  
 
;  𝑞 = 1,… ,𝑚. 

The Symbols 𝑋∎
𝑞

 and 𝑌∎
𝑞

 denote the coordinates of the interior 

equilibrium 𝐸3
𝑞
= (𝑋∎

𝑞
, 𝑌∎
𝑞
) , where 𝑋∎

𝑞
= 1− [

𝑣(𝛽−𝛿)

𝛽
]  and 𝑌∎

𝑞
=

(𝛽−𝛿)𝑋∎
𝑞

𝛿
. At a specific 𝑞∗ the behaviour around the equilibrium point 

𝐸3
𝑞∗

of the model 8 is extensively discussed in [16]. The authors show 

under which conditions the equilibrium point 𝐸3
𝑞∗

 is locally unstable, 

and there exists at least one limit cycle around this equilibrium point 
as well as the conditions for the existence of a Hopf-bifurcating small-
amplitude periodic solution. Logically, these conditions will also be 

satisfied at every equilibrium point 𝐸3
𝑞
 where 𝑞 ∈ {1,2,… ,𝑚}. Hence, 

the equilibrium points 𝐸3
𝑞
 generally satisfy the same situations for the 

random interaction between the prey and the predators. 
 

2. Statistical Properties of the Random Solution of the 

Predator-Prey Model  
Here, we are interested in the statistical properties of the random 
solution of the ratio-dependent predator-prey model 7. 

2.1.  Test the Normality of the Random System 
Since we assume that the initial states of population sizes are normally 
distributed, the first thing that comes to mind is to check whether the 
random solution remains normally distributed or significantly 

different from a normal distribution. Many statistical tools can be used 
for departures from normality. The Shapiro Wilk (S-W) and 
Kolmogorov-Smirnov (K-S) are widely used tests for the normality of 
unknown population distribution functions [23], [24]. They perform 
the goodness-of-fit test with a null hypothesis 𝐻0  that the random 

sample was drawn from a normal distribution with unknown mean and 
variance, and the alternative hypothesis 𝐻1 is that it was not drawn 

from a normal distribution. By default, a probability value or 𝑝-value 

where a small 𝑝-value suggests that it is unlikely that the random 

sample is normally distributed. In this study, we use both to test the 
random solution of the model 7 for normality over time. Fig. 3 
represents the 𝑝-values at a different time of the behavior of the prey 

and its predators with different initial sample sizes by using the S-W 
test. In contrast, Fig. 4 represents the 𝑝-values by using the K-S test. 
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Fig. 3. P-values by using the S-W test at different times and with 
different initial sample sizes where 𝑋0~𝑁(0.3,0.05) and 

𝑌0~𝑁(0.15,0.02). 

 

Fig. 4. P-values by using the K-S test at different times and with 
different initial sample sizes where 𝑋0~𝑁(0.3,0.05) and 

𝑌0~𝑁(0.15,0.02). 

The figures show that the 𝑝-values decrease and increase over time; 

that is, the random samples representing the random solution are 
normally distributed or close to the normal, sometimes not. Hence, 
keeping the random solution normally distributed does not depend on 
the random sample size 𝑚. 

Fig. 5 illustrates a comparison between statistic values and 𝑝-values 

of the random solution of the prey by using the S-W test. Fig. 6 
compares the values of the unexpected solution of the predator by 
using the same test. It supports the previous result that the random 

solution does not need to have normal distribution over time and the 
normality does not depend on whether the initial sample sizes are 
small or large. 
 

 

Fig. 5. Comparison between statistics values and P-values of the 
random solution of the prey by using the S-W test at different times 
and with different initial sample sizes where 𝑋0~𝑁(0.3,0.05) and 

𝑌0~𝑁(0.15,0.02). 

 

Fig. 6. Comparison between statistics values and P-values of the 
random solution of the predator by using the S-W test at different 

times and with different initial sample sizes where 𝑋0~𝑁(0.3,0.05) 
and 𝑌0~𝑁(0.15,0.02). 

 

 

Fig. 7. Comparison between statistics values and P-values of the 
random solution of the prey by using the K-S test at different times 

and with different initial sample sizes where 𝑋0~𝑁(0.3,0.05) and 

𝑌0~𝑁(0.15,0.02). 

 

Fig. 8. Comparison between statistics values and P-values of the 
random solution of the prey by using the K-S test at different times 
and with different initial sample sizes where 𝑋0~𝑁(0.3,0.05) and 

𝑌0~𝑁(0.15,0.02). 

The same results are observed when we use the K-S test, as illustrated 
in Fig. 7 for the prey, and Fig. 8 for predators. 
Similarly, Table 1 and Table 2 give numerical simulation results of 
the 𝑝-values of the random solution of the prey and their predators, 

respectively, by using the S-W test and the K-S test for normality. 
These numerical results confirm what we have said previously. 

Table 1. Simulation results of the 𝒑-values of the prey based on the 

S-W test and K-S test with different random initial samples where 
𝑿𝟎~𝑵(𝟎.𝟑,𝟎. 𝟎𝟓) and 𝒀𝟎~𝑵(𝟎.𝟏𝟓,𝟎.𝟎𝟐). 

Sample 

S-W 

𝑚
= 1000 

S-W 

𝑚
= 2000 

S-W 

𝑚
= 3000 

K-W 

𝑚
= 1000 

K-W 

𝑚
= 2000 

K-W 

𝑚
= 3000 

{𝑋1} 0.9561 0.8115 0.7362 0.8993 0.3887 0.3161 

{𝑋2} 0.9599 0.5419 0.2899 0.7554 0.3060 0.2609 

{𝑋3} 0.8846 0.4640 0.1024 0.7356 0.2611 0.2718 
{𝑋6} 0.8891 0.3712 0.2767 0.1933 0.1464 0.4504 

{𝑋7} 0.8450 0.3566 0.3377 0.1807 0.1291 0.4055 

{𝑋8} 0.7460 0.2873 0.3927 0.1350 0.0565 0.4797 

{𝑋12} 0.4253 0.0174 0.5906 0.4018 0.0443 0.5071 

{𝑋13} 0.3333 0.0053 0.5808 0.0173 0.0950 0.2187 

{𝑋14} 0.2451 0.0000 0.4941 0.2380 0.0441 0.2332 

{𝑋20} 0.0000 0.0000 0.0000 0.0242 0.0000 0.0000 

{𝑋21} 0.0000 0.0000 0.0000 0.0102 0.0000 0.0000 

{𝑋25} 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

Table 2. Simulation results of the 𝒑-values of the predator based 

on the S-W test and K-S test with different random initial samples 
where 𝑿𝟎~𝑵(𝟎.𝟑,𝟎. 𝟎𝟓) and 𝒀𝟎~𝑵(𝟎.𝟏𝟓,𝟎.𝟎𝟐). 

Sample 

S-W 

𝑚
= 1000 

S-W 

𝑚
= 2000 

S-W 

𝑚
= 3000 

K-W 

𝑚
= 1000 

K-W 

𝑚
= 2000 

K-W 

𝑚
= 3000 

{𝑌1} 0.1344 0.8057 0.7539 0.0889 0.7502 0.9377 

{𝑌2} 0.1447 0.6384 0.4113 0.1035 0.9299 0.7119 

{𝑌3} 0.1528 0.4607 0.1904 0.9348 0.9498 0.4099 
{𝑌6} 0.6251 0.3216 0.0474 0.1002 0.5340 0.1569 

{𝑌7} 0.5549 0.0345 0.0088 0.3784 0.0444 0.0452 

{𝑌8} 0.2726 0.0019 0.0002 0.2433 0.0042 0.0075 

{𝑌12} 0.0000 0.0000 0.0000 0.0060 0.0000 0.0000 

{𝑌13} 0.0000 0.0000 0.0000 0.0002 0.0000 0.0000 

{𝑌14} 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

{𝑌20} 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

{𝑋21} 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

{𝑋25} 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

 

The ratio-dependent predator-prey model (7) is nonlinear, and the 
normal distribution is closed under linear transformation. Therefore, 
the random solution will theoretically lose its normality after one unit. 
There are other ideas of using the principles of normal distribution 
even though the given solution is a non-normal random solution. 
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Transforming a non-normal distribution  solution into the normal one 
is applicable. It is performed in several ways, such as taking a 
logarithm, square root, or arcsine square root. The concept of the 
sampling distribution is also helpful based on the Central Limit 
Theorem. The theorem states that if we add together many independent 

identically distributed random variables drawn from any distribution, 
the resulting sum will be normally distributed [25]. 
 

2.2.  The Probability Density Function of the Solution 
The initial population sizes of the ratio-dependent predator-prey 
model 7 are assumed to have a normal distribution which is entirely 

characterized by the parameters 𝜇 (mean) and 𝜎2 (variance). The crisp 

behavior of model 2 is periodic, which is also followed by all solutions 

that have initial states in the samples {𝑋0
𝑞, 𝑞 = 1,⋯ ,𝑚}and {𝑌0

𝑞 , 𝑞 =

1,⋯ ,𝑚},which will finally construct the random solution. The 

probability density function of the prey and their predators generally 
describes the distribution, relative likelihood, and probabilistic 
behavior of the prey and predators over time. The probability density 

functions of prey and predators are numerically calculated where they 
are initially symmetric around their means and take many shapes over 
time. Their skewness values start as zero and change positively and 
negatively over time. At first, the bulks of the values symmetrically lie 
around the means and change to be concentrated on the right and left 
when the distributions are negative skew and positive skew, 
respectively.  

 

Fig. 9. Changing of the shapes of PDF of the prey over time, where 
𝑎 = 0.2, 𝑏 = 0.02,𝐻 = 3, 𝑐 = 0.95,𝑑 = 0.25,𝑎𝑛𝑑 𝐾 = 90 and 

𝑋0~𝑁(0.3,0.05) and 𝑌0~𝑁(0.15,0.02). with the sample distribution 

size 𝑚 = 60000. 

Fig. 9 shows the different shapes of the probability density function of 
the preys over time, and Fig. 10 indicates the movement and changing 
of the shapes of the probability density function of the predators at 

different stages. The parameters in this simulation are chosen to show 
the model behavior. The random sample size is determined to be large 
enough to allow us to give a better description of the populations over 
time. Here, we are not interested in the quantitative aspect of the model 
but the qualitative one. So, any other parameter values should give the 
same qualitative behavior. 
The cumulative distribution function is another helpful way to 
describe the distribution of the prey and predator. It can be calculated 

via the probability distribution function, which is beneficial to 
characterize the probability measure underlying the random variable 
by integrating the probability density function. It gives the probability 
that the variable will have a value less than or equal to any selected 
value. In the current study, the cumulative distribution functions of the 
prey and the predator are numerically obtained. Their curves allow us 
to infer whether the distribution has a low or high degree of kurtosis, 
which will give us information about how the prey and their predators 
are spread out. 

 

Fig. 10. Changing of the shapes of PDF of the prey over time, where 
𝑎 = 0.2, 𝑏 = 0.02,𝐻 = 3, 𝑐 = 0.95,𝑑 = 0.25,𝑎𝑛𝑑 𝐾 = 90 and 

𝑋0~𝑁(0.3,0.05) and 𝑌0~𝑁(0.15,0.02). with the sample distribution 

size 𝑚 = 60000. 

 

Fig. 11. Changing of the shapes of PDF of the prey over time, where 

𝑎 = 0.2, 𝑏 = 0.02,𝐻 = 3, 𝑐 = 0.95,𝑑 = 0.25,𝑎𝑛𝑑 𝐾 = 90 and 

𝑋0~𝑁(0.3,0.05) and 𝑌0~𝑁(0.15,0.02). with the sample distribution 
size 𝑚 = 60000. 

The movement of the cumulative distribution function of preys over 

time is illustrated in Fig. 11, which shows different shapes. The 
behavior of the cumulative distribution function of predators over time 
is indicated in Fig. 12 at other times. The CDF curve in Fig. 11b shows 
a higher variance than the one in Fig. 11d; that is, the uncertainty at 
iteration 𝑟 = 320 is lower than at 𝑟 = 100 and so on. The same can 

be said in Fig. 12a and Fig. 12c. 

 
Fig. 12. Changing of the shapes of PDF of the prey over time, where 
𝑎 = 0.2, 𝑏 = 0.02,𝐻 = 3, 𝑐 = 0.95,𝑑 = 0.25,𝑎𝑛𝑑 𝐾 = 90 and 

𝑋0~𝑁(0.3,0.05) and 𝑌0~𝑁(0.15,0.02). with the sample distribution 

size 𝑚 = 60000. 
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2.3.  The Means of the Random Solution 
The mean or the first moment is one of the essential properties of the 
random solution. It determines the location of the distribution of the 
prey. The predators were choosing various means, which will be the 
mean of the normal distribution, affecting the initial states of the 

populations and consequently influencing this population behavior. In 
the ratio-dependent predator-prey model (6), the mean of the random 
solution of predators and their prey follows the crisp, periodic solution 
in this simulation. For more accuracy, we calculate the 95% 

confidence intervals on all means of the predators and the prey, which 
means that in a 95% confidence interval, the mean 𝜇 will be between 
the endpoints. Still, in a 5% confidence interval, it will not be. 

Fig. 13 describes how determining a 95% confidence interval on the 
mean of prey is affected by the sample size 𝑚. The parameters and the 

random initial conditions of the population are chosen as 𝑣 = 2, 𝛽 =
0.7808,  𝛿 = 0.5,  𝑋0~𝑁(0.3,0.05)  and 𝑌0~𝑁(0.15,0.02) . In these 

figures, the bold lines illustrate the boundaries of the 95% confidence 
interval, while the dashed line illustrates the computed mean. 
 

 

Fig. 13. Comparison of a 95% confidence interval of the means of 
the preys with different sample sizes 𝑚. 

 

Fig. 14. Comparison of a 95% confidence interval of the means of 
the preys with different sample sizes 𝑚. 

Similarly, Fig. 14 depicts the 95% confidence interval of the mean of 

the predator. That means whichever value you pick in that interval will 
be close to the actual value. In these figures, we can observe that the 
ranges of the confidence intervals around the mean of the predator are 
pretty small compared with the fields of the prey in Fig. 13. 

2.4.  The Variances of the Random Solution 
The variance defines the average squared deviations from the mean, 
representing the distribution of random variables around that mean. 
The starting variances of the prey and predators in the ratio-dependent 

predator-prey model (6) are identical to the conflicts of the standard 

distributions chosen as the beginning stages of the two populations, 
respectively. These differences increase and lessen as time passes. The 
width of the probability density function that characterizes the random 
solution is swaying, but the variances are finite over time, so the width 
is still limited. We compute the 95% confidence intervals on the 

variances over time to precisely extract the variances of the prey and 
their predators. The results 
reveal that the random sample size affects the width of the confidence 
intervals, which lowers as the sizes m rise. 
Fig. 15 shows a 95% confidence interval for the preys variances, while 
Fig. 16 displays a 95% confidence interval for the predators variances, 
with a different sample size m where the quantities in the simulation 
are set as 𝑣 = 2, 𝛽 = 0.7808 and 𝛿 = 0.5, and 𝑋0~𝑁(0.3,0.05) and 

𝑌0~𝑁(0.15,0.02).The bold lines in these figures represent the 95% 

confidence interval limits, while the dashed line represents the 
computed variance. 

 

Fig. 15. Comparison of a 95% confidence interval of the variances of 
the preys with different sample sizes 𝑚. 

 

Fig. 16. Comparison of a 95% confidence interval of the variances of 

the preys with different sample sizes 𝑚. 

In most cases, the result we arrive at after running these simulations is 
when uncertainty is considered. The ideas included inside the crisp 
models will be influenced and spread into random notions. 
In addition, the lack of confidence over the initial values limits the 
solutions as they develop. The bound is distinct from the family of 
solutions in deterministic initial conditions, as the simulations have 

shown; yet, the distinctions between the bound and the family of 
solutions remain the same as the solution becomes. 

Conclusion 
The interaction between population models and uncertainty 
characteristics is the primary focus of this research. We frequently use 
the term "uncertainty" when we are confronted with situations in 
which we do not have adequate information or when the quantities 
necessary to define mathematical models of natural processes are 

unknown. To study the uncertainty present in population models, we 
used a more complicated predator-prey model that included a ratio-
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dependent functional response. We have examined the uncertainty 
associated with the initial value. Our fundamental goal is to find a 
solution to the dilemma posed by the necessity of coping with and 
quantifying uncertainty. To overcome this obstacle, we relied heavily 
on the analytical strength of probability theory. The findings indicate 

that random behaviour can be constrained as a generalization of crisp 
behaviour, which makes the phenomenon description more realistic 
than the classical one. In addition, the interactions that take place 
between the various components of the model will not be classical. It 
will make itself known in the form of uncertainty, bounded by the 
range of probability density functions, which will shift with time. 
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