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ABSTRACT

In this work, the predator-prey model with the ratio-dependent functional response is considered, where
the randomness enters into the equations only through their initial conditions. It is done by assuming
normal distribution as the initial states of the model to treat the randomness. The passage from the
deterministic situation to the random one for these equations is also the most transparent. In addition, a
numerical simulation will be offered using the modified approach founded on the fifth-order improved
Runge-Kutta method. Furthermore, the stability of the equilibrium points, and certain statistical
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properties related to the random behaviour of predators and their prey, will be analyzed and discussed.
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Introduction

In statistics, uncertainty has been around for a long time. On the other
hand, scientists and engineers have only recently begun carefully
considering the consequences of stochastic in their various fields.
They have realized that most real-world phenomena and physical tests
cannot be adequately explained, partially because the complete
information is not always accessible. Different types of uncertainty
can be addressed in differential equations [1]. A random input phrase
or source term distinguishes the first instance. The second scenario is
when introduced via the parameters. Finally, when the beginning
states are unpredictably variable. Fuzzy set theory is a helpful feature
when ambiguous data cause uncertainty. The influence of fuzziness
has been studied in [2-4], and the authors used different approaches to

deal with uncertainty in the predator-prey model. Narayanamoorthy et
al. analyzed the fractional-order predator-prey model by taking the
initial conditions of the predator-prey model as fuzzy initial conditions
[5]. Another powerful approach for dealing with uncertainty in models
is probability theory, which is used when constructing a random
mathematical model. Kegan and West investigated the effects of

unexpected initial conditions on the simple epidemic deterministic
model [6]. The beta distribution is assumed to be the initial proportion
of susceptible; they define a distribution that describes the ratio of
susceptible in a population at any time during an epidemic.
Additionally, they discussed the statistical properties of the random
behaviour of the epidemic. Omar and Abu-Hasan wrer numerically
simulated the random SIR model with random initial states distributed
as a beta distribution [7]. Pollett et al. described a general strategy for
including random initial conditions in population models where a
deterministic model is sufficient to represent population dynamics [8].
They also showed that the total variation of a broad class of stochastic
models is the sum of variation due to random initial conditions and
variation due to random dynamics, which allowing them to quantify
the variation not accounted for when random dynamics are neglected.
Tu and Wilman investigated stability conditions for a relatively
general predator-prey model, which exhibits self-limiting density
effects and minimum viable population levels for both the predator
and the prey [9]. The intrinsic rates of increase in the two populations
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were assumed to be known only with error. Omar and Abu-Hasan
studied the effect of randomness on the simple predator-prey model
by considering the normal distribution as the initial stats of the
populations [10], [11]. Many versions of the Lotka-Volterra model are
investigated for parameter uncertainty [12]. The simulation tool was
based on differential inclusions instead of ordinary differential
equations. Mondal et al. studied the predator-prey model by modifying
the Lotka—Volterra model, taking appropriate biological parameters as
intervals [13]. Barhagh et al. employed a system dynamics method
based on the predator-prey approach to model the restoration
possibilities of Urmia Lake. A Monte Carlo simulation investigated
the effect of unclear parameters on the lake level [14].
In this study, the initial conditions of the system of the ratio-dependent
predator-prey model are normally distributed. The fifth order
improved Runge-Kutta method is modified to compute the random
interaction between prey and predators. Simulation is provided, and
the effect of random initial conditions on the interaction between prey
and their predators is investigated
Preliminary
In this section, the deterministic model will be introduced. The normal
distribution used to enter the randomness in the deterministic model
will be offered.

1. The Deterministic Predator-Prey Model with Ratio

Functional Response

The predator-prey model with the equivalent form of the Monod
functional response (type 1) has the form

dx (1 x> bxy 0) = x> 0 1
ac = YU —g) ~1ipmy ¥ =x%=0 (g
dy  cbxy

— = — =y, > 0.
4t~ 1+ bHx dy, y(0)=y,=0 (1b)

The parameters a, b, ¢, and d represent the intrinsic growth rate of
prey, a total attack rate for the predator, interpreted as conversion
efficiency (0<c<1), and a predator death rate in the absence of their
prey, respectively. The parameters K, H denote the carrying capacity
for the prey population and the time it takes a predator to digest one
unit of prey. Equations 1 are sometimes called the traditional prey-
dependent predator-prey model. Recent evidence from biological and
physiological communities supports the classic prey-dependent
predator-prey model, which is verifiable in many circumstances,
especially when food resources are scarce compared to predator
population density and predators must search for that resource.
Predators must share and compete for food in such a circumstance. To
address this disadvantage, functional and numerical responses should
depend on prey and predator populations. Arditi et al. proposed a
simple way of incorporating predator reliance into the functional
response by replacing x with the ratioi in the functional response

[15]. The dynamics of the so-called ratio-dependent predator-prey
model can be represented as follows with these assumptions [16]:

dx x bxy

E=ax( _E)_y+be' x(0) =x,=0, 2a)
dy_ by _, ©=y=0 (2b)
dt y+bHx Y V=% =5

The possible population equilibriums of the model (2) can be
calculated by setting
dx 0 dy 0 3
- - dt _ ) ) dt - Y- ) ( )
Substituting conditions 3 into the time-dependent population model 2

yields the three equlibrioum points

e; = (0,0), (4a)

e, = (K,0), and (4b)
K(ac — bc + bdH) b(c —dH)x*

e; = . (40)

ac ’ d

According to [17], [18], [19] and [20], the origin e, is a singular
equilibria, which makes the model 2 is not able directly to linearize at
this state. The equilibrium point e, called axial equilibrium point and
es is called positive equilibrium point. The latter is equilibria without
absences of any species (predator and prey), and it is more interesting
from the viewpoint of ecologists. Generally, studying the stability of
the predator prey model 2 allows us to understand what happens when
we distribute the system near the equilibria e;s.

Fig. 1. The behaviours of prey and predators over time for the
parametric values a = 0.2,b = 0.02,H = 3,¢ = 0.95,d =
0.25,and K = 90,

Fig. 2. The interaction of prey and predators over time for the
parametric values a = 0.2,b = 0.02,H = 3,¢ = 0.95,d =
0.25,and K = 90, where x(0) = 30 and y(0) = 15.

2. The Normal Distribution

The normal distribution is the most widely known and used class of
all statistical distributions. It is a continuous distribution for all values
of X, and it is symmetric and has a bell-shaped curve with a single
peak. The normal distribution is helpful for many reasons; for instance,
it is directly related to some mathematical properties and is easy to
work with mathematically. Also, many scientists have seen that many
observations in various physical experiments and natural phenomena
are normally distributed or close to normal. For example, the people
population, the distributions of heights and weights are usually
approximately close to normal. Another reason is the advantage of the
central limit theorem, which makes a powerful connection between the
sample size and the extent to which a sampling distribution approaches
the standard form. In other words, the distribution of the sample means
will approximate the normality even though this random sample is
taken from some distributions that are not approximately normal. The
normal distribution often describes at least roughly any variable that
clusters around the mean [21]. It is given by the following probability
density function (PDF):

f) = ——e 3T ®)

aV2r '
The cumulative distribution function (CDF) is given by
X

Fo(x) = — f 55 4 6
= — o .

x X pn r—zn_we (6)

Methodology

This section gives an outline that was followed in the study. It provides
information on entering the randomness in the deterministic model
through the initial conditions of the system of differential equations.
Also, discuss the methods used to simulate the random model by using
Mathematica software.

1. The Predator-Prey Model with the Random Initial
States

In the nondimensional system 2, the initial sizes of x, and y, are

nonnegative deterministic values. In this model, the initial states of
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population processes may be available, but they cannot be known with
certainty. We want to investigate the behaviour of the solutions when
the initial populations' sizes are in the neighbourhood of the
deterministic values x, and y,. We pick our neighborhoods to have
symmetrical distributions of probabilities. For this reason, we will
treat the initial population sizes as random variables with a certain
probability distribution, namely the normal distribution. As was
previously stated, the nondimensional random predator-prey model
with the ratio-dependent functional response can be written as:

X ax (1= 22 30) = Xo~ NGy, o) (7a)
ar ¢ ( _K)_Y+bHX' = Ao, 1), ¢
v _ XY Y(0) = Y. ~N(uy, 5,) (7b)
daT Y +bHX O = To- =Nk, 0.

The symbols y,0y, 1, and o, represent the means and the standard
deviations of the normal distributions, where the mean determines the
location, and the variance measures the width of the distribution.
2. The numerical method
The system 7 is a nonlinear differential equation system with no
analytical solution. So, the method defined in [22] will be applied to
solve the random system (7). The modified method is based on the
fifth-order improved Runge-Kutta.
To achieve that, we first consider the set
{Xq,q = 1,---,m},
to be a random sample selected from a random variable X, and the set
{yoq‘q = 1,---,m},
to be a random sample drawn from a random variable Y,. Therefore,
we can rewrite the equations 7 as follows

bXY

X
ax _ X\ pXY eyl g1 ..

T aX (1 K) Y+ bHX’ X(0)=Xj,q=1,-,m, (8a)
v _ _cbXV Y(0)=v%q=1 (8b)
dT _ Y + bHX =l q =S

By using the numerical method, the random solution of the equations
8 seems to be a family of order pairs of curves
{(x9(M),Y«(T)): ¢ =1,-,m}.
Where every pair of curves
(X9°(T), YT (1)), q" € {1,...,m},
describe the behaviour of the prey and their predators over time for a
specific initial populations size
(x& v ).q e, m).
Forqg = 1, ..., m,the method defines an algebraic transformation of the
random sample into
{(x9(T), YU(T))}, v T,

starting from the random sample of the initial population's size
{(x3,v5)}-
The Results

1. The effect of the randomness on the stability of the

random system

The points e;, e, and e that are defined in equations 4a, 4b, and 4c,
respectively, represent the equilibrium points of the system of the
equations 8 (For the random model we will denote to e;, e, and e; by
E,,E, and E5, respectively). The following formula can obtain the
Jacobian matrix of the model 8

ACRD) IR (X9,Y9)

qvyv4a
ax4 +FX,Y9 X aya
JdF,(X1,Y9) 0F,(X1,Y9) g
q__«~ =~ 7 q__~ =~ Z qvya
Y x4 aya + F,(X9,Y%)
whereq =1, ...,m. and
q 79 = q vy
Fl(X ,Y )—1—X —W, (961)
F(thyq)—LXq_(g (9a)
A S 7 a

Thus, linearization of the equations 9 yields the given Jacobian
matrices

/ . Y4 v(X?)4 \

ey Taewvor|

k BCr?)s 5X7Y )'q— oy
(

XQ 4+Y9)2 (XQ +v9)2
where for every g = 1, ..., m, the Jacobian matrix at the equilibrium

point EZI(l,O) is
( )
0 p-=46/

Since this matrix only depends on the parameters v, 8, and §for every
q =1,...,m, and according to [16], the equilibrium E, = (1,0) is a
saddle point. Hence, we can conclude that the equilibrium E, = (1,0)
is a saddle point for the random interaction as well, and it is stable
along the x-direction and is not for the y-direction.

At the most exciting equilibrium points

o [, _[vB=] B-x°
El= (1 7 GO
The Jacobian matrices can be defined as

/_Xq+ vYd B v(X2)1 \
" xa+vd)y (xa+vd

k By 5Xavs ); b
(vl (gr)

The Symbols X2 and YJ denote the coordinates of the interior

equilibrium EY = (x3,v%), where XI =1— [@] and Y2 =
_ q

(ﬁ%. At a specific g* the behaviour around the equilibrium point

E_,‘f*of the model 8 is extensively discussed in [16]. The authors show

under which conditions the equilibrium point E?‘f* is locally unstable,
and there exists at least one limit cycle around this equilibrium point
as well as the conditions for the existence of a Hopf-bifurcating small-
amplitude periodic solution. Logically, these conditions will also be
satisfied at every equilibrium point E?‘f where g € {1,2, ..., m}. Hence,
the equilibrium points E?‘f generally satisfy the same situations for the
random interaction between the prey and the predators.

;q=1,...,m

2. Statistical Properties of the Random Solution of the
Predator-Prey Model

Here, we are interested in the statistical properties of the random
solution of the ratio-dependent predator-prey model 7.

2.1. Test the Normality of the Random System
Since we assume that the initial states of population sizes are normally
distributed, the first thing that comes to mind is to check whether the
random solution remains normally distributed or significantly
different from a normal distribution. Many statistical tools can be used
for departures from normality. The Shapiro Wilk (S-W) and
Kolmogorov-Smirnov (K-S) are widely used tests for the normality of
unknown population distribution functions [23], [24]. They perform
the goodness-of-fit test with a null hypothesis H, that the random
sample was drawn from a normal distribution with unknown mean and
variance, and the alternative hypothesis H, is that it was not drawn
from a normal distribution. By default, a probability value or p-value
where a small p-value suggests that it is unlikely that the random
sample is normally distributed. In this study, we use both to test the
random solution of the model 7 for normality over time. Fig. 3
represents the p-values at a different time of the behavior of the prey
and its predators with different initial sample sizes by using the S-W
test. In contrast, Fig. 4 represents the p-values by using the K-S test.

JOPAS Vol.22 No. 1 2023
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Fig. 3. P-values by using the S-W test at different times and with
different initial sample sizes where X,~N(0.3,0.05) and
Y,~N(0.15,0.02).

Fig. 4. P-values by using the K-S test at different times and with
different initial sample sizes where X,~N(0.3,0.05) and
Yo~N(0.15,0.02).

The figures show that the p-values decrease and increase over time;
that is, the random samples representing the random solution are
normally distributed or close to the normal, sometimes not. Hence,
keeping the random solution normally distributed does not depend on
the random sample size m.

Fig. 5 illustrates a comparison between statistic values and p-values
of the random solution of the prey by using the S-W test. Fig. 6
compares the values of the unexpected solution of the predator by
using the same test. It supports the previous result that the random
solution does not need to have normal distribution over time and the
normality does not depend on whether the initial sample sizes are
small or large.

Fig. 5. Comparison between statistics values and P-values of the
random solution of the prey by using the S-W test at different times
and with different initial sample sizes where X,~N(0.3,0.05) and
Yo~N(0.15,0.02).

Fig. 6. Comparison between statistics values and P-values of the
random solution of the predator by using the S-W test at different
times and with different initial sample sizes where X,~N(0.3,0.05)
and Y,~N(0.15,0.02).
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Fig. 7. Comparison between statistics values and P-values of the
random solution of the prey by using the K-S test at different times
and with different initial sample sizes where X,~N(0.3,0.05) and

Y5~N(0.15,0.02).
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Fig. 8. Comparison between statistics values and P-values of the
random solution of the prey by using the K-S test at different times
and with different initial sample sizes where X,~N(0.3,0.05) and

Yo~N(0.15,0.02).
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The same results are observed when we use the K-S test, as illustrated
in Fig. 7 for the prey, and Fig. 8 for predators.

Similarly, Table 1 and Table 2 give numerical simulation results of
the p-values of the random solution of the prey and their predators,
respectively, by using the S-W test and the K-S test for normality.
These numerical results confirm what we have said previously.

Table 1. Simulation results of the p-values of the prey based on the
S-W test and K-S test with different random initial samples where

Xo~N(0.3,0.05) and ¥,~N(0.15,0.02).

S-wW S-w S-w K-W K-W K-W
Sample | m m m m m m

=1000 =2000 =3000 =1000 =2000 =3000
X1} 0.9561 0.8115 0.7362 0.8993 0.3887  0.3161
{X,} 0.9599 05419 0.2899 0.7554  0.3060  0.2609
X5} 0.8846 0.4640 01024 0.7356 0.2611  0.2718
{Xe} 0.8891 0.3712  0.2767 0.1933 0.1464  0.4504
{X,} 0.8450 0.3566  0.3377  0.1807 0.1291  0.4055
{Xg} 0.7460 0.2873  0.3927 0.1350 0.0565 0.4797
X1} 0.4253 0.0174 05906 0.4018 0.0443 0.5071
{X133 0.3333 0.0053 0.5808 0.0173 0.0950 0.2187
{X143 0.2451 0.0000 0.4941 0.2380 0.0441  0.2332
{X20} 0.0000 0.0000 0.0000 0.0242 0.0000 0.0000
{X213 0.0000 0.0000 0.0000 0.0102 0.0000 0.0000
X553 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Table 2. Simulation results of the p-values of the predator based
on the S-W test and K-S test with different random initial samples
where X,~N(0.3,0.05) and Y,~N(0.15,0.02).

S-wW S-wW S-wW K-w K-w K-w
Sample | m m m m m m

=1000 =2000 =3000 =1000 =2000 =3000
{r;} 0.1344 0.8057  0.7539  0.0889  0.7502  0.9377
{1} 0.1447 0.6384 04113 0.1035 0.9299 0.7119
{r3} 0.1528 0.4607  0.1904 0.9348 0.9498  0.4099
{rg} 0.6251 0.3216  0.0474 0.1002 0.5340 0.1569
{r;} 0.5549 0.0345 0.0088 0.3784  0.0444  0.0452
{r3} 0.2726 0.0019  0.0002 0.2433 0.0042 0.0075
{Y;2} 0.0000 0.0000 0.0000 0.0060 0.0000  0.0000
{Yi3} 0.0000 0.0000  0.0000 0.0002 0.0000  0.0000
{Yi4} 0.0000 0.0000  0.0000 0.0000 0.0000  0.0000
{V20} 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
{X5,} | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
{X,s} | 0.0000 0.0000  0.0000 0.0000 0.0000 0.0000

The ratio-dependent predator-prey model (7) is nonlinear, and the
normal distribution is closed under linear transformation. Therefore,
the random solution will theoretically lose its normality after one unit.
There are other ideas of using the principles of normal distribution
even though the given solution is a non-normal random solution.
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Transforming a non-normal distribution solution into the normal one
is applicable. It is performed in several ways, such as taking a
logarithm, square root, or arcsine square root. The concept of the
sampling distribution is also helpful based on the Central Limit
Theorem. The theorem states that if we add together many independent
identically distributed random variables drawn from any distribution,
the resulting sum will be normally distributed [25].

2.2. The Probability Density Function of the Solution

The initial population sizes of the ratio-dependent predator-prey
model 7 are assumed to have a normal distribution which is entirely
characterized by the parameters u (mean) and o2 (variance). The crisp
behavior of model 2 is periodic, which is also followed by all solutions
that have initial states in the samples {XJ,q = 1,---,m}and {Y},q =
1, m} which will finally construct the random solution. The
probability density function of the prey and their predators generally
describes the distribution, relative likelihood, and probabilistic
behavior of the prey and predators over time. The probability density
functions of prey and predators are numerically calculated where they
are initially symmetric around their means and take many shapes over
time. Their skewness values start as zero and change positively and
negatively over time. At first, the bulks of the values symmetrically lie
around the means and change to be concentrated on the right and left
when the distributions are negative skew and positive skew,
respectively.

Density of Prey

1
Prey

(a) iteration r =0 (b) iteration r = 100

(c) ilcrulilz;il r=246 (d) itcruti:;l; r=2320
Fig. 9. Changing of the shapes of PDF of the prey over time, where
a=0.2,b=0.02,H=3,c=0.95,d = 0.25,and K =90 and
X,~N(0.3,0.05) and Y;~N(0.15,0.02). with the sample distribution
size m = 60000.

Fig. 9 shows the different shapes of the probability density function of
the preys over time, and Fig. 10 indicates the movement and changing
of the shapes of the probability density function of the predators at
different stages. The parameters in this simulation are chosen to show
the model behavior. The random sample size is determined to be large
enough to allow us to give a better description of the populations over
time. Here, we are not interested in the quantitative aspect of the model
but the qualitative one. So, any other parameter values should give the
same qualitative behavior.

The cumulative distribution function is another helpful way to
describe the distribution of the prey and predator. It can be calculated
via the probability distribution function, which is beneficial to
characterize the probability measure underlying the random variable
by integrating the probability density function. It gives the probability
that the variable will have a value less than or equal to any selected
value. In the current study, the cumulative distribution functions of the
prey and the predator are numerically obtained. Their curves allow us
to infer whether the distribution has a low or high degree of kurtosis,
which will give us information about how the prey and their predators
are spread out.

Predator

(a) iteration r = 0 (b) iteration r = 100

Density of Prodar

Predator Predator

(c) iteration r = 246 (d) iteration r = 320

Fig. 10. Changing of the shapes of PDF of the prey over time, where
a=0.2,b=0.02,H=3,c=0.95,d = 0.25,and K = 90 and
X,~N(0.3,0.05) and Y,~N(0.15,0.02). with the sample distribution
size m = 60000.

D
CDF of Prey

(a) iteration r = 0 (b) iteration r = 100

COF of Prey
CDF of Prey

(¢) ileruliéﬁ r=246 (d) iterznic):)r =320
Fig. 11. Changing of the shapes of PDF of the prey over time, where
a=0.2,b=0.02,H=3,c=0.95,d = 0.25,and K = 90 and
X,~N(0.3,0.05) and Y;~N(0.15,0.02). with the sample distribution
size m = 60000.

The movement of the cumulative distribution function of preys over
time is illustrated in Fig. 11, which shows different shapes. The
behavior of the cumulative distribution function of predators over time
is indicated in Fig. 12 at other times. The CDF curve in Fig. 11b shows
a higher variance than the one in Fig. 11d; that is, the uncertainty at
iteration r = 320 is lower than at r = 100 and so on. The same can
be said in Fig. 12a and Fig. 12c.

CDF of Predator
CDF of Predak

s nan am s nn ws
Predator

(a) iteration r =0 (b) ilcmtioﬁ.r =100

(¢) iteration r = 246 (d) iteration r = 320

Fig. 12. Changing of the shapes of PDF of the prey over time, where
a=0.2,b=0.02,H=3,c=0.95,d = 0.25,and K = 90 and
X,~N(0.3,0.05) and Y;,~N(0.15,0.02). with the sample distribution
size m = 60000.
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2.3. The Means of the Random Solution

The mean or the first moment is one of the essential properties of the
random solution. It determines the location of the distribution of the
prey. The predators were choosing various means, which will be the
mean of the normal distribution, affecting the initial states of the
populations and consequently influencing this population behavior. In
the ratio-dependent predator-prey model (6), the mean of the random
solution of predators and their prey follows the crisp, periodic solution
in this simulation. For more accuracy, we calculate the 95%
confidence intervals on all means of the predators and the prey, which
means that in a 95% confidence interval, the mean u will be between
the endpoints. Still, in a 5% confidence interval, it will not be.

Fig. 13 describes how determining a 95% confidence interval on the
mean of prey is affected by the sample size m. The parameters and the
random initial conditions of the population are chosenasv =2, 8 =
0.7808, § = 0.5, X,~N(0.3,0.05) and Y,~N(0.15,0.02). In these
figures, the bold lines illustrate the boundaries of the 95% confidence
interval, while the dashed line illustrates the computed mean.

4 0

{a) Size m = 400 (b) Size m = 600

{c) Size m = 900 (d) Size m = 1500

Fig. 13. Comparison of a 95% confidence interval of the means of
the preys with different sample sizes m.

(a) Size m = 400 (b) Size m = 600

o 50 0 = " a0 1o

(c) Size m = 900 (d) Size m = 1500

Fig. 14. Comparison of a 95% confidence interval of the means of
the preys with different sample sizes m.

Similarly, Fig. 14 depicts the 95% confidence interval of the mean of
the predator. That means whichever value you pick in that interval will
be close to the actual value. In these figures, we can observe that the
ranges of the confidence intervals around the mean of the predator are
pretty small compared with the fields of the prey in Fig. 13.
2.4. The Variances of the Random Solution

The variance defines the average squared deviations from the mean,
representing the distribution of random variables around that mean.
The starting variances of the prey and predators in the ratio-dependent
predator-prey model (6) are identical to the conflicts of the standard

distributions chosen as the beginning stages of the two populations,
respectively. These differences increase and lessen as time passes. The
width of the probability density function that characterizes the random
solution is swaying, but the variances are finite over time, so the width
is still limited. We compute the 95% confidence intervals on the
variances over time to precisely extract the variances of the prey and
their predators. The results

reveal that the random sample size affects the width of the confidence
intervals, which lowers as the sizes m rise.

Fig. 15 shows a 95% confidence interval for the preys variances, while
Fig. 16 displays a 95% confidence interval for the predators variances,
with a different sample size m where the quantities in the simulation
are set asv =2, = 0.7808 and § = 0.5, and X,~N(0.3,0.05) and
Yy~N(0.15,0.02).The bold lines in these figures represent the 95%
confidence interval limits, while the dashed line represents the
computed variance.

1o 0 m 20 0 W a 0

(b) Size m = 600

(c) Size m =900 (d) Size m = 1500

Fig. 15. Comparison of a 95% confidence interval of the variances of
the preys with different sample sizes m.

(b) Size m = 600

(c) Size m =900 (d) Size m = 1500

Fig. 16. Comparison of a 95% confidence interval of the variances of
the preys with different sample sizes m.

In most cases, the result we arrive at after running these simulations is
when uncertainty is considered. The ideas included inside the crisp
models will be influenced and spread into random notions.

In addition, the lack of confidence over the initial values limits the
solutions as they develop. The bound is distinct from the family of
solutions in deterministic initial conditions, as the simulations have
shown; yet, the distinctions between the bound and the family of
solutions remain the same as the solution becomes.

Conclusion

The interaction between population models and uncertainty
characteristics is the primary focus of this research. We frequently use
the term "uncertainty" when we are confronted with situations in
which we do not have adequate information or when the quantities
necessary to define mathematical models of natural processes are
unknown. To study the uncertainty present in population models, we

used a more complicated predator-prey model that included a ratio-
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dependent functional response. We have examined the uncertainty
associated with the initial value. Our fundamental goal is to find a
solution to the dilemma posed by the necessity of coping with and
quantifying uncertainty. To overcome this obstacle, we relied heavily
on the analytical strength of probability theory. The findings indicate
that random behaviour can be constrained as a generalization of crisp
behaviour, which makes the phenomenon description more realistic
than the classical one. In addition, the interactions that take place
between the various components of the model will not be classical. It
will make itself known in the form of uncertainty, bounded by the
range of probability density functions, which will shift with time.
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