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Abstract One of the major challenges in Peak over Threshold model (POT) the selection of the best threshold 

in fitting the Generalized Pareto Distribution (GPD) which is widely used in many applications. The choice of 
threshold must be a balance between bias and variation. In this paper we comparison between two graphical 
methods to determine the best threshold in the POT model and estimate the tail index. The results obtained 
from different estimators used to estimate the shape distribution of GPD by using maximum likelihood (ML). 
Finally, in this paper we use application on real data to compare the properties of different estimators for 
estimating tail index. The results show that GPD model with threshold of threshold choice plot (TCP) is a 
better choice basis on the Deviance and Akaike information test. For the calculations, we will use the R 
programming with packages POT and ismev for parameter estimation and diagnostic plots. 
Keywords: Generalized Pareto Distribution (GPD), Goodness-of-Fit Test, Methods of Threshold Selection, 

Mean Residual Plot (MRLP), Threshold Choice Plot (TCP). 
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1 Introduction 
Extreme value theory (EVT) is one of major 
importance in many fields of applications where 
extreme values may appear and have detrimental 
effects explored by [15],[22]. In EVT, the problem 
of threshold selection to estimate the tail index of 
distributions is very important in many 
applications, see, [8]. The last decade has seen 
development methods of threshold selection in 
extreme value applications. In, [16], the classical 

asymptotically motivated model for excesses above 
a high threshold is the generalized Pareto 
distribution (GPD), and [14] for the original 
theoretical development and [7], for further 
developments and applications. 
The paper is organized as follows: In Section 2 the 
general theoretical background of GPD is 
provided. In Section 3, method of threshold 
selection. In Section 4, some graphical methods 
for dealing with the issue of choosing the 
threshold value for the estimation of shape are 
introduced. Parameter estimation and model 
selection are introduced in Section 5. Section 6, 
describes case study on real data. Finally, 

concluding remarks are given in Section 7. 

2 Generalized Pareto Distribution (GPD) 
The generalized Pareto distribution (GPD) was 
introduced by [14] as a three parameter 
distribution and has been used widely by many 
scientists. In [19], the GPD is usually expressed 
as a three parameters distribution with d.f. 
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Where, 0   scale parameter,   is location 

parameter and   the shape parameter. The 

support is x   when 0  and x
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when 0  . The GPD subsumes three other 

distributions under its parameterization. When 

0  , we have a version of the usual Pareto 
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distribution; if 0   we give the exponential 

distribution while 0  , we have a type II Pareto 

distribution. To achieve a good model fit of GPD, 
we need to choose a suitable value of threshold. 
We now outline our methods for threshold 

selection, see for example, [20]. 

3 Methods of Threshold Selection 
Extremes can be defined in a number of ways. 
Here we adopt the excesses over a threshold 
approach. In [3],[20], the selection of an 
appropriate threshold is one of the important 
concerns of the POT approach and still an 
unsolved problem an area of ongoing research in 
the literature which can be of the critical 
importance. In [6],[9], it states that the selection of 
the threshold process always is a trade-off 
between the bias and variance. If a too high 
threshold is selected, the bias decreases while the 

variance increases as there is not enough data 
above this threshold. On the other hand, by 
taking a lower threshold, the variance decreases 
as the number of observations is larger and the 
bias increases. [9],  outlines a graphical methods 
used for the threshold selection in [5], and also 
suggested by [22]. Next we will give some 
graphical methods of threshold selection. 

 
4 Graphical methods of threshold selection  
Several graphics have been proposed to assist in 
threshold selection. We will illustrate some 
graphics plot to select the suitability threshold of 
the fitted GPD. In the following, we will describe 
two diagnostic plot of threshold selection [13]. 

 
4.1 Mean Residual Life Plot (MRLP) 

The mean residual life plot (MRLP) is a 

graphical tool widely used for assessing the 
behavior of a distribution function (d.f.). The 
MRLP was introduced by [5],[2], uses the 
expectation of the GPD excesses, see [16]. One 
tool for choosing suitable thresholds is the sample 
MRLP: 
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where 1:x n and :x n n are the minimum and 

maximum order statistics of the data sample,    

is the threshold and ( )en   is the sample mean 

excess function defined by 
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i.e. the sum of the excesses over the threshold   

divided by the number of data points which 
exceed the threshold. In particular, if the 
empirical plot seems to follow a reasonably 
straight line with positive gradient above a certain 

value of  , then this is an indication that the 

excesses over this threshold follow a GPD with 

positive shape parameter in [12]. In practice, if x  

represents excess over a threshold 0 , and if the 

approximation by a GPD is good enough, we have: 
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For all new threshold 1  such as 1 0  , excesses 

above the new threshold are also approximate by 
a GPD with updated parameters. 
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Another graphical tool can be performed to choose 

the threshold that is the stability plot or threshold 
choice plot (TCP). 

4.2 Threshold Choice Plot (TCP) 

Let X be a random variable (r.v) with ( , , )0 0 0GPD   

. Let 1  be an another threshold as 1 0  . The 

random variable \ 1X X   is also GPD with new 

parameters ( )1 0 0 1 0       and 1 0  . 

 Let 
*

1 1 1      with this new parameterization, 

*
  is independent of 1 . Thus, estimates of  

*


and 1  are constant for all  1 0 
 if 0  is a 

suitable threshold for the asymptotic 
approximation. Threshold choice plots represent 
the points defined by: 
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where nx  is the maximum observations of the X . 

Such plots are found in [8], for GPDs fitted to 
wave height data by [10],[20].  

 
5 Parameter Estimate and Model Selections 
Traditionally, the threshold was chosen before 
fitting the GPD. Threshold choice involves 
balancing bias and variance. In [16], practical, the 
parameters of distribution must be estimated from 
the data. [21[. There are several methods to 
estimate parameters. We focus on maximum 

likelihood estimation (MLE) because of nice 
asymptotic. [16], it has described how a GPD can 
be fitted with MLE See [5], [21]. In order to make 
comparison between the estimates of shape 
parameters for different threshold choices provide 
different fitted models of GPD, we use goodness-
of-fit tests using different statistics [4], namely the 

Deviance, Akaike information criterion (AIC) and 
results appear in Table 0 test as follows:  
Deviance test: the deviance statistic is defined 
by: 
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Where 
0 0

( )ML  and 
1 1

( )ML be the maximized 

values of the log-likelihood for models under null  
and alternative hypothesis  respectively. 

To reject models under null hypothesis if:

D C
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where C  is the (1 ) quantile of the  

distribution. For more details see [8].  
AIC test : we apply the Akaike information 
criterion (AIC),see, [18]. The AIC is calculated as 

2 ( ) 2AIC NLL i
i
                                  9  

where NNL is the negative log likelihood and i is 

parameter vector with i elements. The model with 
the smallest value for AIC is preferred [11].  

 

6 Case Study 
To illustrate the above method of threshold 
selection we used the sample data of large fire 
insurance claims in Denmark from 1980 to 1990. 
The data are contained 2167 observations in a 
numeric vector. The source data is taken from the 
evir package in R [1],[17]. We use this dataset as 
an example of graphical methods to select an 
appropriate threshold. Next, we can fit the GPD to 
those excesses by applying the MLE to estimate 
the shape parameter of the GPD. In Table 0, we 
summarize the estimation results for different 
choices of graphical tools for the threshold 

selection via the MRLP and TCP. 
 

Table 1: Graphical methods results of 
threshold selection 
Graphical methods MRLP TCP 

True  threshold 20 26 

 
36 22 

Quantail 0.98 0.99 
MLE of shape 0.68 0.84 

Testing 

Deviance 284.36 186.04 

Order 2 1 

AIC 288.36 190.04 

Order 2 1 

 
Table 1 provides the results of graphical methods 
to select an appropriate value of threshold. The 
first row of Table 0, represent the value of 
threshold selection by using graphical method and 
these thresholds give exceedances and quantail 
(probability less than threshold) reported in the 

second and third row respectively. Shape 
parameters are estimated of GPD by MLE in the 
four row of Table 1. For comparison, results of 
Goodness of Fit tests for both Deviance and AIC 
are listed in the last row. GPD model with 
threshold of TCP is a better chosen depended on 
D and AIC test. The diagnostic plots for two 
threshold choices shown in Fig.1. On the top 
panel of Fig. 1 is the MRLP while middle and 
bottom panel is the TCP. In Fig. 1, the value of 
threshold is 20 in MRLP because the graphs are 
approximately linear and a lot of stability is the 
most an appropriate to fit the studied dataset. 

While, the threshold value of TCP is 26 would be 

more an appropriate to find the minimum value 

above which the estimations of both parameters 

remain constant. This indicates that, the fitted 

GPD model is satisfactory for the fire insurance 
claims in Denmark. 

 
Fig. 1:  Graphical tools of threshold selection and 
the vertical line indicates to the threshold 
selection via MRLP=20 and TCP=26 
 

7 Conclusion 
In fitting GPD, there is the issue of threshold 
selection. If the chosen threshold is too low, the 
GPD approximation may not hold and bias can 
occur. If the threshold is chosen too high, reduced 
sample size increases the variance of parameter 
estimates. In this paper, graphical methods are 
applied to select the best threshold and a suitable 
threshold should be specified to find the GPD. We 
have presented two graphical methods MRLP and 
TCP, which provide different threshold choices. 
We provide a data analysis to see how the two 
graphical works in practice. Application on set of 
real data showed that the TCP, suitable threshold 
can be chosen an appropriate value of threshold 
selection when the estimators of the shape 
parameter keep stable above the threshold. 
Goodness-of-fit such as the Deviance and AIC of 
the GPD for the exceedances, and select the 

lowest one, above which the data provides 
adequate fit to the GPD, and shows that the GPD 
model is a good choice. Further research will be 
conducted to compare graphical methods with 
numerical methods to select the best threshold. In 
addition, an automated graphical threshold 

selection procedure based on a sequence of 
goodness-of-fit tests, more work is needed in this 
direction. 
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