مجلة العلوم (البحثة والتطبيقية

Journal of Pure \& Applied Sciences

www.Suj.sebhau.edu.ly ISSN 2521-9200
Received 27/09/2018 Revised 14/06/2019 Published online 20/06/2019

Some Oscillation Theorems for Second Order Nonlinear and Nonhomogeneous Differential Equations with alternating coefficients

*M. J. Saad ${ }^{1}$, N. Kumaresan ${ }^{2}$ and Kuru Ratnavelu ${ }^{2}$

${ }^{1}$ Department of Mathematics, Faculty of Education, Sirte University, Sirte- Libya
${ }^{2}$ Institute of Mathematical sciences, University of Malaya,Kuala Lumpur, Malaysia
*Corresponding author: masaa2011@yahoo.com
Abstract Some oscillation criteria for solutions of a general ordinary differential of second order of the form

$$
(r(t) \dot{x}(t))^{\bullet}+q(t) \Phi(g(x(t)), r(t) \dot{x}(t))=H(t, x(t))
$$

with alternating coefficients are given. Our results improve and extend some existing results in the literature. Some illustrative examples are given with its numerical solutions, which are computed using Runge Kutta method of fourth order.
Keywords: Alternating coefficients, Nonhomogeneous Equations, Oscillation Solutions, Runge- Kutta Methods.
AMO(MOS) Subject Classification: 34A 34, 34K 11.

$$
\begin{aligned}
& \text { "مستورة جابر سعد¹ و ن. كوماريسن² و كورو رانتافيلو } 2 \\
& 1 \text { قسم الرياضيات- كلية التربية- جامعة سرت، ليبيا } \\
& \text { 22معه العلوم الرياضية- جامعة مالايا- كو الالمبور، ماليزيا } \\
& \text { masaa2011@yahoo.com :لالمر اسلة" }
\end{aligned}
$$

الملخص في هــــذه الورقة، نقـــم بعض مـــعايير التنبذب لحلول المـــعادلات اللفاضلية العادية من الـــــرجة الثانية ذات
المعاملات المتتاوبة ذات الصورة العامة:

$$
(r(t) \dot{x}(t))^{\bullet}+q(t) \Phi(g(x(t)), r(t) \dot{x}(t))=H(t, x(t))
$$

تعتبر نتائج التنبذب المعطاة في هذه الورقة تحسين وتوسيع لبعض النتائج السابقة. يوجد بعض الامثلة التوضيحية للنتائج المعطاة والتي تم حلها عدديا باستخدام طريقة رونج-كونا من الرتبة الرابعة باستخدام برنامج الماتالب، لنيين من خلال هذا الحل العددي صحة نتائجنا

> النظرية المعطاة.
(الكلمات المفتاحية: المعاملات المتناوبة، المعادلات الغير .متجانسة، حلول متذبذبة، طريقة رنج_كوتا.

1. Introduction

In this paper, we consider the second order nonlinear ordinary differential equation (ODE) of the form

$$
\begin{equation*}
(r(t) \dot{x}(t))^{\bullet}+q(t) \Phi(g(x(t)), r(t) \dot{x}(t))=H(t, x(t)) \tag{1.1}
\end{equation*}
$$

Where r, q and $p:\left[t_{0}, \infty\right) \rightarrow \mathrm{R}$ are continuous functions and $r(t)>0$ for $t \geq t_{0}>0 . g$ is a continuous function for $x \in(-\infty, \infty)$, continuously differentiable and satisfies $x g(x)>0$ and $g^{\prime}(x) \geq k>0$ for all $x \neq 0$. The function Φ is a continuous function on RxR with $u \Phi(u, v)>0$ for all $u \neq 0$ and $\Phi(\lambda u, \lambda v)=\lambda \Phi(u, v)$ for any $\lambda \in(0, \infty)$ and H is a continuous function on $\left[t_{0}, \infty\right) \times \mathrm{R}$ with $H(t, x(t)) / g(x(t)) \leq p(t) \quad$ for all $\quad x \neq 0 \quad$ and
$t \geq t_{0}$. Throughout this paper, we restrict our attention only to the solutions of the ODE (1.1) which exist on some ray $\left[t_{0}, \infty\right)$. Such solution of the equation (1.1) is said to be oscillatory if it has an infinite number of zeros, and otherwise it is said to be non-oscillatory.
The ODE (1.1) is called oscillatory if all its solutions are oscillatory, and otherwise it is called non-oscillatory. The problem of finding oscillation criteria for second order nonlinear ordinary differential equations has received a great attention of many authors; see for example to [115]. Kamenev [7] studied the equation

$$
\begin{equation*}
\ddot{x}(t)+q(t) x(t)=0 \tag{1.2}
\end{equation*}
$$

And proved that the condition

$$
\lim _{t \rightarrow \infty} \sup \frac{1}{t^{n-1}} \int_{t_{0}}^{t}(t-s)^{n-1} q(s) d s=\infty
$$

for some integer $n \geq 3$, is sufficient for the oscillation of the ODE (1.2). Yan [15] proved that if

$$
\lim _{t \rightarrow \infty} \sup \frac{1}{t^{n-1}} \int_{t_{0}}^{t}(t-s)^{n-1} q(s) d s<\infty
$$

for some integer $n \geq 3$ and there is a continuous function Ω on $\left[t_{0}, \infty\right)$ with

$$
\int_{t_{0}}^{\infty} \Omega_{+}^{2}(s) d s=\infty
$$

where $\Omega_{+}(t)=\max \{\Omega(t), 0\}, t \geq t_{0}$ such that

$$
\lim _{t \rightarrow \infty} \sup \frac{1}{t^{n-1}} \int_{t_{0}}^{t}(t-s)^{n-1} q(s) d s \geq \Omega(T)
$$

for every $T \geq t_{0}$. Then every solution of the ODE (1.2) oscillates. Philos [11] improved Kamenev's result [7] as follows: He supposed that there exist continuous functions $H, h: D=\left\{(t, s): t \geq s \geq t_{0}\right\} \rightarrow \mathrm{R}$ such that

$$
\limsup _{t \rightarrow \infty} \frac{1}{H(t, T)} \int_{T}^{t}\left(H(t, s) q(s)-\frac{1}{4} h^{2}(t, s)\right) d s \geq \Omega(T) \text { for every } T \geq t_{0}
$$

In this paper, we continue in this direction the study of oscillatory properties of the ODE (1.1). The purpose of this paper is to improve and extend the above- mentioned results. Our results are more general than the previous results.

2. MAIN RESULTS

We state and prove here our oscillation theorems
Theorem2.1: Suppose that
(1) $\frac{1}{\Phi(1, v)}<\frac{1}{C_{0}}, C_{0}>0$,
(2) $\quad q(t)>0$ for all $t \geq t_{0}$.

Moreover, assume that there exist a differentiable function $\rho:\left[t_{0}, \infty\right) \rightarrow(0, \infty)$ and the continuous functions $h, H: D=\left\{(t, s): t \geq s \geq t_{0}\right\} \rightarrow \mathrm{R}$, the H has a continuous and non-positive partial derivative on D with respect to the second variable such that

$$
H(t, t)=0 \text { for } t \geq t_{o}, H(t, s)>0 \text { for } t>s \geq t_{0} .
$$

$$
-\frac{\partial}{\partial s} H(t, s)=h(t, s) \sqrt{H(t, s)} \quad \forall(t, s) \in D
$$

If
(3) $\limsup _{t \rightarrow \infty} \frac{1}{H\left(t, t_{0}\right)} \int_{t_{0}}^{t} r(s) \rho(s) \sigma^{2}(t, s) d s<\infty$,
where $\sigma(t, s)=\left[h(t, s)-\frac{\dot{\rho}(s)}{\rho(s)} \sqrt{H(t, s)}\right]$.
(4)
$\lim _{t \rightarrow \infty} \sup \frac{1}{H\left(t, t_{0}\right)} \int_{t_{0}}^{t} H(t, s) \rho(s)\left(C_{0} q(s)-p(s)\right) d s=\infty$.
Then, every solution of the ODE (1.1) is oscillatory.

Proof

Without loss of generality, we assume that there exists a solution $x(\mathrm{t})$ of the ODE (1.1) such that $\quad x(t)>0$ on $[T, \infty)$ for some $T \geq t_{0} \geq 0$
.We define the function $\omega(t)$ as

$$
\omega(t)=\frac{\rho(t) r(t) \dot{x}(t)}{g(x(t))}, t \geq T
$$

$H(t, t)=0 \quad$ for $t \geq t_{0} \quad$ and $\quad H(t, s)>0$ for $t>s \geq t_{0} . \quad H$ has a continuous and non-positive partial derivative on D with respect to the second variable such that
$-\frac{\partial}{\partial s} H(t, s)=h(t, s) \sqrt{H(t, s)}$ for all $(t, s) \in D$.
Then, equation (1.2) is oscillatory if
$\lim _{t \rightarrow \infty} \sup \frac{1}{H\left(t, t_{0}\right)} \int_{t_{0}}^{t}\left(H(t, s) q(s)-\frac{1}{4} h^{2}(t, s)\right) d s=\infty$.
Also, Philos [11] extended and improved Yan's result [15] by proving that H and h as in above, moreover, supposed that

$$
\begin{aligned}
& 0<\inf _{s \geq t_{0}}\left[\lim _{t \rightarrow \infty} \inf \frac{H(t, s)}{H\left(t, t_{0}\right)}\right] \leq \infty, \\
& \limsup _{t \rightarrow \infty} \frac{1}{H\left(t, t_{0}\right)} \int_{t_{0}}^{t} h^{2}(t, s) d s<\infty
\end{aligned}
$$

and assume that $\Omega(t)$ as in Yan's result [15] with

$$
\int_{t_{0}}^{\infty} \Omega_{+}^{2}(s) d s=\infty
$$

Then, equation (1.2) is oscillatory if

$$
\dot{\omega}(t) \leq \rho(t) p(t)-\rho(t) q(t) \Phi(1, v(t))+\frac{\dot{\rho}(t)}{\rho(t)} \omega(t)-\frac{k}{\rho(t) r(t)} \omega^{2}(t), t \geq T
$$

Where $v(t)=\omega(t) / \rho(t)$.
Then by condition (1), we have for all $t \geq T$

$$
\dot{\omega}(t) \leq \rho(t) p(t)-C_{0} \rho(t) q(t)+\frac{\dot{\rho}(t)}{\rho(t)} \omega(t)-\frac{k}{\rho(t) r(t)} \omega^{2}(t), t \geq T
$$

Integrate the last inequality multiplied by $H(t, s)$ from T to t, we have

$$
\begin{array}{rl}
\int_{T}^{t} H(t, s) \rho(s)\left(C_{0} q(s)-p(s)\right) d & s \leq H(t, T) \omega(T)-\int_{T}^{t}\left[-\frac{\partial}{\partial s} H(t, s)\right] \omega(s) d s+\int_{T}^{t} \frac{\dot{\rho}(s)}{\rho(s)} H(t, s) \omega(s) d s \\
& -\int_{T}^{t} \frac{k H(t, s)}{\rho(s) r(s)} \omega^{2}(s) d s \\
\leq & H(t, T) \omega(T)-\int_{T}^{t}\left[\frac{k H(t, s)}{\rho(s) r(s)} \omega^{2}(s)+\sigma(t, s) \sqrt{H(t, s)} \omega(s)\right] d s
\end{array}
$$

Where $\sigma(t, s)=h(t, s)-\frac{\dot{\rho}(s)}{\rho(s)} \sqrt{H(t, s)}$.
Hence, we have

$$
\begin{gather*}
\int_{T}^{t} H(t, s) \rho(s)\left(C_{0} q(s)-p(s)\right) d s \leq H(t, T) \omega(T)-\int_{T}^{t}\left[\sqrt{\frac{K H(t, s)}{\rho(s) r(s)}} \omega(s)+\frac{1}{2} \sqrt{\frac{\rho(s) r(s)}{k}} \sigma(t, s)\right]^{2} d s \\
+\int_{T}^{t} \frac{\rho(s) r(s)}{4 k} \sigma^{2}(t, s) d s \tag{2.1}\\
\text { Then, for } t \geq T, \text { we have } \\
\int_{T}^{t} H(t, s) \rho(s)\left(C_{0} q(s)-p(s)\right) d s \leq H(t, T) \omega(T)+\frac{1}{4 k} \int_{T}^{t} r(s) \rho(s) \sigma^{2}(t, s) d s, t \geq T
\end{gather*}
$$

Dividing the last inequality by $H(t, T)$, taking the limit superior as $t \rightarrow \infty$ and by condition (3), we obtain $\lim _{t \rightarrow \infty} \sup \frac{1}{H(t, T)} \int_{T}^{t} H(t, s) \rho(s)\left(C_{0} q(s)-p(s)\right) d s \leq \omega(T)+\frac{1}{4 k} \lim _{t \rightarrow \infty} \sup \frac{1}{H(t, T)} \int_{T}^{t} r(s) \rho(s) \sigma^{2}(t, s) d s<\infty$,
which contradicts the condition (4) in theorem2.1. Hence, the proof is completed.
Example2.1: Consider the differential equation

$$
\begin{equation*}
\left(\dot{x}(t) / t^{2}\right)^{\cdot}+t^{5}\left(x^{3}(t)+\frac{3 x^{9}(t)}{4 x^{6}(t)+\left(\dot{x}(t) / t^{2}\right)^{2}}\right)=\frac{x^{3}(t) \cos x(t)}{t^{7}}, t>0 . \tag{2.2}
\end{equation*}
$$

We have
$r(t)=\frac{1}{t^{2}}, q(t)=t^{5}, g(x)=x^{3}$,
$\Phi(u, v)=u+\frac{3 u^{3}}{4 u^{2}+v^{2}}$
and
$\frac{H(t, x(t))}{g(x(t))}=\frac{\cos (x(t))}{t^{7}} \leq \frac{1}{t^{7}}=p(t)$.
Let $H(t, s)=(t-s)^{2} \geq 0 \quad \forall t \geq s \geq t_{0}>0$, then, $\frac{\partial}{\partial s} H(t, s)=-2(t-s)$ and thus $h(t, s)=-2$.
Taking $\rho(t)=t^{2}$ such that
(1) $\lim _{t \rightarrow \infty} \sup \frac{1}{H\left(t, t_{0}\right)} \int_{t_{0}}^{t} r(s) \rho(s) \sigma^{2}(t, s) d s=\lim _{t \rightarrow \infty} \sup \frac{1}{H(t, T)} \int_{T}^{t} r(s) \rho(s)\left(h(t, s)-\frac{\dot{\rho}(s)}{\rho(s)} \sqrt{H(t, s)}\right)^{2} d s$ $=\limsup _{t \rightarrow \infty} \frac{1}{(t-T)^{2}} \int_{T}^{t}\left(-2-\frac{2}{s}(t-s)\right)^{2} d s$ $=\frac{4}{T}<\infty$,
(2) $\limsup _{t \rightarrow \infty} \frac{1}{H(t, T)} \int_{T}^{t} H(t, s) \rho(s)\left(C_{0} q(s)-p(s)\right) d s=\limsup _{t \rightarrow \infty} \frac{1}{(t-T)^{2}} \int_{T}^{t}(t-s)^{2}\left(C_{0} s^{7}-\frac{1}{s^{5}}\right) d s$

All conditions of Theorem2.1 are satisfied, then, the given equation (2.2) is oscillatory. Also the numerical solutions of the given differential

$$
=\infty .
$$

equation (2.2) are computed using the Runge Kutta method of the fourth order. We have

$$
\ddot{x}(t)=f(t, x(t), \dot{x}(t))=x^{3}(t) \cos (x(t))-\left(x^{3}(t)+\frac{3 x^{9}(t)}{4 x^{6}(t)+\dot{x}^{2}(t)}\right)
$$

with initial conditions $x(1)=-1, x(1)=0.5$ on
the functions r, q and f where we consider $H(t, x)=f(t) l(x)$ at $t=1, n=500$ and $h=0.198$. the chosen interval $[1,100$] and finding values of

Table 1: Numerical solution of ODE (2.2)

K	t_{k}	$\mathrm{x}\left(\mathrm{t}_{\mathrm{k}}\right)$
1	1	-1
2	1.198	-0.8435
3	1.396	-0.5933
4	1.594	-0.2797
5	1.792	0.0651
6	1.99	0.4025
7	2.188	0.6958
\cdot	\cdot	\cdot
14	-.574	-
15	3.772	-0.0124
16	3.97	-0.3534
\cdot	\cdot	-0.6553
24	.	\cdot
25	5.554	.
26	5.752	0.3033

Figure1: Solution curve of ODE (2.2)

Theorem2.2

Suppose, in addition to the conditions (1), (2) and (3) in theorem 2.1 hold that there exist continuous functions h and Hare defined as in Theorem2.1 and suppose that
(5) $0<\inf _{s \geq t_{0}}\left[\liminf _{t \rightarrow \infty} \frac{H(t, s)}{H\left(t, t_{0}\right)}\right] \leq \infty$.

If there exists a continuous function Ω on $\left[t_{0}, \infty\right)$ such that
(6)

$$
\limsup _{t \rightarrow \infty} \frac{1}{H(t, T)} \int_{T}^{t}\left[H(t, s) \rho(s)\left(C_{0} q(s)-p(s)\right)-\frac{1}{4 k} r(s) \rho(s) \sigma^{2}(t, s)\right] d s \geq \Omega(T)
$$

for $\quad T \geq t_{0}, \quad$ where
$\sigma(t, s)=h(t, s)-\frac{\dot{\rho}(s)}{\rho(s)} \sqrt{H(t, s)}, \mathrm{k}$ is a positive constant and a differentiable function $\rho:\left[t_{0}, \infty\right) \rightarrow(0, \infty)$ and
(7) $\int_{T}^{\infty} \frac{\Omega_{+}^{2}(s)}{\rho(s) r(s)} d s=\infty$.

$$
\begin{aligned}
& \limsup _{t \rightarrow \infty} \frac{1}{H(t, T)} \int_{T}^{t}\left[H(t, s) \rho(s)\left(C_{0} q(s)-p(s)\right)-\frac{1}{4 k} \rho(s) r(s) \sigma^{2}(t, s)\right] d s \leq \omega(T) \\
&-\limsup _{t \rightarrow \infty} \frac{1}{H(t, T)} \int_{T}^{t}\left[\sqrt{\frac{K H(t, s)}{\rho(s) r(s)}} \omega(s)+\frac{1}{2} \sqrt{\frac{\rho(s) r(s)}{k}} \sigma(t, s)\right]^{2} d s \\
&\left.\leq \omega(T)-\liminf _{t \rightarrow \infty} \frac{1}{H(t, T)} \int_{T}^{t}\left[\sqrt{\frac{k H(t, s)}{\rho(s) r(s)}} \omega(s)+\frac{1}{2} \sqrt{\frac{\rho(s) r(s)}{k}} \sigma(t, s)\right)\right]^{2} d s
\end{aligned}
$$

By condition (6), we get

$$
\omega(T) \geq \Omega(T)+\liminf _{t \rightarrow \infty} \frac{1}{H(t, T)} \int_{T}^{t}\left[\sqrt{\frac{k H(t, s)}{\rho(s) r(s)}} \omega(s)+\frac{1}{2} \sqrt{\frac{\rho(s) r(s)}{k}} \sigma(t, s)\right]^{2} d s
$$

This shows that

$$
\begin{equation*}
\omega(T) \geq \Omega(T) \text { for everyt } \geq T \tag{2.3}
\end{equation*}
$$

and

$$
\liminf _{t \rightarrow \infty} \frac{1}{H(t, T)} \int_{T}^{t}\left[\sqrt{\frac{k H(t, s)}{\rho(s) r(s)}} \omega(s)+\frac{1}{2} \sqrt{\frac{\rho(s) r(s)}{k}} \sigma(t, s)\right]^{2} d s<\infty,
$$

Hence,

$$
\begin{align*}
\infty & >\liminf _{t \rightarrow \infty} \frac{1}{H\left(t, t_{0}\right)} \int_{t_{0}}^{t}\left[\sqrt{\frac{k H(t, s)}{\rho(s) r(s)}} \omega(s)+\frac{1}{2} \sqrt{\frac{\rho(s) r(s)}{k}} \sigma(t, s)\right]^{2} d s \\
& \geq \liminf _{t \rightarrow \infty}\left[\frac{1}{H\left(t, t_{0}\right)} \int_{t_{0}}^{t} \frac{k H(t, s)}{\rho(s) r(s)} \omega^{2}(s) d s+\frac{1}{H\left(t, t_{0}\right)} \int_{t_{0}}^{t} \sigma(t, s) \sqrt{H(t, s)} \omega(s) d s\right] \tag{2.4}
\end{align*}
$$

Define
$U(t)=\frac{1}{H\left(t, t_{0}\right)} \int_{t_{0}}^{t} \frac{k H(t, s)}{\rho(s) r(s)} \omega^{2}(s) d s, t \geq t_{0}$
and
$V(t)=\frac{1}{H\left(t, t_{0}\right)} \int_{t_{0}}^{t} \sigma(t, s) \sqrt{H(t, s)} \omega(s) d s, t \geq t_{0}$.
Then, (2.4) becomes

$$
\begin{equation*}
\liminf _{t \rightarrow \infty}[U(t)+V(t)]<\infty \tag{2.5}
\end{equation*}
$$

Now, suppose that

$$
\begin{equation*}
\int_{t_{0}}^{\infty} \frac{\omega^{2}(s)}{\rho(s) r(s)} d s=\infty \tag{2.6}
\end{equation*}
$$

Then, by condition (5) we can easily see that

$$
\begin{equation*}
\lim _{t \rightarrow \infty} U(t)=\infty . \tag{2.7}
\end{equation*}
$$

Let us consider a sequence $\left\{T_{n}\right\}_{n=1,2,3, \ldots}$ in $\left[t_{0}, \infty\right)$ with $\lim _{n \rightarrow \infty} T_{n}=\infty$ and such that
$\lim _{n \rightarrow \infty}\left[U\left(T_{n}\right)+V\left(T_{n}\right)\right]=\liminf _{t \rightarrow \infty}[U(t)+V(t)]$.
By inequality (2.5) there exists a constant N such that
$U\left(T_{n}\right)+V\left(T_{n}\right) \leq N, n=1,2,3, \ldots$
From inequality (2.7), we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty} U\left(T_{n}\right)=\infty \tag{2.9}
\end{equation*}
$$

And hence inequality (2.8) gives

$$
\begin{equation*}
\lim _{n \rightarrow \infty} V\left(T_{n}\right)=-\infty \tag{2.10}
\end{equation*}
$$

By taking into account inequality (2.9), from inequality (2.8), we obtain
$1+\frac{V\left(T_{n}\right)}{U\left(T_{n}\right)} \leq \frac{N}{U\left(T_{n}\right)}<\frac{1}{2}$.
Provided that n is sufficiently large. Thus
$\frac{V\left(T_{n}\right)}{U\left(T_{n}\right)}<-\frac{1}{2}$,
which by inequality (2.10) and inequality (2.9) we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{V^{2}\left(T_{n}\right)}{U\left(T_{n}\right)}=\infty \tag{2.11}
\end{equation*}
$$

On the other hand by Schwarz's inequality, we have

$$
\begin{aligned}
V^{2}\left(T_{n}\right) & =\frac{1}{H^{2}\left(T_{n}, t_{0}\right)}\left[\int_{t_{0}}^{T_{n}} \sigma\left(T_{n}, s\right) \sqrt{H\left(T_{n}, s\right)} \omega(s) d s\right]^{2} \\
& \leq\left[\frac{1}{H\left(T_{n}, t_{0}\right)} \int_{t_{0}}^{T_{n}} \frac{\rho(s) r(s)}{k} \sigma^{2}\left(T_{n}, s\right) d s\right] \times\left[\frac{1}{H\left(T_{n}, t_{0}\right)} \int_{t_{0}}^{T_{n}} \frac{k H\left(T_{n}, s\right)}{r(s) \rho(s)} \omega^{2}(s) d s\right] \\
& =\frac{1}{H\left(T_{n}, t_{0}\right)} \int_{t_{0}}^{T_{n}} \frac{\rho(s) r(s)}{k} \sigma^{2}\left(T_{n}, s\right) d s \times U\left(T_{n}\right) .
\end{aligned}
$$

Thus, we have
$\frac{V^{2}\left(T_{n}\right)}{U\left(T_{n}\right)} \leq \frac{1}{H\left(T_{n}, t_{0}\right)} \int_{t_{0}}^{T_{n}} \frac{\rho(s) r(s)}{k} \sigma^{2}\left(T_{n}, s\right) d s$ for
large n.
By inequality (2.11), we have
$\frac{1}{k} \lim _{n \rightarrow \infty} \frac{1}{H\left(T_{n}, t_{0}\right)} \int_{t_{0}}^{T_{n}} r(s) \rho(s) \sigma^{2}\left(T_{n}, s\right) d s=\infty$.

Consequently,

Hence from inequality (2.3), we have $\int_{t_{0}}^{\infty} \frac{\Omega_{+}^{2}(s)}{r(s) \rho(s)} d s \leq \int_{t_{0}}^{\infty} \frac{\omega^{2}(s)}{r(s) \rho(s)} d s<\infty$,

$$
\begin{equation*}
\left.\left(\frac{\cdot x(t)}{t^{6}}\right)^{\bullet}+\frac{1}{t^{3}}\left(x^{7}(t)+\frac{x^{133}(t)}{9 x^{126}(t)+6\left(\dot{x}(t) / t^{6}\right.}\right)^{18}\right)=-\frac{x^{9}(t) \sin x(t)}{\left(x^{2}(t)+1\right)}, t>0 \tag{2.12}
\end{equation*}
$$

$$
\text { We note that } r(t)=\frac{1}{t^{6}}, q(t)=\frac{1}{t^{3}}, g(x)=x^{7}, \Phi(u, v)=u+\frac{u^{19}}{9 u^{18}+6 v^{18}} \text { and }
$$

$$
\frac{H(t, x(t))}{g(x(t))}=-\frac{x^{2}(t) \sin x(t)}{\left(x^{2}(t)+1\right)} \leq-\frac{x^{2}(t)}{\left(x^{2}(t)+1\right)} \leq 0=p(t) \quad \text { for } \text { all } t \geq t_{0}
$$

We let $H(t, s)=(t-s)^{2}>0$ forall $>s \geq t_{0}$,
all $t \geq t_{0}>0$.
thus $\frac{\partial}{\partial s} H(t, s)=-2(t-s)=h(t, s) \sqrt{H(t, s)}$ for
Taking $\rho(t)=6$ such that

$$
\begin{gathered}
\limsup _{t \rightarrow \infty} \frac{1}{H(t, T)} \int_{T}^{t} r(s) \rho(s) \sigma^{2}(t, s) d s=\lim _{t \rightarrow \infty} \sup \frac{1}{H(t, T)} \int_{T}^{t} r(s) \rho(s)\left(h(t, s)-\frac{\dot{\rho}(s)}{\rho(s)} \sqrt{H(t, s)}\right)^{2} d s \\
=\lim _{t \rightarrow \infty} \sup \frac{24}{(t-T)^{2}} \int_{T}^{t} \frac{1}{s^{6}} d s=0<\infty, \\
\inf _{s \geq t_{0}}\left[\liminf _{t \rightarrow \infty} \frac{H(t, s)}{H\left(t, t_{0}\right)}\right]=\inf _{s \geq t_{0}}\left(\liminf _{t \rightarrow \infty} \frac{(t-s)^{2}}{\left(t-t_{0}\right)^{2}}\right)=\inf _{s \geq t_{0}}(1)=1, \\
\limsup _{t \rightarrow \infty} \frac{1}{H(t, T)} \int_{T}^{t}\left[H(t, s) \rho(s)\left(C_{0} q(s)-p(s)\right)-\frac{r(s) \rho(s)}{4 k} \sigma^{2}(t, s)\right] d s \\
=\lim _{t \rightarrow \infty} \sup \frac{1}{H(t, T)} \int_{T}^{t}\left[\liminf _{t \rightarrow \infty}\left[\frac{H(t, s)}{H\left(t, t_{0}\right)}\right]<\infty,\right. \\
\end{gathered}
$$

Set $\Omega(T)=\frac{3 C_{0}}{4 T^{2}}$, then $\Omega_{+}(T)=\frac{3 C_{0}}{4 T^{2}}$ and
$\int_{T}^{\infty} \frac{\Omega^{2}+(s)}{r(s) \rho(s)} d s=\frac{3 C_{0}^{2}}{32} \int_{T}^{\infty} s^{2} d s=\infty$.

All conditions of Theorem2.2 are satisfied, thus, the given equation (2.12) is oscillatory. We also compute the numerical solutions of the given differential equation (2.12) using the Runge Kutta method of fourth order (RK4). We have

$$
\ddot{x}(t)=f(t, x(t), \dot{x}(t))=\frac{-x^{9}(t) \sin x}{x^{2}(t)+1}-\left(x^{7}(t)+\frac{x^{133}(t)}{x^{126}(t)+6(\dot{x}(t))^{18}}\right)
$$

with initial conditions $x(1)=-1, x(1)=0.5$ on
the functions r, q and f where we consider $H(t, x)=f(t) l(x)$ at $t=1, n=500$ and $h=0.198$.
the chosen interval $[1,100]$ and finding values of
Table 2: Numerical solution of ODE (2.12)

K	t_{k}	$x\left(\mathrm{t}_{\mathrm{k}}\right)$
1	1	-1
2	1.198	-0.89
3	1.396	-0.7673
\cdot	\cdot	\cdot
9	2.584	.
10	2.782	0.0081
11	2.98	0.1378
\cdot	\cdot	0.2674
-	6.346	\cdot
28	6.544	-0.1154
29	6.742	-0.245
30	\cdot	-0.3746
\cdot	.	\cdot
48	10.306	.
49	10.504	0.0579
50	10.702	0.187

Figure2: Solution curve of ODE (2.12)

3. RESULTS AND DISCUSSOIN

Through this paper, some oscillation criteria for solutions of a general ordinary differential of second order of the form (1.1) are presented. Our results are more general than the previous results as follows:

1. Theorem2.1 extends Kamenev's result [7] and Philos's result [10] who studied a special case of the equation (1.1) as $r(t) \equiv 1$,
$\Phi(g(x(t)), r(t) \dot{x}(t)) \equiv x(t)$ and $H(t, x(t)) \equiv 0$.
2. Results of Philos [10] and result of Kamenev [7] cannot applied to the given equation (2.2) in the example2.1.
3. Theorem2.2 extends and improves results of Philos [11] and results of Yan [15] who studied the
equation
as
$r(t) \equiv 1, \Phi(g(x(t)), r(t) x(t)) \equiv x(t)$ and $H(t, x(t)) \equiv 0$.
4. In addition, results of Philos [11] and results of Yan [15] cannot be applied to the differential equation (2.12) in the example2.2.

4. REFERENCES

[1]- X. Beqiri and E. Koci, New Oscillation and Non-oscillation Criteria For Second Order Nonlinear Differential Equations, Int. J. of Pur. and Appl. Math. 93(2)(2014), 155-163.
[2]- I. Bihari, An oscillation theorem concerning the half linear differential equation of the second order, Magyar Tud. Akad. Mat. Kutato Int.Kozl. 8 (1963), p. 275-280.
[3]- W. J. Coles, An oscillation criterion for the second order differential equations, Proc. Amer. Math. Soc. 19(1968), 755-759.
[4]- Fang Lu and Fanwei Meng, Oscillation theorems for superlinear second-order damped differential equations, Applied Mathematics and Computation 189 (2007) 796-804.
[5]- W. B. Fite, Concerning the zeros of the solutions of certain differential equations, Trans. Amer. Math. Soc. 19 (1918), p. 341352.
[6]- S. R. Grace, Oscillation theorems for nonlinear differential equations of second order, J. Math. Anal. Appl. 171 (1992) 220-241.
[7]- I. V. Kamenev, Integral criterion for oscillation of linear differential equations of second order, Math. Zametki 23 (1978), p. 249-251.
[8]- [8] A. G. Kartsatos, On oscillations of nonlinear equations of second order, J. Math. Anal. Appl. 24 (1968), p. 665-668.
[9]- Mokhatar Kirane and Yuri V. Rogovchenko, On oscillation of nonlinear second order differential equation with damping term,

Applied Mathematics and Computation 117 (2001), p. 177-192.
[10]- Ch. G. Philos, oscillation of second order linear ordinary differential equations with alternating Coefficients, Bull Astral. Math. Soc. 27 (1983), p. 307-313.
[11]- Ch. G. Philos, Oscillation theorems for linear differential equations of second order, Sond. Arch. Math. 53(1989), p.482-492
[12]- M. J. Saad, N. Kumaresan and Kuru Ratnavelu, Oscillation of Second Order Nonlinear Ordinary Differential Equation with Alternating Coefficients, Commu. in Comp. and Info. Sci. 283(2012), p. 367-373.
[13]- M. J. Saad, N. Kumaresan and Kuru Ratnavelu, Oscillation Criterion for Second Order Nonlinear Equations With Alternating Coefficients, Amer. Published in Inst. of Phys. (2013).
[14]- A. Wintner, A criterion of oscillatory stability, Quart. Appl. Math. 7 (1949), p. 115-117.
[15]- J. Yan, Oscillation theorems for second order linear differential equations with damping, Proc. Amer. Math. Soc. 98 (1986), p. 276-282.

