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 A B S T R A C T 

The This paper aims to consider and study some new properties in NG groups that consist of non-bijective 

transformations that are not a subset of symmetric groups. The regularity of these groups presents such 
as new results. Moreover, a new definition of anti-inverse NG groups is given. Some new results and 
properties are studied. 
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Introduction 

The theory of the transformation group is one of the parts 
of Mathematics [1].  The NG group was presented by 
Abdunabi [2] as a group consisting of non-bijective 
transformations from X to itself with respect to 
compositions mapping on a non-empty set X. These 
groups were problem 1.4 in [3]. In [4], Y. Wu and X.Wei 
present the conditions of the groups generated by non-
bijective transformations on a set. Authors in [5], 
introduce and study the regularity of these groups such 
as new results. In this paper, we introduce anti-inverse 
NG groups as a new result in NG groups. Moreover, some 
new results and properties are studied. 
Preliminary: 
In this section, recall some basic notations and study 
some properties of a non-empty and finite group that was 

used in our paper. For more detail, lots of abstract algebra 
and finite group theory can see [6],[7] and would be good 
supplementary sources for the theory needed here. 
Through this paper, P(X) denoted the set of all its 

transforms, the image of f is Im(f) for any fP(X).  
Definition 2.1. Suppose that A is a non-empty set. A 
binary relation  is an equivalence relation if it satisfies 
the following: 

1) 𝑎𝑎, for all 𝑎 ∈ 𝐴; 
2) I𝑓 𝑎𝑏 𝑡ℎ𝑒𝑛 𝑏𝑎 for all 𝑎, 𝑏 ∈ 𝐴; 
3) I𝑓 𝑎𝑏 , 𝑏𝑐 𝑡ℎ𝑒𝑛 𝑎𝑐. 𝑓𝑜𝑟 𝑎𝑙𝑙  𝑎, 𝑏, 𝑐 ∈ 𝐴.  

Definition 2.2.  The equivalence class of an equivalence 
relation on 𝑋 𝑖𝑠  [𝑥]~ = {𝑥 𝑋|𝑥~} , 𝑎𝑛𝑑 𝑋/ = {[𝑥]~ |𝑥𝑋} is 
said to be the quotient set of X relative to the equivalence 

relation .  

Propstion2.1 [2]. Suppose that NG is a group. For any 
𝑓𝑁𝐺 and the e the identity element of NG, 𝑒 =  𝑓 . 

Proof.  Let X= NG, for any xX, our goal is to show that 

[𝑥]𝑓 = [𝑥]𝑒 .  On one hand, if  𝑎[𝑥]𝑓 , 𝑖. 𝑒. 𝑓(𝑎) = 𝑓(𝑥).  We 

know X is a group with identity element e, there is a 

transformation f'X such that 𝑓′𝑓 = 𝑒 = 𝑓′𝑓.  Therefore, 

𝑒(𝑎)  =  𝑓′(𝑓(𝑎))  =  𝑓′(𝑓(𝑥)) = 𝑒(𝑥) , Which yields that 

a[𝑥]𝑒. 
 

() 𝐼𝑓 𝑦[𝑥]𝑒  𝑖. 𝑒. 𝑒(𝑎)𝑒(𝑦). 𝐻𝑒𝑛𝑐𝑒, 𝑓(𝑎) = (𝑓𝑒)(𝑎) = 𝑓(𝑒(𝑦)) =
(𝑓𝑒)(𝑦) = 𝑓(𝑦)𝑦[𝑥]𝑓 .  It follows that [𝑥]𝑒 =

 [𝑥]𝑒  for any 𝑥𝑋 = 𝑁𝐺,  as wanted. 

Remark 2.1. For proposition 2.1,  𝑓 = 𝑔 for any 

element 𝑓, 𝑔𝑁𝐺 . 
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Propstion2.2.[2] Suppose that f is an element (P(X)) and 
ˆf is the induced transformation of f on 𝑋/𝑓 , 𝑖. 𝑒 ˆ𝑓: 𝑋 /

𝑓  ⟶  𝑋/𝑓 , [𝑥]𝑓  ↦ [𝑓(𝑥)]𝑓 .  Then there exists  groups 

𝑁𝐺𝑃(𝐴) containing f as the identity element iff f2=f.  And, 
there is a group 𝑁𝐺𝑃(𝑋)  containing f as the identity 

element iff ˆf is bijective on 𝑋/𝑓.  

Proposition 2.3. Suppose that X is a non-empty set and 
𝑁𝐺𝑃(𝑋) is a group that is not a subset of Sn. Set 𝑁𝐺 =
 {ˆ𝑓 ⎸𝑓𝑁𝐺};  then ˆNG is a symmetric group on 𝑋/
 𝑎𝑛𝑑 : 𝑁𝐺 ⟶ ˆ𝑁𝐺, 𝑓 ↦ ˆ𝑓, is an isomorphism. 

Proof. Suppose that f, gNG and for any [𝑥]𝑋/
, 𝑤𝑒 ℎ𝑎𝑣𝑒  (𝑓𝑔)([𝑥])  =  [(𝑓𝑔)(𝑥)]  =  [𝑓(𝑔(𝑥))]  =
 (𝑓)([𝑔(𝑥)])  =  ((𝑓)(𝑔))([𝑥])(𝑓𝑔)  = (𝑓) (𝑔)   is a 
homomorphism. By the definition of ˆNG, it is obvious 

that  is surjective. 

Now, for any two elements f, gNG , put (𝑓)  =
(𝑔), 𝑖. 𝑒. [𝑓(𝑥)]  =  [𝑔(𝑥)],𝑥𝑋:  
Suppose that e is the identity element of NG, then 
[𝑓(𝑥)]𝑒  =  [𝑔(𝑥)]𝑒 ;  𝑥𝑋.  It follows that  𝑒(𝑓(𝑥))  =
 𝑒(𝑔(𝑥));  𝑥𝑋 . 𝐻𝑒𝑛𝑐𝑒, 𝑓(𝑥)  =  (𝑒𝑓)(𝑥)  =  𝑒(𝑓(𝑥))  =
 𝑒(𝑔(𝑥))  =  𝑔(𝑥),𝑥𝑋 . Therefore, f=g. Conclude that  is 

injective. Therefore,  is an isomorphism. 
3- New results 
In this section, new concepts in NG groups particularly 
on a set have three or four elements are introduce. 
 
Let consider a set A ={1,2,3},  there are 27 transformations 
maps from A ={1,2,3} to itself.  
Trans(A) as: {(1,1,1), (1,1,2), (1,1,3), (1,2,1), (1,2,2), 
(1,2,3), (1,3,1), (1,3,2), (1,3,3), (2,1,1), (2,1,2), (2,1,3), 
(2,2,1), (2,2,2), (2,2,3), (2,3,1), (2,3,2), (2,3,3), (3,1,1), 
(3,1,2), (3,1,3), (3,2,1), (3,2,2), (3,2,3), (3,3,1), (3,3,2), 
(3,3,3)} and S3  ={(1,2,3), (2,3,1), (3,1,2), (1,3,2), (3,2,1), 
(2,1,3)}. Some groups are subsets of Trans(X), but not 
subsets of the S3. The groups of order 2 are : 
NG1={(1,1,3),(3,3,1)}, 
NG2={(1,2,1),(2,1,2)},NG3={(1,2,2),(2,1,1)},NG4={(1,3,3),(3
,1,1)},NG5={(2,2,3),(3,3,2)},andNG6={(2,3,2),(3,2,3)}.  
Proposition 3-1[5]: Suppose that NG1 and NG2 are two 
NG-groups that are a not subset of S3, then the union and 
intersection of NG1 and NG2 are not necessary to be NG-
groups. 
Definition 3-1: An element f of NG is anti- inverse of NG 

if there exists g∈ NG such that 𝑓 = 𝑔 𝑎𝑛𝑑 𝑔𝑓𝑔 = 𝑓 . 
Definition 3-2. The NG-groups are anti-inverse 

semigroups if for every f NG, there exists anti- inverse 

element gNG. By 𝕭 to denote the class of anti-invers 

semi groups.  
Remark 3.1. 𝔗m,n denotes to the class of NG groups for 

which holds (∀ 𝑔 ∈ 𝑁𝐺)(∃𝑓 ∈ 𝑁𝐺)(𝑓m = 𝑔m ) (𝑓m =
(𝑓𝑔)m(𝑓n = 𝑓).      
Definition3.3. The NG-groups is called quasi-seperative 

if 𝑓𝑜𝑟 𝑎𝑛𝑦 𝑓, 𝑔 𝑁𝐺, 𝑓2 =  𝑓𝑔 = 𝑔2  𝑓 =  𝑔. 
Example 3-1:  Consider NG= {(1,1,3),(3,3,1)} ; If f=(1,1,3) 
and g=(3,3,1), then fgf=  (1,1,3) (3,3,1) (1,1,3)= (3,3,1) =g 
and gfg= (3,3,1) (1,1,3) (3,3,1) = (1,1,3)=f. By definition 3-
1, then NG is anti-inverse smigroup  
Remark 3.2- All NG groups that not subsets of S3 are 
anti-inverse semigroup. 
Definition 3.3. The NG groups is called weakly seperative 

if 𝑓2 = 𝑓𝑔 =  𝑔𝑓 =  𝑔2  𝑥 =  𝑦 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑓, 𝑔 𝑖𝑛 𝑁𝐺. 
Definition3.4. A NG groups is called seperative if  𝑓2 =
𝑓𝑔 𝑎𝑛𝑑 𝑔2 = 𝑔𝑓 𝑓 = 𝑔 𝑓2 = 𝑔𝑓 𝑎𝑛𝑑 𝑔2 = 𝑓𝑔 𝑓 = 𝑔. 

Proposition 3.2: Suppose that𝑁𝐺𝔅 , g∈ NG ((∀ 𝑔 ∈
𝑁𝐺)(∃𝑓 ∈ 𝑁𝐺)(𝑓2 = 𝑔2)  
Proof:Suppose that 𝑁𝐺𝔅, For all 𝑓𝑁𝐺, there exit anti 

element 𝑔𝑁𝐺 , 𝑓2 = 𝑓 from prpostion 2 −
2. since 𝑓 𝑖𝑠 𝑖𝑛𝑣𝑒𝑠𝑟 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 , 𝑡ℎ𝑒𝑛  (𝑔𝑓𝑔) = 𝑓, 𝑓𝑔𝑓 = 𝑔 . Thus, 

𝑓2 = (𝑔𝑓𝑔)𝑓 = 𝑔(𝑓𝑔𝑓) = 𝑔𝑔 = 𝑔2.    

Conversely, suppose that 𝑓2 = 𝑔2 ,  from prpostion 2 −

2, 𝑔 ∈ NG  ,  
Proposition 3.3: Suppose that 𝑁𝐺𝔅 and f ∈ NG, then g∈ 

NG,   

1) ((∀ 𝑔 ∈ 𝑁𝐺)(∃𝑓 ∈ 𝑁𝐺)(𝑔𝑓 = 𝑓3𝑔). 

2)  (∃𝑓 ∈ 𝑁𝐺)(𝑓 = 𝑓5). 

Proof: 
1) Suppose 𝑁𝐺𝔅, then g∈ NG.  𝑔𝑓 = (𝑓𝑔𝑓)(𝑔𝑓𝑔) =

𝑓(𝑔𝑓𝑔)𝑓𝑔 = 𝑓(𝑓𝑓)𝑔 = 𝑓3𝑔, from proposition 3.2.   
2)  𝑓 = 𝑔𝑓𝑔 = (𝑓3𝑔)𝑔 𝑓𝑟𝑜𝑚1, 𝑡ℎ𝑒𝑛 𝑓3𝑔2 =

𝑓3𝑓2 𝑓𝑟𝑜𝑚 𝑝𝑟𝑜𝑝𝑠𝑡𝑖𝑜𝑛 3.2, 𝑓 = 𝑓5 .  

Proposition 3.4: Suppose that 𝑁𝐺𝔅 and f ∈ NG, then g∈ 

NG , ((∀ 𝑔 ∈ 𝑁𝐺)(∃𝑓 ∈ 𝑁𝐺)((𝑓𝑔)2 = 𝑓2). 

Proof: from proposition 2-2 (((∀ 𝑔 ∈ 𝑁𝐺)(∃𝑓 ∈ 𝑁𝐺)(𝑓2 = 𝑔2). 

Since (∃𝑓 ∈ 𝑁𝐺)(𝑓 = 𝑓5 ) from proposition 3.3. (𝑓𝑔)2 =
(𝑓𝑔)(𝑓𝑔) = 𝑓(𝑔𝑓𝑔) = 𝑓𝑓 = 𝑓2 .  
Proposition 3.5: Every NG from 𝔗1,n(𝑛 ∈

𝑁(𝑛𝑢𝑡𝑟𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟𝑠) . 
Proof: from remark 3.1,  if m=1  𝔗1,n  is (∀ 𝑔 ∈ 𝑁𝐺)(∃𝑓 ∈

𝑁𝐺)(𝑓1 = 𝑔1)(𝑓1 = (𝑓𝑔)1(𝑓n = 𝑓). From which have (∀ 𝑔 ∈
𝑁𝐺)(∃𝑓 ∈ 𝑁𝐺)((𝑓2 = 𝑓).         
Conclusion 
 The semi group is anti-invers if for every element x in it, 
then there exists anti- inverse element y such that xyx=y 
and yxy=x. In this paper, we define the groups that not 
subset of symmetric groups as an anti-inverse santi-
inverse semigroupsproperties of these groups by a new 
definition have studied.  
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