

مجلة جامعة سبها للعلوم البحتة والتطبيقية Sebha University Journal of Pure & Applied Sciences

Journal homepage: www.sebhau.edu.ly/journal/index.php/jopas

Some Characteristics Of Ng-Groups

*Faraj. A. Abdunabia, Ahmed shletieta, Muatazz.A.Bashirb

^a Lecturer in Mathematics Department, AJdabyia University, Libya ^bDepartment of Mathematics, Faculty of Education, University of Benghazi

Keywords:A B S T R A C TSymmetric groupThe This paper aims to consider and study some new properties in NG groups that consist of non-bijective
transformations that are not a subset of symmetric groups. The regularity of these groups presents such
as new results. Moreover, a new definition of anti-inverse NG groups is given. Some new results and
properties are studied.

بعض خصائص مجموعات NG

* فرج أرخيص عبدالنبي1 و أحمد شليتيتب1 و معتز بشير2

¹ قسم الرياضيات، جامعة أجدابيا، ليبيا

² قسم الرياضيات، كلية التربية، جامعة بنغازي، ليبيا

الكلمات المفتاحية:	الملخص
الزمر المتماثلة فصمل التكافئ	تهدف هذه الورقة إلى دراسة بعض الخصائص الجديدة في الزمر NG التي تتكون من تحويلات غير تقابليه والتي
مصول المحالق زمر NG	لا يمكن أن تكون فئة جزئية من الزمرة المتماثلة. الانتظام في هذه الزمر يقدم كنتائج جديدة. علاوة على ذلك، تم
مضاد شبه الزمر	تقديم التعريف الجديد لزمر NG المضادة للانعكاس. بعض النتائج والخصائص الجديدة درست.

Introduction

The theory of the transformation group is one of the parts of Mathematics [1]. The NG group was presented by Abdunabi [2] as a group consisting of non-bijective transformations from X to itself with respect to compositions mapping on a non-empty set X. These groups were problem 1.4 in [3]. In [4], Y. Wu and X.Wei present the conditions of the groups generated by non-bijective transformations on a set. Authors in [5], introduce and study the regularity of these groups such as new results. In this paper, we introduce anti-inverse NG groups as a new result in NG groups. Moreover, some new results and properties are studied.

Preliminary:

In this section, recall some basic notations and study some properties of a non-empty and finite group that was used in our paper. For more detail, lots of abstract algebra and finite group theory can see [6],[7] and would be good supplementary sources for the theory needed here. Through this paper, P(X) denoted the set of all its transforms, the image of *f* is Im(f) for any $f \in P(X)$.

Definition 2.1. Suppose that A is a non-empty set. A binary relation ~ is an equivalence relation if it satisfies the following:

- 1) $a \sim a$, for all $a \in A$;
- 2) If $a \sim b$ then $b \sim a$ for all $a, b \in A$;
- 3) If $a \sim b$, $b \sim c$ then $a \sim c$. for all $a, b, c \in A$.

Definition 2.2. The equivalence class of an equivalence relation on *X* is $[x]_{\sim} = \{x \in X | x_{\sim}\}$, and $X/\sim = \{[x]_{\sim} | x \in X\}$ is said to be the quotient set of <u>X</u> relative to the equivalence relation \sim .

Propstion2.1 [2]. Suppose that *NG* is a group. For any $f \in NG$ and the e the identity element of NG, $\sim_e = \sim_f$.

Proof. Let X = NG, for any $x \in X$, our goal is to show that $[x]_f = [x]_e$. On one hand, if $a \in [x]_f$, *i.e.* f(a) = f(x). We know X is a group with identity element e, there is a transformation $f \in X$ such that f'f = e = f'f. Therefore, e(a) = f'(f(a)) = f'(f(x)) = e(x), Which yields that $a \in [x]_e$.

(\rightleftharpoons) If $y \in [x]_e$ i.e. e(a)e(y). Hence, $f(a) = (fe)(a) = f(e(y)) = (fe)(y) = f(y) \Rightarrow y \in [x]_f$. It follows that $[x]_e = [x]_e$ for any $x \in X = NG$, as wanted.

Remark 2.1. For proposition 2.1, $\sim_f = \sim_g$ for any element $f, g \in NG$.

Corresponding author:

E-mail addresses: faraj.a.abdunabi@uoa.edu.ly, (A. shletiet) Ahmed.shletiet@uoa.edu.ly, (M. A. Bashir) muatazz.bashir@uob.edu.ly Article History : Received 24 January 2022 - Received in revised form 25 July 2022 - Accepted 03 October 2022 **Propstion2.2.**[2] Suppose that *f* is an element (P(X)) and \hat{f} is the induced transformation of *f* on $X/\sim_f i.e^{\hat{f}:X}/\sim_f \to X/\sim_f [x]_f \mapsto [f(x)]_f$. Then there exists groups $NG_P(A)$ containing *f* as the identity element iff $f^2=f$. And, there is a group $NG_P(X)$ containing *f* as the identity element iff \hat{f} is bijective on X/\sim_f .

Proposition 2.3. Suppose that *X* is a non-empty set and $NG \subseteq P(X)$ is a group that is not a subset of S_n . Set $NG = \{ {}^{f} | f \in NG \}$; then ^{N}G is a symmetric group on *X*/ \sim and $\rho: NG \rightarrow ^{N}G, f \mapsto ^{f}f$, is an isomorphism.

Proof. Suppose that $f, g \in NG$ and for any $[x] \in X/$ ~, we have $\rho(fg)([x]) = [(fg)(x)] = [f(g(x))] =$

 $\rho(f)([g(x)]) = (\rho(f)\rho(g))([x]) \Rightarrow \rho(fg) = \rho(f) \rho(g) \Rightarrow \rho$ is a homomorphism. By the definition of NG, it is obvious that ρ is surjective.

Now, for any two elements $f, g \in NG$, put $\rho(f) = \rho(g), i.e.[f(x)] = [g(x)], \forall x \in X$:

Suppose that e is the identity element of NG, then $[f(x)]_e = [g(x)]_e$; $\forall x \in X$. It follows that e(f(x)) = e(g(x)); $\forall x \in X$. Hence, f(x) = (ef)(x) = e(f(x)) =

 $e(g(x)) = g(x), \forall x \in X$. Therefore, f=g. Conclude that ρ is injective. Therefore, ρ is an isomorphism.

3- New results

In this section, new concepts in NG groups particularly on a set have three or four elements are introduce.

Let consider a set A ={1,2,3}, there are 27 transformations maps from A ={1,2,3} to itself.

Trans(A) as: {(1,1,1), (1,1,2), (1,1,3), (1,2,1), (1,2,2), (1,2,3), (1,3,1), (1,3,2), (1,3,3), (2,1,1), (2,1,2), (2,1,3), (2,2,1), (2,2,2), (2,2,3), (2,3,1), (2,3,2), (2,3,3), (3,1,1), (3,1,2), (3,1,3), (3,2,1), (3,2,2), (3,2,3), (3,3,1), (3,3,2), (3,3,3)} and S3 = {(1,2,3), (2,3,1), (3,1,2), (1,3,2), (3,2,1), (2,1,3)}. Some groups are subsets of Trans(X), but not subsets of the S₃. The groups of order 2 are : NG1={(1,1,3),(3,3,1)},

 $NG2=\{(1,2,1),(2,1,2)\}, NG3=\{(1,2,2),(2,1,1)\}, NG4=\{(1,3,3),(3,1,1)\}, NG5=\{(2,2,3),(3,3,2)\}, and NG6=\{(2,3,2),(3,2,3)\}.$

Proposition 3-1[5]: Suppose that NG_1 and NG_2 are two NG-groups that are a not subset of S_3 , then the union and intersection of NG1 and NG2 are not necessary to be NG-groups.

Definition 3-1: An element f of NG is anti- inverse of NG if there exists $g \in NG$ such that f = g and gfg = f.

Definition 3-2. The NG-groups are anti-inverse semigroups if for every $f \in NG$, there exists anti- inverse element $g \in NG$. By **B** to denote the class of anti-inverse semi groups.

Remark 3.1. $\mathfrak{T}_{m,n}$ denotes to the class of NG groups for which holds $(\forall g \in NG)(\exists f \in NG)(f^m = g^m)$ $(f^m = (fg)^m(f^n = f).$

Definition3.3. The NG-groups is called quasi-separative if *for any* $f, g \in NG, f^2 = fg = g^2 \Rightarrow f = g$.

Example 3-1: Consider NG= $\{(1,1,3),(3,3,1)\}$; If f=(1,1,3) and g=(3,3,1), then fgf= (1,1,3) (3,3,1) (1,1,3)= (3,3,1) =g and gfg= (3,3,1) (1,1,3) (3,3,1) = (1,1,3)=f. By definition 3-1, then NG is anti-inverse smigroup

Remark 3.2- All NG groups that not subsets of S3 are anti-inverse semigroup.

Definition 3.3. The NG groups is called weakly separative if $f^2 = fg = gf = g^2 \Rightarrow x = y$ for all f, g in NG.

Definition3.4. A NG groups is called separative if $f^2 = fg$ and $g^2 = gf \Rightarrow f = g$ $f^2 = gf$ and $g^2 = fg \Rightarrow f = g$.

Proposition 3.2: Suppose that $NG \in \mathfrak{B}$, $g \in NG \Leftrightarrow ((\forall g \in NG)(\exists f \in NG)(f^2 = g^2))$

Proof:Suppose that *NG*∈𝔅, For all *f*∈*NG*, there exit anti element *g*∈*NG*, *f*² = *f* from prostion 2 – 2. since *f* is *invesr element*, *then* (*gfg*) = *f*, *fgf* = *g*. Thus, $f^2 = (gfg)f = g(fgf) = gg = g^2$. Conversely, suppose that $f^2 = g^2$, from prostion 2 –

2, *g* ∈ NG , **Proposition 3.3**: Suppose that $NG \in \mathfrak{B}$ and *f* ∈ NG, then g∈ NG,

1)
$$((\forall g \in NG)(\exists f \in NG)(gf = f^3g))$$
.

2) $(\exists f \in NG)(f = f^5).$

Proof:

1) Suppose $NG \in \mathfrak{B}$, then $g \in NG$. $gf = (fgf)(gfg) = f(gfg)fg = f(ff)g = f^3g$, from proposition 3.2.

2)
$$f = gfg = (f - g)g$$
 from 1, then $f - g - g$
 $f^{3}f^{2}$ from propostion 3.2, $f = f^{5}$.

Proposition 3.4: Suppose that $NG \in \mathfrak{B}$ and $f \in NG$, then $g \in NG$, $((\forall g \in NG)(\exists f \in NG)((fg)^2 = f^2))$. Proof: from proposition 2.2 (((\forall g \in NG))(\exists f \in NG))(f^2 = g^2))

Proof: from proposition 2-2 ((($\forall g \in NG$)($\exists f \in NG$)($f^2 = g^2$). Since ($\exists f \in NG$)($f = f^5$) from proposition 3.3. (fg)² = (fg)(fg) = $f(gfg) = ff = f^2$.

Proposition 3.5: Every NG from $\mathfrak{T}_{1,n}(n \in N(nutral numbers))$.

Proof: from remark 3.1, if m=1 $\mathfrak{T}_{1,n}$ is (∀ $g \in NG$)(∃ $f \in NG$)($f^1 = g^1$)($f^1 = (fg)^1$ ($f^n = f$). From which have (∀ $g \in NG$)(∃ $f \in NG$)(($f^2 = f$).

Conclusion

The semi group is anti-inverse if for every element x in it, then there exists anti-inverse element y such that xyx=y and yxy=x. In this paper, we define the groups that not subset of symmetric groups as an anti-inverse santi-inverse semigroupsproperties of these groups by a new definition have studied.

Ref:

- [1]- Katsuo Kawakubo , The Theory of Transformation Groups 1st, Oxford University (1992).
- [2]- Faraj.A.Abdunabi, Maximal Order of an NG-group, Libyan Journal of Basic Sciences (LJBS) Vol 13, No: 1, P 38- 47, April. (2021).
- [3]- I. Martin Isaacs, Finite Group Theory 1st Edition (American Mathematical Soc. 2008), Vol. 92.
- [4]- Y. Wu, X.Wei, Conditions of the groups generated by nonobjective transformations on a set. Journal of Hubei university (Natural Science) 27,1(2005).
- [5]-Faraj.A.Abdunabi, New result in NG-Groups, Al academia journal for Basic and Applied Sciences (AJBAS) volume 3/No. 3 - 2021 December.
- [6]- Hans Kurzweil, Bernd Stellmacher, The theory of finite groups (Universitext), Springer-Verlag New York, Inc., 2004.
- [7]- M. Aschbacher, Finite Group Theory,2nd edition, Cambridge University Press(2012).