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 A B S T R A C T 

This paper proposes and demonstrates novel methods for compressing and reconstructing 3D surface 

patches typically obtained from scanners that rely on stereo vision, structured light, or time-of-flight 

techniques. The methods involve applying a polygon reduction to the mesh to get a set of vertices lying 

in structured planes of a sparse, regular grid. The data in each plane is then described parametrically, and 

a comparative analysis is conducted using the Discrete Fourier Transform (DFT), Discrete Cosine 

Transform (DCT), and Discrete Wavelet Transform (DWT). Quality factors are employed to further 

process the transform coefficients, resulting in substantial reductions in the amount of data saved to disk. 

The paper also defines file formats with the necessary parameters for a complete reconstruction of the 

sparse mesh. Finally, elliptic Partial Differential Equations (PDE) are used to represent the reconstructed 

data, and the Laplace equation is iteratively solved between adjacent planes to recover the vertex density 

of the original mesh. Experimental results demonstrate the effectiveness of the proposed methods, 

achieving compression rates of over 98% compared to the OBJ file format and over 91% compared to a 

list of vertices in ASCII format.   

 وتقنيات التحويل وإعادة الإعمار باستخدام الأوصاف البارامترية 3Dكفاءة ضغط التصحيح السطحي 

 عبدالسلام عصمان بيت المال

 قسم الرياضيات، كلية العلوم، جامعة سبها ، سبها ، ليبيا

 

Introduction 

As 3D data becomes increasingly prevalent in various applications, 

such as computer graphics, virtual reality, and medical imaging, the 

need for efficient storage and transmission of 3D data has become a 

pressing issue. 3D data is typically large in size and requires 

substantial computing resources to process and analyse. Therefore, the 

development of efficient compression and reconstruction techniques 

 المفتاحية: الكلمات

 تقنيات الضغط

 الهندسة الحاسوبية

 نمذجة الكائنات

 تحويل جيب التمام المنفصل

 تحويل فورييه المنفصل

 تحويل المويجات المنفصلة

  3Dالبيانات  هياكل

 المعادلات التفاضلية الجزئية

 الملخص 

في هذه الورقة البحثية تم اقتراح طرق جديدة لضغط البيانات ثلاثية الأبعاد وإعادة بنائها. هده الطرق مناسبة 

سطح تخذذ بواسطة ماححات ضوئية وممرات للصور والاسطح ثلاثية الأبعاد ، وحيث ان بيانات هدة الصور والا 

، يتم تطبيق تقليل مضلع على الشبكة مما 
ً
مخصصة تطلق ضوء منتظم  تخزن على شكل بيانات شبكية. أولا

يؤدي إلى مجموعة من الرؤوس ملقاة في مستويات منظمة من شبكة منتظمة متفرقة. يتم تعريف المتجهات التي 

( DFTارامتري ويتم تقديم تحليل مقارن عبر تحويل فورييه المنفصل )تصف البيانات في كل مستوى بشكل ب

(. تتم معالجة معاملات التحويل DWT( وتحويل موجة منفصلة )DCTوتحويل جيب التمام المنفصل )

بشكل أمبر وفقًا لعامل الجودة الذي يقلل بشكل مبير من ممية البيانات المحفوظة في القرص. يتم تعريف 

ت مع المعلمات اللازمة لإعادة البناء الكامل للشبكة المتناثرة. أذيرًا، من أجل استعادة مثافة تنسيقات الملفا

( ويتم حلها PDEرأس الشبكة الأصلية، يتم تمثيل البيانات المعاد بناؤها بالمعادلات التفاضلية الجزئية  )

تسمح  لتجارب فعالية الطرق التيبشكل متكرر بين المستويات المجاورة فيما يتعلق بمعادلة لابلاس. توضح ا

مقارنة بقائمة الرؤوس في تنسيق  ٪89وأمثر من  OBJمقارنة بتنسيق ملف  ٪89بمعدلات ضغط تزيد عن 

ASCII. 
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for 3D data has become an active research area in recent years. In a 

latest 2012 article [1], Siew and Rahman present an evaluation of 

techniques for 3D data compression during the last decade. It is 

mentioned that the pervasiveness of XML in distributed applications 

makes it a natural candidate to represent the semantics of the 3D data 

structure. However, XML has a tendency to generate huge files that, 

mixed with geometry statistics might render any such scheme 

impractical. The essential issue lies in locating approaches to compress 

the geometry and connectivity of the data before coding the semantics 

into XML or ASCII. In a 2005 assessment article [2], Peng et al. 

evaluation technologies for three-D data compression with a selected 

consciousness on triangular meshes. A beneficial class of algorithms 

is offered either as connectivity-driven or geometry-driven. In an 

earlier 2003 survey of 3D compression methods [3], Alliez and 

Gotsman focus on compression techniques for single-rate and modern 

mesh coding based totally on geometry and connectivity. Compression 

techniques are therefore, focused on representing the geometry and 

connectivity of the vertices inside the triangulated mesh. Geometrical 

approaches aim to reduce the size of the mesh by simplifying its 

geometry and approaches include geometry coding [4], Generalized 

Triangle Mesh [5], triangulated model techniques [6], and 

quantization techniques [7], [2] where rates of over 80:1 have been 

achieved. Examples of coding connectivity include the topological 

surgery algorithm [8], and the Edgebreaker algorithm [9], [10]. 

Products additionally exist within the market that says a 95% lossless 

file reduction which includes 3D compression technology [11] for 

normal geometric shapes. 

The 3D compression methods proposed in this paper are derived from 

our studies on fast 3D reconstruction using structured light methods 

[12], [13], [14], [15], [16], [17], [18]. One of our main application 

areas concerns 3D face recognition and the exchange of data over the 

network is a major requirement. In [16] we proposed a technique for 

3D data compression and reconstruction based on polynomial 

interpolation. The method is suitable for data that can be defined as a 

single-valued function, which is typical of data acquired by standard 

3D scanners based on stereo vision, structured light or time-of-flight 

techniques. In this study, we explored the possibility of using arbitrary 

face meshes, not necessarily obtained from our scanner, by sampling 

the mesh to conform to a rectangular pattern. This allowed us to 

evaluate compression rates and test the usage of polynomial 

interpolations of various degrees. Our findings indicated that the 

polynomial compression method is suitable for smooth data, but when 

dealing with complex data, such as facial data, the required high 

degree of polynomials made the method unstable. Therefore, we 

suggested that alternative approaches should be investigated for such 

cases. 

The objective of this paper is to find ways to compress large data files 

that contain 3D models, while still maintaining the quality of face 

recognition techniques. The data model used in this study is a 

connected mesh of vertices with triangular faces, which is a common 

format for 3D computer-generated models. This format is supported 

by several standard file formats such as Collada, Java 3D OBJ, VRML, 

and Wavefront OBJ [19],[20],[21].The proposed methods in the study 

rely on a structured re-meshing of the surface, which involves polygon 

reduction to simplify the mesh. This results in a specific shape of 

vertices that leads to a simpler and more reliable triangulation system, 

compared to an arbitrarily related mesh. Arbitrary meshes may require 

complex triangulation algorithms such as Delaunay [22], which can 

increase the computational complexity and potentially reduce the 

accuracy of the reconstructed model. 

The polygon reduction approach employed in the study involves using 

sets of vertices that lie within a plane, and subjecting them to DFT 

(Discrete Fourier Transform), DCT (Discrete Cosine Transform), and 

DWT (Discrete Wavelet Transform) transforms. The resulting 

coefficients are then compressed using a quality factor, which is 

defined in Sections 2.2, 2.3, and 2.4 of the paper. The compressed 

coefficients are saved to ASCII files with specific structures that 

contain the necessary information to allow for reconstruction using 

inverse transforms of DFT, DCT, and DWT, padded with zeros where 

required. However, the issue of recovering the original mesh density 

before polygon reduction is addressed by defining the set of structured 

vertices as boundary conditions to elliptic PDEs (Partial Differential 

Equations), as described in Section 2.5 of the paper. The PDEs are 

then iteratively solved through the Laplace equation, which allows for 

the reconstruction of the original mesh density while preserving the 

quality of the compressed data. This approach aims to strike a balance 

between compression and accuracy, resulting in a more efficient and 

reliable method for reconstructing large data files containing 3D 

models.  Section 3 of the paper presents the experimental results 

obtained from using 16 high-density facial models. The original and 

reconstructed models are visualized under various quality parameters, 

allowing for a qualitative assessment of the compression and 

reconstruction methods employed. The paper also estimates error 

surfaces, along with their corresponding root mean square errors 

(RMSE), to provide a more objective assessment of quality. 

Furthermore, the paper provides information on common compression 

quotes for fine parameters ranging from 5 to 100 over the 16 models. 

Finally, the conclusions drawn from the study are presented in Section 

4 of the paper. 

 

2. Method 

2.1. Simplifying Polygons by Structured Vertex Reduction  

The method presented in this paper is applicable to surface patches 

that can be represented as a single-valued function in one dimension, 

which is expressed as an explicit function of two independent 

variables. An example of such data, which was captured using the 

structured light scanning technique employed in this study, is shown 

in Figures 1 and 2, with mesh details illustrated in Figure 3. In a 

surface patch, the vertical position of a point is determined by its "-

value". This means that the height of a function at any given point on 

the surface can be expressed as a function of its two-dimensional 

coordinates. The advantage of using a single-valued function is that it 

has a simple parametric form of; 

𝑃(𝑢, 𝑣) = (𝑢, 𝑣, 𝑓(𝑢, 𝑣)) (1) 

which makes it easier to manipulate and analyse. With normal 

vector 𝐧(𝑢, 𝑣) = (−𝛿𝑓/𝛿𝑢, −𝛿𝑓/𝛿𝑣, 1). Both 𝑢 and 𝑣 are the 

dependent variables for the function and 𝑢-contours lie in planes 

of constant 𝑥, and 𝑣-contours lie in planes of constant 𝑦. 

 

 
Fig. 1:  An instance of a 3D model with texture mapping 
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Fig. 2: Shaded 3D model generated using structured light method. 

 

When such patch is visualized in 3D using quads for instance, each 

edge of the polygon is a trace of the surface cut by a plane with 

𝑥 = 𝑘1and 𝑦 = 𝑘2  for some values of 𝑘1  and 𝑘2 . In a polygon 

reduction by explicit structured vertices, a randomly oriented surface 

patch is described in relation to a global coordinate system. The 

minimum bounding box of the patch in 3D is estimated by geometric 

algorithms (e.g. [23]). The patch must be rotated until its bounding box 

edges are aligned with the 𝑥−, 𝑦 −,  and 𝑧 -axes of the global 

coordinate system. For the face models used to demonstrate the 

concepts in this paper, the smallest dimension of the bounding box is 

aligned with the 𝑧-axis as this can assure that the face models are 

orientated successfully. 

 
         Fig. 3: An example of a textured 3D model. 

 

The correct orientation of the bounding box depends on the 

characteristics of the data but the general principle is that the 𝑧-

axis is normal to the image sensor in standard 3D scanners 

 
Fig. 4: Bounding box and structured cutting planes displayed. 

 

A number of structured cutting planes are defined within the 

boundaries of the bounding box; let us call these ‘horizontal’ and 

‘vertical’ cutting planes as illustrated in Figure 4 where, for clarity, 

only a few planes are shown. These planes are as a consequence, 

described as parallel to one of the 𝑥 or 𝑦-axes with normal vectors 
(1,0,0) and (0,1,0) respectively. The intersection of any two planes 

defines a line, and the point where such line intersects the mesh is 

defined as a structured vertex. Consequently, the number or the 

density of structured vertices can be controlled by the number of 

planes in either direction. An issue right here is that we cannot assure 

that the intersection of two planes on the mesh will rest on a vertex. 

More likely, it will intersect somewhere on a polygon’s face 

somewhere between vertices. A great approximation is to discover 

the three vertices at the mesh that are the nearest to the intersection 

line. Such vertices define a plane and it then becomes straightforward 

to determine the intersection point. Assume that the line has a 

starting point 𝑆 and direction 𝒄. The intersection line is given 

through 

 𝐿(𝑡) = 𝑆 + 𝑐𝑡 (2) 

The answer most effective involves finding the intersection point 

with the generic plane [24]. The generic plane is the 𝑥𝑦-plane or 

𝑧 =  0. The line 𝑆 +  𝒄𝑡 intersects the generic plane when  

𝑆𝑧 + 𝒄𝑧𝑡𝑖 = 0 where 𝑡𝑖 is 𝑡 ‘intersection’: 

 
𝑡𝑖 =

𝑆𝑧

𝐶𝑧
 

                      (3) 

From Equation 2, the line hits the plane at point 𝑃𝑖: 

 
𝑃𝑖 = 𝑆 − 𝐶 (

𝑆𝑧

𝐶𝑧
) 

                      

(4) 

The set of all points belonging to a particular plane is a subset of 

structured vertices [25]. Depending on the characteristics of the 

surface patch, the set of vertices lying in either horizontal or vertical 

planes can be selected. If the selected points lie in a plane with normal 

vector  (0,1,0), the distance between structured vertices in that plane 

is the distance between planes with normal (1,0,0) and vice-versa. 

Calling these distances 𝐷1  and 𝐷2 , the 𝑥  and 𝑦  coordinates of any 

structured vertex can be recovered for all planes 𝑘: 

 𝑥𝑟  = { 𝑟𝐷1, | 𝑟 = 1,2, … , 𝑘1 } (3) 

 𝑦𝑐 = { c𝐷2, | c = 1,2, … , 𝑘2 } (4) 

 z = { 𝑧𝑖 ,    | i = 1,2, … , 𝑘1𝑘2} (5) 

where (𝑟, 𝑐) are the indices of the planes. This is significant as, in a 

stroke, 2/3 of the 3D data can safely be discarded in a sense that it is 

not necessary to save the actual values (𝑥, 𝑦) of each vertex; instead, 

only 𝐷1, 𝐷2, 𝑘1  and 𝑘2  are kept for each plane. The number of 

structure planes is controlled by experimentation bearing in mind that 

the resulting structured vertices should still be representative of the 

original mesh. The 𝑧 -values can be expressed by Equation 1 as a 

single-valued function and estimated using Equation 4 for each 

combination of (𝑥𝑟 , 𝑦𝑐). If we choose to represent these as the set of 
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structured vertices belonging to planes with normal (0,1,0)  this is 

reduced to a 2𝐷 case in which on the horizontal axis we have exactly 

𝑘2 points with the constant step of 𝐷2and on the vertical axis we have 

their corresponding 𝑧-values. The above operations mean that starting 

from a surface patch with a complex polygonal arrangement, we 

achieve an established mesh in which the quantity of polygons is 

decreased and triangulation will become a trivial task, as it's miles 

most effective vital to connect vertices from adjacent planes. In other 

phrases, the mesh now incorporates an underlying express structure 

for triangulation. 

 

2.2 The DFT Technique 

Once experimental data are represented by the 𝑧 -values of each 

structured plane as specified in Section 2.1, the vertices lying in each 

plane can be considered as a one-dimensional signal and treated as 

a Fourier series [26]. The usefulness of the Fourier analysis is 

that we can break up any arbitrary periodic function into a set of 

simple terms that can be solved individually and then recombined to 

reconstruct the original signal to a high degree of accuracy. The 

Fourier transform is essentially a universal problem-solving 

technique. Its significance is based totally on the fundamental 

property that one can examine a particular relationship in the time 

domain from an entirely different viewpoint in the frequency 

domain. Simultaneous visualization of a function and its Fourier 

transform is often the key to successful problem solving [27]. The 

continuous Fourier transform is defined as 

f(v) = ℱ𝓉[f(t)](v) (6) 

                     = ∫ f(t)e−2πivtd
−∞

∞
t (7) 

If the integral exists for every value of the parameter 𝑓 then Equation 

9 defines 𝑓(𝑣), the Fourier transform of 𝑓(𝑡𝑘). Now consider the 

generalization to the case of a discrete function, 𝑓(𝑡) → 𝑓(𝑡𝑘) by 

letting 𝑓𝑘 ≡ 𝑓(𝑡𝑘),  where 𝑡𝑘 ≡ 𝑘Δ,  with 𝑘 = 0,1, . . . . 𝑁 − 1 . 

Writing this out gives the discrete Fourier transform 𝐹𝑛 =
ℱ𝓀[{𝑓𝑘}𝑘=0

𝑁−1](𝑛)as  

 Fn = ∑ fke−2πink/N

N−1

k=0

. (8) 

The inverse transform 𝑓𝑘 = ℱ𝓃
−1[{𝐹𝑛}𝑛=0

𝑁−1](𝑘) is then 

 fk =
1

N
∑ Fne2πikn/N

N−1

n=0

. (9) 

Discrete Fourier transforms are extremely beneficial due to the fact 

they reveal periodicities in input data as well as the relative strengths 

of any periodic components. There are a few subtleties in the 

interpretation of discrete Fourier transforms, however. In general, 

the discrete Fourier transform of a real sequence of numbers will be 

a sequence of complex numbers of the same length. Especially, if 𝑓𝑘 

are real, then 𝐹𝑁−𝑛 and 𝐹𝑛 are associated by using 

 FN−n = Fn (10) 

for 𝑛 = 0,1, . . . . . . , 𝑁 − 1, where 𝐹  denotes the complex conjugate. 

This means that the component 𝐹0 is always real for real data. As a 

result of the above relation, a periodic function will contain 

transformed peaks in not one, but two places. This happens because 

the periods of the input data become split into `positive' and `negative' 

frequency complex components. 

Table 1:  Text file format for 3D compression using DFT 

Line number ASCII data info 

1 k1 k2 D1 D2 Q   

2 v1 v2 a0 a6 L an bn 

. . . . . .       

N v1 v2 a0 a6 L an bn 

        

 

The set of Fourier coefficients are estimated for each plane and 

saved in plain ASCII format onto a file with 𝑁 lines of text where 

the first line contains header information followed by: 

 (𝑁 − 1) lines of data as defined in Table 1 where: 

1 line 1 contains header info, 

2 – N lines 2 to 𝑁 contain data, 

𝑘1, 𝑘2 are the scale factors or distance 

between two consecutive 

horizontal and two consecutive 

vertical planes in mm, 

𝐷1, 𝐷2 are the dimensions of the data in number of 

rows and columns, 

𝑣1, 𝑣2 are the first and last valid vertices for each 

row of data, 

𝑄 the quality of the compression in percentage 

from 1 to 100, 

𝑎0, 𝑎6 are the scalar Fourier coefficients for each 

row of data, 

𝐿 the vector length of Fourier coefficients, 

𝑎𝑛, 𝑏𝑛 the vector real and imaginary Fourier 

coefficients for each row of data. 

The parameter 𝑄 is defined as the quality of the compression and 

is expressed in percentage. It refers to the percentage of 

coefficients to keep and it is applied slightly differently for 

DFT, DCT and DWT. A compression of DFT coefficients only 

applies to the set of imaginary coefficients. Commonly, most 

imaginary coefficients for high frequency signals are zero or close 

to zero, and the most significant ones are the few first ones. So, the 

options we faced were either to force any value below a certain 

threshold to zero or simply discard a percentage from the end of 

the vector which is the chosen option for its simplicity of operation. 

In this manner, we guarantee to maintain the most relevant ones 

even for low values of quality. A quality 𝑄 =  100 means do 

not discard any coefficient while   𝑄 =  30 means discarding 

70% of them returned to the front. 

2.3 The DCT approach 

The DCT transform and its variants have been used in a variety of 

contexts most notably in image and video compression 

[28],[29],[30]. DCT is a close relative to the DFT transform as it 

defines a sequence of data in terms of the sum of the cosine 

functions at different frequencies. It can be seen as the ’real’ 

version of the DFT in which the basis vectors contain only co-

sinusoidal patterns. Even as a DFT consists of real and imaginary 

components the DCT operates on data with even symmetry which 

means that a DCT is equivalent to a DFT with approximately twice 

the length of the data. In practice, it would be equivalent to a DFT 

by m e a n s  o f  doubling the sampling data and transferring the 

added data to the end of the signal. There are numerous variations 

of the DCT and here we use the unitary discrete cosine transform as 

defined in Matlab [31]. The DCT transform of a one-dimensional 

signal 𝑧  representing the depths on each structured plane is 

expressed as: 

 y(k) = w(k) ∑ z(n) cos (
π(2n − 1)(k − 1)

2N
)

N

n=1

 (11) 

for 𝑘 = 1,2, … 𝑁 where 𝑁 is the length of the signal and 

 
𝑤(𝑘)  = {

1/√𝑁       𝑓𝑜𝑟 𝑘 = 1         

√2/𝑁        𝑓𝑜𝑟 2 ≤ 𝑘 ≤ 𝑁 
  

 

(12) 

The length of the coefficients 𝑦 is the same as the original signal 𝑧. 

The advantage here is that it is only necessary for a few coefficients to 

reconstruct the signal. Most signals can be described with over 99% 

accuracy by using only a handful of coefficients. 

The inverse cosine transform recovers the original signal from the set 

of coefficients 𝑦(𝑘): 

 𝑧(𝑛) = ∑ 𝑤(𝑘)𝑦(𝑘)

𝑁

𝑘=1

cos (
π(2𝑛 − 1)(𝑘 − 1)

2𝑁
) (13) 
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for 𝑛 = 1,2, … 𝑁 where 𝑁 is the length of the coefficients in Equation 

13. 

Table 2: Text file format for 3D compression using DCT 

Line number ASCII data info 

1 𝑘1 𝑘2 𝐷1 𝐷2 𝑄 
2 𝑣1 𝑣2 𝐵1   

.\ .\ . .\ .\ .     

𝑁 𝑣1 𝑣2 𝐵𝑁   

 

The parameters depicted in Table 2 are saved in simple ASCII 

format where 𝐵𝑖  is the set of DCT coefficients estimated by 

Equation 13 and shortened by using parameter 𝑄. In different words, 

the number of coefficients 𝑖 to be saved is defined by the floor of 

𝑖 =  𝑘𝑄/100.  The alternative parameters in Table 2 are as 

defined in Section 2.2. 

2.4 The DWT Method 

The DWT transform [32-35] is a time-scale representation of a signal 

acquired through digital filtering techniques wherein the signal to be 

analysed is passed through filters with different cut-off frequencies 

at different scales. The approach is realised by iteration and the 

resolution of the signal which determines the amount of 

information in the signal can be controlled by subsampling (up and 

down) operations. For a given signal two sets of coefficients are 

computed referred to as the approximation coefficients A and detail 

coefficients𝐷 . The 𝐴 coefficients are obtained by convolving the 

signal with a low-pass filter and the 𝐷  are obtained by 

convolving with a high-pass filter. As the signal is decomposed by 

the half band filters this results in signals spanning only half the 

frequency band. This doubling of frequency resolution reduces 

uncertainty in frequency by half. Following Nyquist's rule, the signal 

can now be down sampled by discarding half the samples with no 

loss of information. The result is that while the half band low pass 

filtering removes half the frequencies thus halving the resolution, a 

decimation by 2 halves the time resolution and thus doubles the 

scale. Convolving the signal 𝑧(𝑛) with a half band digital low pass 

filter with impulse response ℎ(𝑛) can be described in discrete time 

as: 

 x(n) ∗ h(n) = ∑ x(k)

∞

k=−∞

. h(n − k) (14) 

Applying the Nyquist rule by subsampling the signal by 2 can be 

represented as 

 y(n) = ∑ h(k)

∞

k=−∞

. x(2n − k) (15) 

Equation 17 is used for both high pass and low pass filtering 

operations. This one level decomposition can be expressed as: 

 yhigh = ∑ x(n)

n

. g(2k − n) (16) 

 ylow = ∑ x(n)

n

. h(2k − n) (17) 

where 𝑦ℎ𝑖𝑔ℎ and 𝑦𝑙𝑜𝑤 are the outputs of high and low pass filters after 

decimation by 2. In order to reconstruct the original signal, the 

procedure is straightforward given that halfband filters form 

orthonormal bases. At every level of decomposition, the signal is up 

sampled by two, filtered through high pass and low pass synthesis 

filters 𝑔′(𝑛) and ℎ′(𝑛) and then summed over. Thus, for every level 

of decomposition the recovered signal is represented as 

x(n) = ∑ (yhigh(k). g(−n + 2k)) (ylow(k). h(−n

∞

k=−∞

+ 2k)) 

(18) 

It is crucial to note that if the filters are not ideal half band, then perfect 

reconstruction is not possible. Even as it is clear that perfect filters 

aren't feasible to comprehend, some filters under some conditions can 

offer the best reconstruction. The maximum used and correct ones are 

Daubechies filters additionally known as Daubechies wavelets [34] 

and these are the ones used in the experimental results described in the 

next section. Moreover, with the purpose to save the DWT coefficients 

to a text file for subsequent reconstruction it is necessary to decide on 

the number of levels of decomposition. We set for 3 levels as no 

significant gain is achieved with further levels for the examined facial 

data. 

Table 3: Text file format for 3D compression using DWT 

Line number ASCII data info 

1 𝑘1 𝑘2 𝐷1 𝐷2 𝑄    
2 𝑣1 𝑣2 𝐿1 𝐿2 𝐿3 𝐿4 𝐿5 𝐶 

. . . . . .        

𝑁 𝑣1 𝑣2 𝐿1 𝐿2 𝐿3 𝐿4 𝐿5 𝐶 
 

The parameters 𝑘1, 𝑘2, 𝑣1, 𝑣2, 𝐷1, 𝐷2 and 𝑄 in Table 3 are defined in 

Section 2.2 and the introduced parameters are related to the 

approximation and detail coefficients for a 3-level decomposition as 

follows 

𝐿1is the length of approximation coefficients level 3 (𝐴3), 
𝐿2 is the length of detail coefficients level 3 

(𝐷3), 𝐿3 is the length of detail coefficients level 

2 (𝐷2), 𝐿4is the length of detail coefficients level 

1 (𝐷1), 𝐿5 is the length of the original signal, 

𝐶 are the coefficients to save 

Note that the number 𝑛 of coefficients to save depends on the quality 

factor and it is defined as the floor of (length(𝐶) 𝑄/100)as before. 

For any value of quality 𝑄 < 100 implies discarding some of the 

detail coefficients 𝐷1, 𝐷2, and 𝐷3 in that order. Upon reconstruction, 

these are padded with zeros. The algorithm for discarding 

coefficients is as follows: 

1. Estimate (𝑑 = (𝑙𝑒𝑛𝑔𝑡ℎ 𝐶) − 𝑛) as the number of 

detail coefficients to discard. 

2. If 𝑑 > 𝐿4 + 𝐿3 discard all from 𝐷1 and 𝐷2 plus some or 

all from 𝐷3, 

3. If 𝑑 > 𝐿4 discard all from 𝐷1 plus some or all from 𝐷2, 

4. If 𝑑 ≤ 𝐿4 discard some or all from 𝐷1. 

Observe that the approximation coefficients level 3 are not subject to 

compression. In that case, the quality of the reconstructed data is 

largely deteriorated. The method proposed here uses a 3-level 

decomposition; if further levels are required then the saved data and 

the algorithm above needs to be adjusted accordingly. 

2.5 The PDE approach 

Consider the high-density mesh depicted in Figure 3. The 

polygon reduction by structured planes as described in Section 2.1 

will substantially reduce the number of vertices (by a factor of 

4 in   the experiments described in Section 3). Upon compression 

by DFT, DCT and DWT, we would not be able to recover the 

original mesh density due to the very nature of polygon reduction. 

We propose that using structured planes as boundary conditions to 

elliptic Partial Differential Equations can successfully be used to 

recover the original mesh density. PDEs have been used to solve a 

variety of problems in science and engineering [36], [37],  which 

include 3D data parameterization and reconstruction and image 

processing [38]. The problem we are trying to solve has no 

dependency on time, as we wish to generate a solution between two 

functions geometrically defined as single-valued. To this end, we can 

represent the problem by an elliptic PDE without a derivative in  by 

the Laplace equation that's the simplest elliptic PDE with a properly-

advanced idea: 

 

Δ𝑢 = 𝑢𝑥𝑥 + 𝑢𝑦𝑦 = 0 

   

if 𝑥 ∈ 𝑅, 𝑦 > 0 

(19) 

Where and are spatial independent variables in Cartesian coordinates 

and 𝑢𝑥𝑥  and 𝑢𝑦𝑦  are the second derivatives. Note that with no 

derivatives in elliptic PDEs require no initial conditions, i.e., they are 

entirely boundary value PDEs. In order to solve this class of PDE, 

Schiesser [37] describes the Method of Lines (MOL) which is based 

on a well-established numerical procedure for solving PDEs in 

rectangular and cylindrical coordinates. The method generates 

surfaces from the solutions to elliptic PDEs, where boundary 

conditions are used to control the surface shape. The MOL is regarded 

as a special finite difference method (FDM) however is more powerful 
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with respect to accuracy and computational time than the ordinary 

FDM [25]. 

By using the method of separation of variables the solutions to 

Equation 21 are subject to the set boundary conditions as in Figure 

4. Subsequently, the solution will be a harmonic function in the upper 

half-plane. On the x-axis we require Dirichlet boundary conditions 

of the form: 

 𝑅 =  {(𝑥, 𝑦) | 0 ≤  𝑥 ≤  𝑎, 0 ≤  𝑦 ≤  𝑏} (20) 

Where two cases are identified: 

 𝑢(0, 𝑦)  =  𝑢(𝑥, 𝑏)  =  𝑢(𝑥, 0)  =  0 (21) 

For 𝑢(𝑥, 𝑦) satisfying the homogeneous boundary conditions, and 

 𝑢(𝑎, 𝑦)  =  𝑓(𝑦) (22) 

 

Fig. 5: Dirichlet boundary problem for a rectangular domain. 

 

for 𝑢(𝑥, 𝑦) satisfying the non-homogeneous boundary condition, 

where 𝑓 is a given function. Note that the Laplace equation itself and 

the homogeneous boundary conditions satisfy the super- position 

principle; this means that if 𝑢1 and 𝑢2 satisfy these conditions, so does 

𝑐1𝑢1 + 𝑐2𝑢2,  for any choice of constants 𝑐1  and𝑐2 . To satisfy the 

homogeneous boundary conditions of Equation 23, the solution to 

Equation 21 is given as: 

 Y(y) = A cosh(nπy/b) + B sinh(nπy/b) (23) 

where 𝐴  and 𝐵  are constants of integration, and the boundary 

condition 𝑌(0)  = 0  implies that 𝐴 =  0 . Thus, we find that the 

nontrivial product solutions to Laplace's equation together with the 

homogeneous boundary conditions are constant multiples of 

 un(x, y) = sin(nπx/b) sinh(nπy/b). (24) 

These functions satisfy the differential Equation 21 and all the 

homogeneous boundary conditions for each value of 𝑛. To satisfy the 

remaining non-homogeneous boundary condition at 𝑥 = 𝑎 we assume 

that we can represent the solution 𝑢(𝑥, 𝑦) in the form 

 

u(x, y) = ∑ cn

∞

n=1

un(x, y)

= ∑ cn sin(nπx

∞

n=1

/b) sinh(nπy/b). 

(25) 

The coefficients 𝑐𝑛 are determined by the boundary condition 

 
u(a, y) = ∑ cn sin(nπa/b) sinh(nπy/b)

∞

n=1

= f(y). 

(26) 

Therefore, the quantities 𝑐𝑛 sinh(𝑛π𝑎/𝑏) must be the coefficients in 

the Fourier sine series of period 2𝑏 for 𝑓 and are given by 

 cn𝑠𝑖𝑛ℎ
nπa

b
=

2

b
∫ f(y)sin

nπy

b

b

0

dy (27) 

Thus, the solution to Equation 21 satisfying the boundary conditions 

of Equation 23 is given by Equation 27 with the coefficients 𝑐𝑛 

computed from Equation 29. From Equations 27 and 29 we see that 

the solution contains the factor sinh(𝑛π𝑥/𝑏) / sinh(𝑛π𝑎/𝑏). To 

estimate this quantity for large values of  𝑛  we can use the 

approximation sinh θ ≅ 𝑒θ/2, and thereby obtain 

 

sinh(nπx/b)

sinh(nπa/b)
≅

exp(nπx/b) /2

exp(nπa/b) /2
= exp[−nπ(a − x)/b] 

(28) 

Thus, this factor has the character of a negative exponential; 

consequently, the series of Equation 27 converges quite rapidly unless 

𝑎 − 𝑥 is very small. Results are described in the next Section. 

 

3. Experimental Procedures and Findings 

 

Our experimental setup consisted of three sets of tests. In the first set, 

we applied DFT, DCT, and DWT transforms to points situated in a 

single plane. The second set involved performing the same transforms 

on multiple planes, while the third set focused on using DFT, DCT, 

and DWT on multiple planes in conjunction with PDE reconstruction. 

In our experiments, we employed a set of 16 3D models to evaluate 

the performance of different compression techniques. Figure 6 shows 

one of these models, a human head with high complexity and detail, 

which we used for illustration purposes throughout our analysis. This 

particular model was chosen for its challenging characteristics, 

making it a useful test case for evaluating the effectiveness of different 

compression algorithms for 3D data. Detailed statistics and error 

analysis for each model are presented in the following sections. 

 

Fig. 6: The 3D model used for illustration of compression 

techniques. 

3.1 Compression of 3D Data by Applying DFT, DCT, and DWT to 

Vertices Lying in a Single Plane. 

 

Our initial experiment aimed to evaluate the effectiveness of our 

method and computer programs when applied to a set of vertices 

situated on a single plane. To select a representative complex curve 

from the dataset, we chose a plane that intersected the 3D model 

shown in Figure 6 and included the tip of the nose. We then applied 

each compression technique in sequence and recorded the results, 

which are displayed in Figures 7 and 8, that shows the three-level 

DWT decomposition and reconstruction of the planar 3D data, 

demonstrating the steps involved in applying DWT to the vertices and 

showing the reconstructed data. We compared the performance of this 

method to other compression techniques in our analysis.  

 



Efficient 3D Surface Patch Compression and Reconstruction using Parametric Descriptions and Transform Techniques                        Beitalmal. 

JOPAS Vol.22 No.  1 2023                                                                                                                                                                           113 

 

Fig. 7: DWT 3-level decomposition and reconstruction of vertices in 

a single plane. 

 

During this stage of the experiment, the quality parameter was set to 

𝑄 =  100, as no compression was applied to the data. It's worth noting 

that the last point of the DFT transform is spurious due to periodicity, 

as reconstruction is performed within the range  0.0, . . . , 2𝜋. Due to 

the periodicity of the DFT transform, the last point of each 

reconstructed plane will join up with the first point. Therefore, the last 

point is redundant and needs to be deleted from the reconstructed data 

for each plane. 

To clarify how compression would be applied to each of these curves 

with a quality parameter 𝑄 =  50 , we can examine the specific 

modifications required for each transform method. For the DFT curve, 

the bottom half of the imaginary components would be discarded, 

meaning that these coefficients would not be saved to disk. When 

reconstructing the data using the inverse DFT, the missing coefficients 

are padded with zeros. For DCT, the bottom half of the coefficients in 

Equation 13 would simply be discarded and then padded with zeros 

upon reconstruction using the inverse DCT. For the DWT method, 

only the detail coefficients 𝐷1, 𝐷2, and 𝐷3 from the high pass filter 

are subject to compression (as shown in Equation 18). In this case, 

50% of all detail coefficients would be discarded, starting with D3, 

then 𝐷2, and finally 𝐷1. It's important to note that before discarding 

any of 𝐷2, all coefficients from 𝐷1 must be discarded, and the same 

applies to 𝐷3 in relation to 𝐷2. Upon reconstruction with the inverse 

DWT, all missing coefficients are padded with zeros. It's worth noting 

that the approximation coefficients 𝐴3 are not subject to compression. 

 

 

Fig. 8: Reconstruction of 3D models using DFT and DCT 

compression methods applied to vertices lying in a single plane. 

3.2 Extending Transform Methods to Multiple Planes for 

Compression of 3D Data: DFT, DCT, and DWT. 

In order to evaluate the ability of DFT, DCT, and DWT transforms to 

handle more complex datasets, we extended their application to 

multiple planes intersecting the 3D model shown in Figure 6 and 

analysed the results. Our objective was to illustrate the quality of the 

resulting reconstructed models and error surfaces under different 

compression rates. We used quality parameters of 𝑄 =  100  (no 

compression) and 𝑄 =  50 (50% compression) for both qualitative 

and quantitative assessments of the models. Two sets of experiments 

were conducted: the first to test the effectiveness of the techniques on 

a sparse mesh with simple compression and uncompressing, and the 

second to recover the high-density mesh using the PDE technique. It's 

important to note that in both cases, the compressed model is the 

sparse mesh, but the PDE technique allows us to recover the original 

mesh density. Without PDE, we can only recover the sparse mesh. 

In order to implement our approach, we first performed polygon 

reduction as defined in Section 2.1. The density of the resulting sparse 

mesh is determined by the number of structured planes, which is a 

function of the horizontal and vertical distances between planes (𝐷1 

and 𝐷2 in Equations 5 and 6). For the face models, we found that 

spacing each horizontal plane 3mm apart was adequate, with 0.25mm 

(or 4 points per millimetre) data points along each plane to capture all 

the nuances of the face. 
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Fig. 9: Quality Q = 100. Top row: reconstructed models DFT (blue) 

DCT (red) and DWT (green). Bottom row: respective error surfaces 

 

These choices reduced the number of vertices by a factor of 4 from the 

original dense mesh shown in Figure 3. Similar distances between 

planes were used for each model tested, with the actual number of 

planes depending on the original extension of its bounding box. 

After compression and saving to disk, we evaluated the resulting 

uncompressed models with quality parameter 𝑄 =  100  and their 

respective error surfaces (a numerical quantification of error surfaces 

is presented below) in Figure 8. Overall, we found that all three 

compression techniques could effectively compress and uncompress 

3D data, as evidenced by the general appearance of the reconstructed 

models. The lowest row of Figure 8 shows the error surfaces, which 

were estimated by subtracting the reconstructed version from the 

sparse mesh.  

 

Fig. 10: Quality Q = 50. Top row: reconstructed models DFT (blue) 

DCT (red) and DWT (green). Bottom row: respective error surfaces. 

A perfect match between the two versions would result in an error 

surface lying in the 𝑥𝑦 plane with all coordinates 𝑧 =  0. The error 

surface of the DFT method shows relatively large errors in more 

complex areas of the face, such as around the nose and at the 

boundaries. In contrast, both DCT and DWT exhibit flat surfaces with 

errors at or near zero. Based on these observations, it is clear that DCT 

and DWT are better techniques, and they appear to be equivalent for 

compression and uncompressing with a quality parameter of 100. The 

results for compression using a quality parameter of 50 are shown in 

Figure 10. Once again, the DFT approach exhibits a relatively larger 

error surface, highlighting the superiority of both DCT and DWT 

techniques for compression. The DCT transform shows small errors 

mostly at the boundary of the model, while the DWT technique has 

the error distributed along the surface, and there is a noticeable high-

frequency ripple pattern in the green model. The next step was to 

recover the original mesh density using the PDE method described in 

Section 2.5. For each pair of structured planes, we used them as 

boundary conditions for an elliptic PDE, and the distance 𝐷1 was used 

to estimate the discrete step 𝛥𝑥 between any two planes. Since the 

distance between planes is 3mm, it was necessary to solve the Laplace 

equation using 5 steps (2 at the boundaries and 3 internal steps), 

resulting in a mesh density with an average quad face area of exactly 

0.75 ×  0.25𝑚𝑚 . This is comparable to the original high-density 

mesh, where the average area of each quad face is 0.75 ×  0.26𝑚𝑚. 

The outcomes of using the PDE method are illustrated in Figures 11 

and 12 for quality parameters of 100 and 50, respectively. One primary 

observation is that solving the Laplace equation over the mesh creates 
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a higher level of noise compared to the sparse mesh shown earlier. 

Although this may not be readily apparent in the 3D models, the error 

surfaces indicate the introduction of higher levels of noise. The DFT 

method is clearly the most affected, but now the DCT and DWT 

methods also exhibit ripples across the face caused by the bluntness of 

the Laplace solution. For quality parameter 50, the effects are similar, 

except that the error surfaces are larger than expected. The advantages 

of using the PDE approach are that, while the compressed file sizes 

are the same as for the sparse mesh, the uncompressed mesh has a 

density comparable to the original model. These advantages are due to 

the fact that high-density meshes can be compressed and recovered 

using relatively few structured planes. We quantified the error surfaces 

as a function of quality by running experiments where we set the 

quality parameter 𝑄 =  [5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100] . 

Each quality parameter was applied in turn to the 16 models, and 

summary statistics were computed for both with and without PDE-

based reconstruction. 

 

 

 
Fig. 11. Quality 𝑄 =  100 with PDE based reconstruction. Top 

row: DFT (blue) DCT (red) and DWT (green). Bottom row: 

respective error surfaces 

 

The root mean square error (RMSE) of each error surface was 

estimated, and the averages over the 16 models are shown in Figure 

13. The left panel shows the error surfaces estimated by simply 

compressing the data from the multiple planes followed by 

reconstruction and direct comparison between the two datasets. This 

provides a direct comparison of the effectiveness of the techniques, 

although the original mesh density is not recovered. It is clear from the 

results that the DCT technique is the most appropriate, as errors are 

very small up to a compression rate of 80% (𝑄 = 20). For any larger 

compression rate, surface errors grow exponentially. For large 

compression rates over 90%, the DWT technique is more stable and 

exhibits relatively smaller error surfaces. The DFT method is the worst 

performer, consistently showing larger errors. However, it is worth 

noting that the RMSE of all three techniques stays near 0.5𝑚𝑚 over a 

long range of compression rates between 0 − 80%.  

 

 

 
Fig. 12: Quality 𝑄 =  50 with PDE based reconstruction. Top 

row: DFT (blue) DCT (red) and DWT (green). Bottom row: 

respective error surfaces. 

The right panel of Figure 13 shows the results for reconstruction using 

the PDE method to recover the original mesh density, which exhibits 

a similar behaviour but with larger RMSEs. 

This behaviour is expected, as the uncertainty of data points estimated 

by the PDE method is compounded by the initial errors. As a result, a 

comparison of the original dense mesh with the PDE mesh will show 

errors introduced by the Laplace approximation added to the 

underlying errors of the previous sparse mesh reconstruction. 
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Fig. 13: Average RMSE errors of uncompressed data for quality 

parameter 5 ≤  𝑄 ≤  100. Left, standard DFT, DCT and DWT. 

Right, PDE based reconstruction. 

 

Finally, we conducted a comparative analysis of file sizes as specified 

in Tables 1, 2, and 3. All compressed data were saved in plain ASCII 

format, and the comparison was made with the Wavefront OBJ file 

format and a simple triplet of (𝑥, 𝑦, 𝑧)  floating points capable of 

holding equivalent 3D data in ASCII format. 

Again, we used the quality parameter 𝑄 =
 [5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100] and compressed each of the 

16 files in turn. Figure 13 depicts the results for both the sparse mesh 

and PDE reconstruction. While both images show the same behavior, 

the difference lies in the compression rates achieved. For the sparse 

mesh (left image), in which the density of triangular faces is similar to 

the sparse and uncompressed meshes, compression rates from 90 −
99% were achieved compared to OBJ files for all three techniques. 

 

 
Fig. 14: Average compression rates for quality parameter 5 ≤  𝑄 ≤
 100. Left panel shows results for the sparse mesh, and the right 

panel shows results for the sparse mesh with PDE reconstruction. 

 

Compared to the equivalent text file, compression rates of 68 − 98% 

for DFT and DCT, and 68 − 94% for DWT, were achieved for the 

sparse mesh. Using the PDE method yields higher compression rates 

(right panel), ranging from 97.5-99% compared to OBJ files for all 

three techniques. Compression rates using the PDE method range from 

91 − 99.5%  for DFT and DCT, and from 91 − 98.5%  for DWT, 

compared to the equivalent text file. The overall observed pattern is 

that for sparse meshes, where the density of the structured planes is 

similar to the original density of the mesh (i.e., no significant polygon 

reduction applied), error surfaces are generally very small with good 

compression rates. For high-density meshes, errors tend to increase as 

polygon reduction introduces errors, which are made worse by the 

Laplace approximation. The advantage is that now we can achieve 

higher compression rates while the perceived quality of the mesh does 

not deteriorate significantly. 

4. Conclusion  

In conclusion, the proposed method in this study involves several steps 

to compress and reconstruct 3D data. The first step is to reduce the 

number of vertices in the mesh using a polygon reduction technique 

that produces a sparse mesh. The remaining vertices are then analysed 

using DFT, DCT, or DWT to obtain their change coefficients, which 

are stored in ASCII format along with scale data and indices to 

constitute the compressed data. To recover the density of the original 

mesh, the Laplace equation is solved iteratively over the sparse mesh 

using the PDE approach. This approach increases the total vertex 

density of the original mesh and can achieve very large compression 

rates compared to the OBJ file format. The study also conducted a 

sensitivity analysis on the coefficients and proposed a quality 

parameter 𝑄  ranging from 1 − 100  to compress the coefficients 

further. The results showed that DCT was the superior method, with 

coefficients compressible by up to 80% without significant loss in 

mesh quality. DWT was recommended for compressing coefficients 

over 90%. However, the PDE method was found to increase the root 

mean square error (RMSE) of the reconstructed model, suggesting that 

it may not be an optimal tool for improving the unique mesh density. 

The authors are therefore working on a moving 4th-order polynomial 

interpolation applied to 4 adjacent vertices on 4 consecutive planes 

and recursively estimating the missing vertices to improve the 

technique. 

Future work will also encompass conducting a sensitivity analysis of 

face recognition algorithms operating on compressed meshes and 

exploring how the proposed methods can scale up to handle complete 

3D models. This will further investigate the applicability and 

performance of the compression techniques in practical scenarios. 

In summary, this study introduces novel approaches for 3D data 

compression that can achieve significant compression rates while 

preserving mesh quality and density. The proposed methods, 

involving polygon reduction, coefficient analysis using DFT, DCT, or 

DWT, and PDE-based reconstruction, provide promising avenues for 
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efficient storage and transmission of 3D models. The study contributes 

valuable insights and techniques to the field of 3D data compression 

and lays the foundation for further advancements in this area. 
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