

SEBHA UNIVERSITY JOURNAL OF PURE & APPLIED SCIENCES VOL.21 NO. 4 2022

DOI: 10.51984/JOPAS.V21I4.2239

 ة والتطبيقيةتجامعة سبها للعلوم البح مجلة

Sebha University Journal of Pure & Applied Sciences

Journal homepage: www.sebhau.edu.ly/journal/index.php/jopas

Corresponding author:

E-mail addresses: anis.elgarduh@omu.ed.ly, (A. Alkawash) abdalhamed.alkawash@phid.edu.ly, (A. Elbandac) ayhimlara@gmail.com
Article History: Received 18 April 2022 - Received in revised form 04 July 2022 - Accepted 03 October 2022

Simulation Cache Coherence Protocols in Multicore Processors

*Anis Elgarduh1, Abdalhamed Alkawash2, Abdelmhsan Elbandac3

1Dept. of Computer Science, University of Derna, Libya
2Dept. of Computer, College Of Technical Sciences, Libya
3Higther Institue of Agricultural Techniques, Tarhunah, Libya

Keywords:

Cache Coherence

Directory Based

Multicore

Memory

Snooping

 A B S T R A C T

The cache coherence problem is the challenge of keeping multiple cache synchronized when one of the

processors update its local copy of data which is shared among multiple cache. This paper discusses

several different varieties of cache coherence protocols including with their pros and cons, and using

simulation technique it will address this problem and compare between two protocols that use to solve

it: Directory-based protocol and Snooping protocol. Simulation results have shown that snooping based

systems are appropriate for high bandwidth systems while directory-based cache coherence protocols are

suitable for lower bandwidth systems.

 محاكاه لبرتوكولات الترابط بالذاكرة المخبأة في المعالجات متعددة النواه

 3عبدالمحسن البنداقو 2عبدالحميد الكواشو 1أنيس القردوح*

 قسم. حاسب آلي ، جامعة درنة ، ليبيا 1
 قسم. حاسب آلي ، كلية العلوم التقنية ، ليبيا 2
 المعهد العالي للتقنيات الزراعية ، ترهونة ، ليبيا 3

Introduction

CPU cache is a fast but small memory unit that stores frequently
accessed memory blocks in order to minimize delays. According to
Denning’s locality principle [1], most computer programs most of the
time work with a very small memory set. In a multicore environment
cache coherence is a concern because of distributed L1 and L2 caches.

due to each core has its own memory, the copy of the data may not
always be the last up-to-date in that cache. For example, if we have a
dual-core processor where each core has a block of memory, and then

one core writes a value to a specific location. When the others core
tries to read that value from its cache, it will not have the last up-to-
date of data unless its cache entry is invalidated and a cache miss
occurs. This cache miss forces the second core’s cache entry to be
updated. If this coherence policy was not in place, the wrong data

would be read and invalid results would be produced, but whit a
single core, cache works completely deterministically using these
simple rules for loading and replacing cached blocks. However, for

 المفتاحية: الكلمات

 الترابط المنطقي للذاكرة المخبأة

 ي الدليلبرتوكول القائم عل

 برتوكول الاستطلاع

 الذاكرة

 معالجات متعددة النواه

 الملخص

التحدي في معالجات متعددة النواه هي مشكلة ترابط الذاكرة المخبأة حيث الهدف هو الحفاظ على تزامن الذاكرة

ع ه المحلية من البيانات والتي يشترك بها مالمخبأة لكل نواه وتحدث عندما يقوم أحد المعالجات بتحديث نسخت

ذاكرات مخبأة لمعالجات اخرى. تناقش هذه الورقة نوعين من بروتوكولات ترابط الذاكرة المخبأة بما في ذلك

مزاياها وعيوبها، وباستخدام تقنية المحاكاة سوف نقارن بين بروتوكولين يستخدمان لحل هذه المشكلة وهما

دليل وبروتوكول الاستطلاع. أظهرت نتائج المحاكاة أن الأنظمة القائمة على برتوكول بروتوكول القائم علي

الاستطلاع مناسبة للأنظمة ذات النطاق الترددي العالي بينما يعد برتوكول القائم علي الدليل مناسب للأنظمة

 ذات النطاق الترددي المنخفض.

file:///C:/Users/DELL/Downloads/www.sebhau.edu.ly/journal/index.php/jopas
mailto:anis.elgarduh@omu.ed.ly
mailto:abdalhamed.alkawash@phid.edu.ly
mailto:ayhimlara@gmail.com

Simulation Cache Coherence Protocols in Multicore Processors Abdullah et al.

JOPAS Vol.21 No. 4 2022 286

multiprocessors [2] there arises a problem of maintaining cache
coherency between the cores.
This is called the cache coherence problem, and a set of rules that
governs how multiple caches interact in order to solve this problem
is called a cache coherence protocol. In general, there are two

protocols cache coherence which are a snooping protocol and a
directory-based protocol. This paper gives an emphasis on the study
and analysis of impact of various system parameters on the
performance of the basic techniques to identify appropriate cache
coherence protocol for various architectures.

Literature Review
The Directory-based cache consistency protocol displays superior
performance for multicores over the Snooping-based cache
consistency protocol. The Directory-based cache coherence protocol

outperforms multicore on the Snooping-based cache coherence
protocol. In the system of high bandwidth, Snooping doing well
because of lower overhead and reduced congestion, but the directory-
based system is not suitable for that class of systems. In contrast,
directory in high bandwidth system is doing well, whereas the
Snooping is not [3].
The mechanisms of directory are requests / forwards / responses
messages. These massages are point-to-point

not broadcast so that it tends to have longer latency but use less
bandwidth, while the mechanisms of Snooping are broadcast request
to all processors in the systems. Since Each request must be
broadcast to all nodes in the system, the system will become larger
and bandwidth must be extended. Because directory-based protocol
uses much less bandwidth than Snooping, it is widely used for larger
systems to enhance their performance [4],[5].

The cache coherence problem with multiple cores
Clearly, each core has to have its own first-level cache, since cores
may be working with different programs and thus the locality
principle does not scale well to the core set as a whole.

Fig. 1. Multiprocessors with shared Memory

Memory access itself is synchronized by the memory bus. However,
it may happen those different caches store different versions of the
memory block. This is referred to as cache coherence problem. In
other word, the cache coherence problems come from that a copy of
the same memory block may be store in more than one cache, and it
is important to make sure that the data is consistent with each other
in all caches. The next example shows the coherency problem in

multicore processors.

TABLE I. COHERENCY PROBLEM EXAMLE

Time Event

Cache

content for

CPU A

Cache

content for

CPU A

Memory

content for

location X

0 1

1
CPU A

reads X
1 1

2
CPU B

reads X
1 1 1

3

CPU A

stores 0

int X

0 1 0

From the previous table, the cache coherency problem happens in the
last step because the data in both caches are not consistent.
In the hardware-based method, there are two main approaches to
solve this problem, which are invalidation and update. In the former,
it is assumed that the last copy of cache block, which has changed is
the only valid one. Figure 2 shows the invalidation. While in the latter,

each modification of a cache block is transferred to all other caches.
Figure 3 shows the update [6].

Fig. 2. Invalidation

In this case, core A writes 0 to X and sends invalidation request to all
other caches, so X's value in core B will invalidate.

Fig. 3. Update

In this case, core A writes 0 to X and broadcast updated value to all
other caches, so the value in core B will be updated.

Cache coherence protocols

There are two basic ways of dealing with the cached block that is
about to become inconsistent: Update and Invalidation.
 Updating assumes that the changes will be broadcasted to all
caches which store the same block and/or the main memory.
Invalidation postpones the updating and merely cache blocks as
invalid. They will be updated later from the memory. For a practical
implementation of these approaches, one needs a way to pass data
between caches and notify them of changes.

There are two approaches for that [7]: Directory-based
protocol [8] and Snooping protocol [9].

The latter approach is generally faster when the number of
cores is small. However, with growing number
of cores the line becomes busy to often and lots of local caches have
to be invalidated each time, which slow down the whole system. For
this reason, on large multiprocessor machines the directory-based
approach is preferred.

A- The directory-based protocol

In the directory-based protocol a common directory of cached blocks
is maintained. Processors must notify it when caching data from
shared memory to the local cache. The directory controller is able to
invalidate or update caches of other processors when a write
operation occurs. This approach is generally slower due to the
necessity of the directory notification. In short, the idea of this
protocol is to keep track in a directory of which processors are
caching a location and the state. This protocol is used in AMD

processors, such as 12-core Opteron [10].

Simulation Cache Coherence Protocols in Multicore Processors Abdullah et al.

JOPAS Vol.21 No. 4 2022 287

Fig. 4. Directory-based Protocol

The directory-based approach uses a shared global consistency object
(the directory), which is able to communicate with caches in both
directions. A cache can send a message to the directory requesting a
block load. The directory maintains a list of caches, which store each
entry and can notify them of changes in the cached entries. The
directory-based protocol has three states for the cache blocks. These
states are shared, uncached, and exclusive. Shared means one or more
processors have a read-only copy of the data block and the main

memory is up-to-date. Uncached means that the copy of data 7 block
means no processor has a copy of the data block and the main
memory is up-to-date. Finally, exclusive means only one processor
has the copy of data, which is the owner, and the main memory is not
up-to-date [11]. However, directory can be implemented as a linked
list of cores (their indices) for each cached data block (address). Also,
a full map directory structure is used, which contains a pointer for
each cache in the system, so every cache can store a copy of any block
of data in the global memory [12].

 Pros:

 Small overhead

 Fairness (directory can apply some fairness criteria to
guarantee that every core receives access to the
memory block in turn) •

 Scalability (directory can be implemented e.g.,
hierarchically)

 Cons:

 Requires separate data channel that connects caches
and the directory

 Slowdowns due to synchronization (only one cache
can query the directory at a time)

Snooping protocol
The second approach is snooping protocol, which is the simplest
protocol. It does not use any kind of global directory. Instead, it uses

a shared bus between processors and memory called snoopy bus.
Each processor monitors (“snoop”) the bus through which all the
cores communicate with the shared memory. All transactions are a
request/response seen by all cache controllers and processors [13].
For each bus transaction, the snoopy protocol causes some rely on a
bus to make all the cache controllers able to see the activities that all
other processors did. Then the cache controller compares the block
address in the bus with the address in the cache to find if it has a copy

of that block or not, and then decide on which action should to do to
prevent staling data [14]. In short, this protocol ensures that the
processor has an exclusive access to the data, when write operation
is performed. This protocol is used in Intel processors [15].

Fig. 5. Snooping Protocol

When a writing operation is broadcasted, A processor broadcast a
write over the bus, and then all other caches have to invalidate their
copy of a block before modifying it by a process. After invalidating,

the processor, which requests the write, is sure that there is no
processors received old data. This protocol called write invalidate
and also known as a write once protocol. Most modern cache
coherence multiprocessors use this protocol because it is easy to
implement in hardware, generates less bus traffic and uses spatial
locality, which means one transaction per cache block, but it could
cause cache miss [16][17].

 Pros:

 No separate data channel is needed (caches use only
the bus, to which they already have access)

 Low miss-latency (cache sees invalidation message
on the bus immediately, without querying the
directory)

 Cons:

 Bad scalability

 No fairness guarantees

To implement this protocol, cores must send all writes directly to
memory in order to notify other cores about the update. Also, cores
must “snoop” the bus and compare each address that passes though
it with the list of cached pages and invalidate them as necessary.
Alternatively, a finite state machine can be used to maintain Valid,
Dirty and Shared states of the page. When requesting a page (due to
hit miss), cache can receive it from the memory or from another cache
that has modified it.

Comparing the performance of protocols

In order to compare the protocols a Java program simulating them
was developed for this project. Each core is simulated as a thread and
performs a sequence of randomized memory reads/writes [18].
Simulation is run for 10 seconds. Then the following two quantities
are compared:
 • Total number of reads
 • Number of writes relatively to the number of reads
 • Total amount of data processed by all threads

In the first two items only reads/writes that pass through
the global bus are counted, i.e. cache-misses. These measurements
approximate the well-known Average Memory Access Time (AMAT)
statistics [19] in a manner adapted to the task of comparison of
scalability of two algorithms.
 The results we get of running the program are not realistic since
the cores are simulated using Java threads, and Java thread run
sequentially while in the real system, the cores run in parallel.

Of course, the true slowdown factor and critical number of
cores are hardware dependent and are likely to be significantly
different in reality. The simulation only demonstrates general trends.
A precise simulation would require replacing Java threads and locks
with a sequential model to make it independent from the OS
scheduler. This model should use interlocking rules based on the
processor and bus circuits.

TABLE II. FIRST SIMULATION RESULRS

Simulation Cache Coherence Protocols in Multicore Processors Abdullah et al.

JOPAS Vol.21 No. 4 2022 288

Input Configuration
Output

Configuration

Memory

Size

Number

of Cores

Cache

Size

Protocol

Mode

Fraction

of write

Miss

Rate

1024 16 512 2 43% 87%

1024 4 512 2 65% 67%

1024 4 512 1 44% 64%

1024 16 512 1 34% 85%

 The miss rate and the fraction of write in the previous table were
changed depending on the number of cores and the protocol that was
used. We found improvements in the miss rate and fraction of write
when the number of cores becomes smaller for the snoopy protocol.

Thus, our expectation that the snoopy protocol is good for small
systems is true. However, we did not find any improvements in the
miss rate and the fraction of write when the number of cores becomes
larger for directory-based protocol. Thus, our expectation that the
directory-based protocol is good for the large systems is not true in
our simulator since a shared directory has been used in the simulation.

TABLE III. SECOND SIMULATION RESULRS

Input Configuration
Output

Configuration

Memory

Size

Number

of Cores

Cache

Size

Protocol

Mode

Fraction

of write

Miss

Rate

1024 8 32 1 30% 93%

1024 8 32 2 37% 97%

1024 8 256 1 34% 80%

1024 8 256 2 44% 85%

1024 8 512 1 34% 78%

1024 8 512 2 48% 82%

 From the second table, we found that when the cache size
increases, the miss rate decreases because the cores will be able to
store more data in their caches, and that decrease read/write misses.
In addition, we found that the fraction of write becomes better when
we increase the cache size. Figures 7, 8, and 9 visualized these results.

Fig. 6. Miss Rate Chart

Fig. 7. Miss Rate Chart

Fig. 8. Miss Rate Chart

 Conclusion
 Although the snoopy protocol tends to be faster if there is enough

bandwidth available, it is not scalable and no longer appropriate due
to limitation of the bandwidth that requires to broadcast messages to
all processors. That means, when we have a large system, the size of
the bus and the bandwidth have to be large enough.
 However, the directory-based protocol is designed because the
state of a block can no longer be determined by placing a request on
shared bus as in snoopy protocol. Therefore, the main advantage of
using this protocol is using less bandwidth since messages are point
to point. Due to this reason, most of large systems use the distributed

directory base protocol.
References

[1] P. Denning, “The Locality Principle,” Communications of the
ACM, vol. 48, no. 7, pp. 19– 24, Jul. 2005.

[2] J. Hennessy and D. Patterson. Computer Architecture: A
Quantitative Approach, 4th ed. San Francisco: Morgan
Kaufmann, 2006.

[3] Amit Joshi, Satyanarayana Vollala, Shameedha Begum, N.
Ramasubramanian.“Performance Analysis of Cache Coherence
Protocols for Multi-core Architectures: A System Attribute
Perspective” the International Conference. AICTC ’16, August
12-13, 2016, Bikaner, India.(3)

[4] Samaher Al-Hothali, Safeeullah Soomro, Khurram Tanvir,
Ruchi Tuli.” Snoopy and Directory Based Cache Coherence
Protocols: A Critical Analysis” Journal of Information &
Communication Technology Vol. 4, No. 1, (Spring 2010) 01-
10. (4)

[5] ManojJadhav, G. Gopichand. “Directory Based Cache
Coherence Modellar in Multiprocessor using Scalable Cache
Coherence(SCI)”. International Journal of Advanced
Information Science and Technology (IJAIST) ISSN:

2319:2682 Vol.5, No.3, march 2016.(5)

[6] M. Marty, M. Hill, “Cache coherence techniques for multicore
processors,” Ph.D dissertation, Univ. Wisconsin., Madison, WI,
2008. (6)

[7] D. Patterson and J. Hennessy. Computer Organization and
Design (The Hardware/Software Interface), 4th ed. San
Francisco: Morgan Kaufmann, 2008. (7)

[8] M. Bauman, E. Rodi, D. Morrissey, “Directory based cache
coherency system supporting multiple instruction processor and
input/output caches,” U.S. patent 6 438 659, August 20, 2002.
(8)

[9] M. Koster, C. Johnson, B. O'Krafka, “Snooping-based cache-
coherence filter for a pointto-point connected multiprocessing
node,” U.S. patent 7 698 509, April 13, 2010. (9)

[10] P. Conway, N. Kalyanasundharam, G. Donley, K. Lepak, B.
Hughes, "Cache Hierarchy and Memory Subsystem of the AMD

Opteron Processor," Micro, IEEE, vol.30, no.2, pp.16,29,
March-April 2010 (10)

[11] B. Schauer. (2008, 11). Multicore Processors: A Necessity
[online]. Available:
http://www.csa.com/discoveryguides/multicore/review2.php?S

ID=s0s5lp3hcg6fa6pf2ba2 8u84d0 (11)

https://www.researchgate.net/scientific-contributions/N-Ramasubramanian-2064813392?_sg%5B0%5D=Sy5S8_04doJDqyQQjRKGy4PCb8d7xTVLhT_Ved5jHZs7hOfZpP6myaMAuZkkczgdDJAtuKU.IslXUwmFWDyVQlONUYqDES1EqgOmi39CnkYnRe574G2QJHDYkg3hnrYasUGHc93BuH_ffl4OlOkb2_c7TwHs0A&_sg%5B1%5D=UJ12ZTwMzofIT_xyivEsH1UWm3wUB8ShokRUABj3IG0A09O9Br8uHgVvDVgQsu2XqEsXhA0.31a4HoeNI0DGH7buzFId3o7LEeubnlLT8kjaHnolAUUpkhDdjKA2HuVsUZ2bgSJ8i76plX9IfO9ADxQlp1QZcg
https://www.researchgate.net/scientific-contributions/N-Ramasubramanian-2064813392?_sg%5B0%5D=Sy5S8_04doJDqyQQjRKGy4PCb8d7xTVLhT_Ved5jHZs7hOfZpP6myaMAuZkkczgdDJAtuKU.IslXUwmFWDyVQlONUYqDES1EqgOmi39CnkYnRe574G2QJHDYkg3hnrYasUGHc93BuH_ffl4OlOkb2_c7TwHs0A&_sg%5B1%5D=UJ12ZTwMzofIT_xyivEsH1UWm3wUB8ShokRUABj3IG0A09O9Br8uHgVvDVgQsu2XqEsXhA0.31a4HoeNI0DGH7buzFId3o7LEeubnlLT8kjaHnolAUUpkhDdjKA2HuVsUZ2bgSJ8i76plX9IfO9ADxQlp1QZcg

Simulation Cache Coherence Protocols in Multicore Processors Abdullah et al.

JOPAS Vol.21 No. 4 2022 289

[12] D. Chaiken, C. Fields, K. Kurihara, A. Agarwal, "Directory-
based cache coherence in large-scale multiprocessors,"
Computer, vol.23, no.6, pp.49,58, June 1990. (12)

[13] S. Lametti. (2010, Desember 1). Cache Coherence Techniques
[PDF]. Available:
http://www.di.unipi.it/~vannesch/SPA%202010-11/Silvia.pdf

[14] J. Archibald, J. Baer, “Cache Coherence Protocols: Evaluation

Using a Multiprocessor Simulation Model,” ACM Transactions
on Computer Systems (TOCS), vol.4, no.4, pp.273,298, Nov,
1986.

[15] D. Levintha. (2009). Performance Analysis Guide for Intel®
Core™ i7 Processor and Intel® Xeon™ 5500 processors.

[PDF]. Available:
http://software.intel.com/sites/products/collateral/hpc/vtune/per
formance_analysis_guide. pdf (15)

[16] W. Yen, D. Yen, King-Sun Fu, "Data Coherence Problem in a

Multicache System," Computers, IEEE Transactions on , vol.C-
34, no.1, pp.56,65, Jan. 1985. (16)

[17] K. Hwang and Z. Xu, Scalable Parallel Computing: Technology,
Architecture, Programming, McGraw-Hill, New York, NY,
1998. ISBN 0-07-031798-4. (17)

[18] S. Asmussen and P, Glynn. Stochastic Simulation: Algorithms
and Analysis. Springer, 2007. (18)

[19] C. Kozyrakis. (2008). Advanced Caching Techniques. [PDF].
Available:
http://www.stanford.edu/class/ee282/08_handouts/L03-
Cache.pdf (19)

http://www.di.unipi.it/~vannesch/SPA%202010-11/Silvia.pdf
http://www.stanford.edu/class/ee282/08_handouts/L03-Cache.pdf
http://www.stanford.edu/class/ee282/08_handouts/L03-Cache.pdf

