

SEBHA UNIVERSITY JOURNAL OF PURE & APPLIED SCIENCES VOL.21 NO. 4 2022

DOI: 10.51984/JOPAS.V21I4.2258

 ة والتطبيقيةتجامعة سبها للعلوم البح مجلة

Sebha University Journal of Pure & Applied Sciences

Journal homepage: www.sebhau.edu.ly/journal/index.php/jopas

Corresponding author:

E-mail addresses: Alnnass76@yahoo.com ,(M. A. Cowling) m.cowling@cqu.edu.au , (R. Hadgraft) Roger.Hadgraft@uts.edu.au
Article History: Received 30 May 2022 - Received in revised form 17 July 2022 - Accepted 03 October 2022

Identifying the Difficulties of Learning Programming for Non-English Speakers at CQUniversity and

Sebha University

*Ibrahim Nnass1, Michael A. Cowling2, Roger Hadgraft3

1College of Information Technology, Sebha University, Sebha, Libya
2Mobile Computing & Apps CQUniversity, School of Engineering and Technology, 160 Ann St Brisbane, Queensland 4000, Australia 2
3Educational Innovation & Research, Faculty of Engineering & Information Technology, University of Technology Sydney, Broadway, NSW

2007, Australia

Keywords:

Computer programming

learning programming

programming language

programming student

novice programmers

 A B S T R A C T

Since computers have become widely used, programming has become a critical skill. Programming

languages are built upon English language words and phrases. It is possible that this could make learning

an English-based programming language for non-English language speakers especially challenging. In

actuality, the literature did not say much. While many focused on solutions to teaching programming,

and some researchers focused on the problems that led to these solutions, very few researchers made any

distinction between the language capabilities of novices. Based on the literature, this research study

highlights issues that directly influence beginners learning programming, looking particularly at the

difficulties faced by those that do not have English as a first language. The methodological approach

used in this research is a mixed methods design, with the questionnaire method for data collection in both

CQUniversity in Australia and Sebha University in Libya, with experienced programmers and novice

programmers in various stages of their study. These data were categorized and analysed to identify areas

of difficulty. It became clear that there was a difference. While Australian students identified issues with

loop statements (Do...While) and other program logic, Libyan students identified the major problem to

be error messages and their interpretation, with over 71% of students identifying this as a problem.

However, error messages were mentioned by just 2% of participants at CQUniversity. It was clear that

English was a problem.

 تحديد صعوبات تعلم البرمجة للناطقين بغير اللغة الإنجليزية في جامعة كوينزلاند المركزية وجامعة سبها

 3روجر هادجرافت و 2مايكل أ.كاولينج و 1اسعنالإبراهيم *

 كلية تقنية المعلومات ، جامعة سبها ، سبها ، ليبيا1

 ، أستراليا 4000، كوينزلاند Ann St Brisbane 160، كلية الهندسة والتكنولوجيا ، CQUniversity الحوسبة المتنقلة والتطبيقات2
 ، أستراليا2007، نيو ساوث ويلزرودواي ،الابتكار التربوي والبحث، كلية الهندسة وتكنولوجيا المعلومات، جامعة التكنولوجيا سيدني 3

 المفتاحية: الكلمات

 برمجة الحاسوب

 البرمجة تعلم

 لغة برمجة

 طالب البرمجة

 المبرمجين المبتدئين

 الملخص

اصبحت البرمجة مهارة بالغة الأهمية. فلغات البرمجة واسع،منذ ان انتشر استخدام أجهزة الكمبيوتر على نطاق

تالي جعل لوهذا جعل تعلم البرمجة يعتمد على اللغة الإنجليزية وبا الإنجليزية،مبنية على كلمات وعبارات اللغة

تعلمها للغير الناطقين باللغة الإنجليزية أمرًا صعبًا بشكل خاص. الدراسات السابقة لم تقدم الكثير في هذا

ي أدت البعض ركز على المشكلات الت البرمجة،الجانب. ففي الدراسات السابقة ركز الكثيرون على حلول لتدريس

ن تطرق للقدرات اللغوية للمبتدئين. استنادًا إلى الدراسات بينما عدد قليل جدًا من الباحثي الحلول،إلى هذه

السابقة، هذه الدراسة البحثية سوف تسلط الضوء على القضايا التي تؤثر بشكل مباشر على تعلم المبتدئين

وتبحث بشكل خاص في الصعوبات التي يواجهها أولئك الذين تعتبر اللغة الإنجليزية لديهم ليست لغة للبرمجة،

file:///C:/Users/DELL/Downloads/www.sebhau.edu.ly/journal/index.php/jopas
mailto:m.cowling@cqu.edu.au
mailto:Roger.Hadgraft@uts.edu.au

Identifying the Difficulties of Learning Programming for Non-English Speakers at CQUniversity and Sebha University Nnass et al.

JOPAS Vol.21 No. 4 2022 291

Introduction

Computer programming is a predominantly English-based medium.
Languages like C++ and Java all have their base in Silicon Valley,
growing out of companies like Bell Labs and Sun Microsystems in

the USA. This base is very technical and privileges the experienced
computer scientist and computer engineer, rather than providing a
platform to assist the beginner. This makes learning a programming
language for novices, without any prior experience, especially
challenging (Bonar & Soloway 1983). Novice student programmers
at the beginning have much to learn in the first programming class
such as how to write new code with appropriate formatting, correct
syntax, logical sequence of steps, dealing with compiler error
messages, and so on. Then, starting with modularized functionality

and complex concepts for example arrays and pointers.
However, Pillay (2003) states that computer science students, when
learning to write procedural and object-oriented programs for the first
time, often face difficulties. Similarly, Tan et al. (2014) found that
many of the novice programmers have faced several difficulties in
understanding and mastering the skills of computer programming,
noting that programming is considered more of a mental skill than
other knowledge. Shuhidan, Hamilton and D'Souza (2009)

discovered that the struggle to learn and understand programming is
largely responsible for high attrition rates in computer science
schools. Hu, Winikoff and Cranefield (2012, p. 43) found that
'introductory programming courses have been continuously reported
as having a high rate of failure or withdrawal' Winslow (1996)
suggests reasons for this phenomenon including lack of problem-
solving strategies and plans, and lack of detailed mental models. Lee
and Ko (2011) make the interesting point that the first line of novices’

programs predominantly lead to unexpected mistakes, such as
runtime errors, syntax errors, or program output that the novice did
not intend and that ‘all of these forms of feedback are essential to
helping a beginner understand what programs are and how computers
interpret them’ (p. 109). Stefik and Siebert (2013, p. 1) state that
‘recent studies in the literature have shown that syntax remains a
significant barrier to novice computer science students in the field’.
Winslow (1996, p.17) makes the claim ‘that novice programmers

know the syntax and semantics of individual statements, but they do
not know how to combine these features into valid programs’.
Soloway (1986) indicates that teaching the syntax is not enough, and
more is needed:

‘Students should be given explicit instruction in “vocabulary
terms” such as mechanism, explanation, goal, plan, rules of
programming discourse, plan composition methods, etc'
(Soloway 1986, p. 858).

Rongfang (2011) illustrates several problems facing novice

programmers in understanding programming concepts and the
futility of the learning methods used, which leads to a claim that:

‘The education quality of computer programming language
course to the undergraduates is significantly declining. The
overall evaluation of graduates majored in computer science
from business circles is that the number of applicants for
employment is large, but fewer graduates can code skillfully.
Even fewer can develop software’. (Rongfang 2011, p. 1267)

Black (2006, p. 103) indicates that 'learning how to write program
code is similar to learning a foreign language'. Thus, Black (2006, p.
113) concludes that:

‘Students in computer classes need to hear the explanation
from the teacher and observe the demonstration skill or
technique, but also to have time with the teacher for practice,

feedback and discovery'.

Most programming languages use English keywords (while, for, if,
and so on.), which are familiar for regular users of English, but
unfamiliar for non-English language speakers. With this in mind, it
seems possible that learning a programming language could be more
difficult for non- English speakers. In countries such as Libya,
programming faculty at universities and higher institutes are required
to translate the programming courses from English into Arabic, the
only language spoken in Libya. Novice programmers are forced to

deal with English-based programming languages with only a basic
understanding of the English language due to their schooling. Al-
Hussein (2014) explains the reasons why English language teaching
was stopped in Libya:

Due to some political reasons, and after the air-raid against the
Gaddafi regime led by the United States of America and the
United Kingdom in mid of April 1986, and as a consequence,
the Minister of Education made the decision No. 195/1986 to

stop teaching foreign languages in Libya. The decision badly
affected the future of education in Libya. Till the time of
writing this material; very serious consequences relating to
that decision are still active. (Al-Hussein 2014, p. 59)

This could make understanding an English-based programming
language for Libyan novice programmers especially challenging.
Looking past the difficulties with learning programming specifically
and instead focussing on the language differences, the literature

indicates that Arab students (especially Libyans) face a real problem
in understanding the English language. Personally, as an
undergraduate student in Libya I struggled to learn programming and
I experienced many difficulties in understanding how to build a
program correctly and then follow up its implementation; those
difficulties were varied depending on the programming language
used, for example, finding bugs, and understanding programming
structures or how to track any code. So, based on my experience as a

student, I understand the suffering of any student facing a similar
case. This research paper is one part of a larger research project
looking at the difficulties of learning programming for non-native
English speakers. Specifically, this paper presents the results of the
first phase of this project, and is an attempt to highlight the most
important difficulties faced by novice programmers in learning
computer programming in general and for non-native English
speakers in particular. This paper in particular seeks to answer these
research questions:

RQ1.0 What are the problems and difficulties that have a

significant impact on non-English speakers at Sebha

University in Libya in learning computer programming?

RQ1.1 What are the problems and difficulties that non-

English speakers face in learning computer

programming in general?

RQ1.2 What are the problems and difficulties that have a

significant impact on English speakers at

CQUniversity in Australia in learning computer

programming?

، تم تجميع البيانات باستخدام الاستبيانات في كل mixed methodsالمنهجية المستخدمة في هذا البحث هي أولى.

من جامعة كوينزلاند المركزية في أستراليا وجامعة سبها في ليبيا ، استهدفت المبرمجين ذوي خبرة والمبرمجين المبتدئين

 ات وتحليلها لتحديد مجالات الصعوبة. نتيجة تحليل هذهفي مراحل مختلفة من دراستهم. تم تصنيف هذه البيان

حيث حدد الطلاب الأستراليون المشكلات المتعلقة بالحلقات التكرارية واضحا،الاستبيانات ثبت ان هناك فرقا

بينما حدد الطلاب بجامعة سبها المشكلة الرئيسية التي تواجههم على أنها رسائل الخطأ من حيث البرمجة،ومنطق

من الطلاب في المشاركين بجامعة سبها هذه المشكلة على ٪71حيث حدد أكثر من معها،فهمها وكيفية التعامل

ان لديهم المركزية ذكروانزلاند فقط من المشاركين في جامعة كوي ٪ 2نسبة ذلك،أنها المشكلة الرئيسية. ومع

 مشكلة مع رسائل الخطأ. لذا اصبح من الواضح أن اللغة الإنجليزية مشكلة اساسية تواجه الطلاب بجامعة سبها.

Identifying the Difficulties of Learning Programming for Non-English Speakers at CQUniversity and Sebha University Nnass et al.

JOPAS Vol.21 No. 4 2022 291

RQ1.3 What are the differences between English speakers

at CQUniversity and non-English speakers at

Sebha University with respect to learning

computer programming?

This paper conducted investigation through literature, as well as

studies with programming students at the Australian and the Libyan
university, to highlight the problems and difficulties that have a
significant impact on programming novices. The expected outcome
of this paper is a better understanding of the challenges of learning
computer programming for both English-speaking novice
programmers and non-native English speaking novice programmers.

LITERATURE REVIEW
This section provides a critical literature review of the difficulties that
novices face in learning a programming language, especially for non-
speakers of English. Some papers only deal with programming issues
in the general sense, rather than highlighting specific problems (for
example, Hadjerrouit (2008), Yinnan and Chaosheng (2012) and
Kelleher and Pausch (2005)). Nonetheless, some of these papers
provided useful lessons. Tie et al. (2012) concludes that the amount

of time spent by beginners practising programming in homework
plays a very important role in perfecting their programming language
skills. Yinnan et al. (2012) confirms that it is difficult for beginners
to master any programming language in a short period of time
because programming languages have practical techniques.
Hadjerrouit (2008), too, notes that it may be difficult for beginners to
gain programming skills in a short time. In fact, Soloway and Spohrer
(1989) concluded that novices need 10 years to become expert

programmers. Kelleher and Pausch (2005) focus on some issues
related to the learning of programming for beginners, for example,
novices not seeing the relevance of programming or novices needing
to feel they can achieve progress in learning programming. Hook and
Eckerdal (2015) analysed the final exam results in an introductory
programming course and then concluded that students who spent
more time on the computer practicing programming problems had
higher marks in the course.
Similarly, students who spent less time on practicing programming

problems, but attended lectures and spent more time reading books,
achieved lower marks. This finding led them to conclude that it is
very important to encourage novice programmers to spend more time
practising programming. Winslow (1996, p. 17) states that ‘novice
programmers know the syntax and semantics of individual
statements, but they do not know how to combine these features into
valid programs’. Al-Imamy and Alizadeh (2006) point out that the
programming student spends a long time on the syntax of the

language, which leaves little time to develop skills in software design
and creative solutions due to students having different backgrounds,
a teaching strategy that is traditional, and course duration linked to
limited time. Piteira and Costa (2012), indicate that these problems
often lead to high failure rates in first programming courses where
time is limited to the academic semester. Tan et al. (2014) note that
computer programming is considered more of a mental skill than
other knowledge, and many of the novice programmers have faced

several difficulties in understanding and mastering the skills of
programming. Casey (1997) concludes that learning programming is
full of challenges in terms of how to learn and practise problem-
solving skills and other thinking skills and proposed that learning
these skills should be part of any process for learning programming.
Casey goes on to suggest that the educational system has the main
responsibilities surrounding programming: imparting knowledge,
teaching cognitive skills, and teaching the most important skill,

problem solving. Therefore, programming teachers must have a full
understanding of programming and the problem-solving process.
Although Casey confirmed the existence of the challenges in the field
of teaching and learning programming, he did not specify the
problems specifically or to find practical solutions for them; for
example, he/she did not refer to the problem of English language and
the language skills required to learn programming and problem-
solving. Golding, Donaldson and Tennant (2009) note that there are
many universities using innovative practices to develop students’

performance in programming languages. However, learning
programming continues to be difficult and students struggle with it.
Thus, their research indicates that it is difficult for the teacher to help

students to develop their abilities to learn and understand problem
solving techniques and thus understand the programming language
used. As mentioned above, almost all of these studies and research,
which discussed the problems of learning programming, did not
explicitly identify the programming issues that face the beginner non-

speaker of English. These papers identified only the key general
issues in learning programming. However, even with all these
practices, some students still fail. In addition to these general papers,
some papers also looked at specific issues which students faced.

1- Specific programming issues
There is literature that describes specific problems faced by students
in general when learning programming. However, there is a lack of
significant literature specifically focusing on the problems associated
with learning programming for non-English speakers, with most

papers focusing on the solutions. For example, Butler and Morgan
(2007) describe a survey of the study habits and challenges faced by
novice programmers. This paper focuses on the difficulties
experienced by novices in understanding and implementing low-
level programming concepts, like syntax and variables, and high-
level concepts, for example, object-oriented programming principles
and program design. The authors indicate that the most difficult
issues faced by novice programmers are: algorithms, methods,

object-oriented concepts, overall program and object design.
Lahtinen et al. (2005) indicate that novices have several problems
related to programming concepts and program construction, for
instance, how to design a program to solve a certain task, how to
divide functionality into procedures and how to find bugs in their own
programs. These researchers indicate that the most difficult issues in
programming concepts are: recursion, pointers and references,
abstract data types and error handling and using the language

libraries. In addition, they suggest that there are many novice
programmers who have learning difficulties for reasons such as
nature of the programming language, a lack of resources or a lack of
personal instruction and novice groups that are large and
heterogeneous. Xinogalos (2012) also indicates student difficulties,
the most important of which are: developing an algorithm for solving
a problem, transferring the algorithm to the programming language,
dividing functionalities in functions or classes, understanding

compilation error messages and correcting and finding bugs.
In addition, Milne and Rowe (2002) indicate that the most difficult
topics depended on pointers and memory-related concepts (virtual
functions, dynamic allocation of memory and polymorphism)
because the novice programmers struggle to understand what is
happening to their program in memory. Piteira and Costa (2012,
2013) indicate that the most difficult issues in programming concepts
from the student viewpoint for computer programming topics are
object-oriented concepts, overall program and object design,

selection structures and variables (lifetime/scope), and loop
structures. Also included are operators and precedence, structured
data types and abstract data types, recursion and parameters, pointers
and references, passing parameters, error handling and using the
language libraries. Schulte and Bennedsen (2006) conclude that the
difficult topics from a teacher’s viewpoint include programming
issues such as, algorithm efficiency, polymorphism and inheritance,
generics (templates, type parameterisation). In addition, other

programming difficulties included advanced data-structures (linked-
lists, trees,…), design of classes (given a problem, determining the
pre-defined classes needed to solve the problem), and divide and
conquer (decomposition of a problem). Piteira and Costa (2013)
support the findings of Lahtinen et al. (2005) and added two
difficulties in programming: understanding programming structures,
and learning the programming language syntax. Golding et al. (2009)
highlight some important skills required for programming: problem

solving skills, logical reasoning and mathematical thinking
capabilities, self-efficacy, previous programming experience, mental
models, coding, debugging, abstraction, and knowledge of syntax.
The researchers state that there many universities are using
innovative practices to develop skills and enhance students’
performance in programming languages. However, even with all
these practices, some students still fail. In summary, these papers
focused specifically on programming issues that face novice

programmers in general. These issues create difficulties and

Identifying the Difficulties of Learning Programming for Non-English Speakers at CQUniversity and Sebha University Nnass et al.

JOPAS Vol.21 No. 4 2022 292

challenges that lead to high drop-out rates on programming courses.
Problem solving skills, logical reasoning, mathematical thinking
capabilities and knowledge of syntax are important skills required to
learn programming for novices (English speakers and non-English
speakers). Yet, all papers reviewed indicate that the most difficult

issues in programming concepts are recursion, pointers, references,
using the language libraries, developing an algorithm for solving a
problem, transferring the algorithm to the programming language,
dividing functionalities in functions or classes, understanding
compilation error messages and correcting, finding bugs, object
oriented concepts, loop structures, operators and precedence,
polymorphism and inheritance. All these concepts, however, need to
be examined with non-English speaker programmers in mind.

2- English language issues

However, data was still missing on non-English speaker
programming issues. Hence, a further literature review was
conducted in this area, but only a few papers were found, as below.
An example is Mhashi and Alakeel (2013), who conducted an
investigation and analysis of the problems faced by novices, with two
main goals in mind:

●To determine whether the novices at their university faced
problems in computer programming similar to those faced by the

novices in different universities around the world.

●To study the effect of sociocultural and environmental factors on
learning computer programming skills.

Iqbal and Coldwell (2017) conducted a learning study in Buraimi
University College, Oman (non-English speaking country). Iqbal and
Coldwell (2017, p.790) indicate that ‘instructors deliver the lectures
and conduct practical sessions. The programming examples and
exercises discussed during the lectures, and practical sessions

promote a shortcut approach to programming, where the problem
statement is directly converted into a computer program’.
At this institution, according to these researchers, ‘instructors deliver
the lectures and conduct practical sessions. The programming
examples and exercises discussed during the lectures, and practical
sessions promote a shortcut approach to programming, where the
problem statement is directly converted into a computer program’
(Iqbal and Coldwell 2017, p. 790). They go on to state that the main

challenge when novices start in learning programming is that a
number of different groups of skills must be learnt at the same time.
However, the traditional approach used in teaching an introductory
programming course does not provide students with all the required
skills to understand programming (Iqbal and Coldwell 2017). Iqbal
and Harsh (2013) suggest teaching programming through traditional
approaches emphasise the syntax and semantics of the programming
language, rather than problem-solving skills, in order to handle
programming problems. Thus, novice programmers not only must

learn the syntax and semantics of a programming language but also
must develop appropriate problem-solving strategies.
Iqbal and Coldwell (2016) applied ADRI (Approach, Deployment,
Result, Improvement) in the teaching and learning process of an
introductory programming course to improve learning and success
rates. The ADRI approach covers three types of programming errors:
syntax errors, semantic errors, and syntax warnings. Their
investigation found that more attention should be given to syntax

errors and to semantic errors in the teaching process. Also, they
discovered that repetition structures (loops), functions, and arrays
were significant as they were found to be the most difficult topics in
learning programming.
In the traditional approach there is one significant challenge for the
novices to understand the hidden process going on in the computer
memory during the compilation of the program. Particularly, novices
do not understand the flow of information in the program, which

leads to lack of understanding of the problem scope (Iqbal and
Coldwell 2016). In the traditional approach the one significant
challenge for the novices to understand the hidden process going on
in the computer memory during the compilation of the program, is
not understanding the flow of information, which leads to a lack of
understanding of the problem scope (Iqbal and Coldwell 2016). Al-
Nuaim, Allinjawi, Krause, and Tang (2011) found that many novice
student programmers in computer science courses start without

appropriate problem-solving skills or logical tools needed for
problem-solving or start with a weak understanding of the simple
mathematical requirements. Novices tend to dedicate their energies
to learning syntax rather than learning the basic concepts of the
scope. Therefore, beginners depend on trial and error rather than

learning how to acquire problem solving skills. In addition, many
novice programmers have a limited ability to carry out simple
programming tasks (Al-Nuaim, Allinjawi, Krause, and Tang 2011).
Al-Nuaim, Allinjawi, Krause and Tang (2011) also note that the high
schools in the Kingdom of Saudi Arabia devote inadequate time to
teaching the English language. The paper further suggests that the
curricula at these high schools lack the teaching of problem-solving
skills in computer science courses as computer science is a
completely new field to them.

3- Literature gap
In the literature review, it was thus identified that a set of concepts
are difficult for programming novices, and that these concepts should
have high priority for finding appropriate solutions. However, it was
also discovered during the literature review that few studies have
focused on learning programming for non-English speakers,
specifically, as it related to the syntax of the programming language.
However, the literature review did help to answer the following

research question:

RQ1.1 What are the problems and difficulties that non-

English speakers face in learning computer

programming in general?

To address all of these challenges from the literature can be difficult,
especially for novice programmers. Also, novices need to understand
the program code quite comprehensively if they genuinely wish to be
able to handle any program error. In addition, a novice needs to be
able to search the information that will help him/her to use the
language libraries, which is a very difficult step for novices.
But, perhaps the most interesting finding is that, in summary, most

previous studies have targeted English speakers. Therefore, the gap
in the literature that led to the research questions is that all these
references do not refer to the problem of English language and the
language skills required to learn programming. In addition, there
were no previous or current studies referencing the problem of the
English language in this context.
Thus, the researcher decided to conduct more investigation through
a survey of students at CQUniversity in Australia and Sebha

University in Libya to highlight the problems and difficulties that
have a significant impact on novice programmers where language is
a factor. Then, the knowledge gap identified through the literature
review will be addressed. Thus, it became necessary to design a
theoretical framework for this study to collect data from English
language speakers and non- English language speakers.

Methodology & Research design
To work towards improving the current research methodological

approach, a mixed methods design was selected for this research,
combined with concurrent triangulation as a methodological strategy,
with the questionnaire method as the data collection method rather
than interviews as the best available solution in both CQUniversity
and Sebha University. Thus, this research selected a mixed methods
research (MMR) approach, which would include both qualitative and
quantitative methods. The specific method type that is used through
this research is triangulation design (as a methodological approach).
According to Creswell (2009, p. 14) 'the concept of mixing methods

originated in 1959 when Campbell and Fisk used multi-methods to
study the validity of psychological traits'. The objective of using this
design is ‘to obtain different but complementary data on the same
topic’ (Morse, 1991, p. 122) to best understand the research problem,
because this is important for the researcher to study and deeply
understand all aspects surrounding the problem to find the most
appropriate way to address it. Johnson and Onwuegbuzie (2004, p.
17) define mixed methods research as where 'the researcher mixes or

combines quantitative and qualitative research techniques, methods,
approaches, concepts or language into a single study'. In order to
understand the difficulties that have a significant impact on novices
at an Australian University in Australia and at a Libyan University
from a staff perspective, the staff survey was designed and conducted
with faculty members at the Australian university and at the Libyan

Identifying the Difficulties of Learning Programming for Non-English Speakers at CQUniversity and Sebha University Nnass et al.

JOPAS Vol.21 No. 4 2022 293

university who taught an introduction to programming course in
Term 2, 2015 and Term 1, 2016. Therefore, the surveys were a
practical approach. Triangulation as a methodological approach had
one data collection method which is questionnaires. The
questionnaires method was used to study programming issues as they

are; it provided an accurate description of the programming issues for
programming novices and clarified their characteristics.
The Java courses at both universities are similar with few differences.
The reasons behind selecting Java courses, in particular, was because
the main target groups in this study are undergraduate students
(novice programmers), who are studying programming for the first
time without any prior background on programming.

Theoretical Framework
After identifying the gap in the literature review, this research has

been a process of constructing a theoretical framework for the
collection of data collection from English language speakers and
non-English language speakers. literature review includes
programming concepts that have a significant impact on novices
according to the literature. This framework is outlined in Figure 1,
together with the match with programming concepts in literature
review. The framework for this research was designed around
Bloom’s Taxonomy.

The most important reason for using Bloom's Taxonomy is: Bloom's
Taxonomy is based on a logical premise that each level must be
mastered before moving towards the other level (levels arranged
according to the level of difficulty from least to highest). Thus, the
levels within Bloom's Taxonomy are levels of educational
development increasing in difficulty (Bloom 1956). In order for non-
English-speaking students (novice programmers) to learn
programming based on Bloom's Taxonomy, they must be familiar

with the minimum of English so that they can begin to learn
programming principles, ranging from easy to more complex
concepts.

Fig. 1: Theoretical framework of research

Understanding Student Difficulties
This section explores the difficulties that novices have in learning

programming. It includes the survey results of novice programmers
from both universities (CQUniversity and Sebha University),
contrasting those with a strong English background with those who
have little to no English. The chapter also includes a summary of
faculty members’ feedback at CQUniversity and Sebha University.

1- Results from CQUniversity
One hundred and three (103) novice programmers participated in
these surveys, and the main demographics are:

● 73 participants were without any prior experience.
● 21 participants did not indicate if they had prior experience or

not.
● 4 participants were redoing this course and they did not indicate

any issues in understanding or face any difficulties related to

programming concepts.
● 5 participants did not indicate any issues in understanding or

face any difficulties related to programming concepts.

Table 1 contains specific programming issues faced by novice
programmers at CQUniversity.

Table 1: Specific programming issues faced by novice

programmers at CQUniversity.
Understanding issues No. of participants

Loop statements (Do. While) 16

All programming concepts 16

Program design 14

No issues 13

Syntax 11

Programming logic 6

Array and Manipulating arrays of objects 5

Some difficulties with programming

concepts

4

Semantics 4

Data types 3

Object oriented programming 2

Error message 2

Condition statements 1

Finally, lists, schemes and categories were formulated as follows:

 Understanding the complicated technical language

 A complete lack of experience

 How to apply what is learned in class and how to explain
my understanding

 Novices who see the fault as one of course design

 Lack of necessary skills

 Mainly time free of distractions (outside influences)

 Hard time remembering things.

2- Results from Sebha University

By contrast, seventy-two (72) novice programmers participated in
the survey conducted at Sebha University, and the main

demographics were:
● 39 participants were without any prior experience and doing this

course for the first time.

● 33 participants indicated that they had prior experience and they
are doing this course for the first time. And one of them did not
indicate any issues in understanding or face any difficulties

related to programming concepts.
The analysis that was undertaken to identify these specific
programming issues is the qualitative content analysis process. This
included transcribing data, coding, and categorising it. Then, by
reading the text closely, the text was organised for analysis and units
for analysis were determined. The text was checked again, looking
for evidence of expected and unexpected categories. Finally, lists,
categories and schemes were developed, which organised

information and showed the relationships between them.

Table 2: Specific programming issues faces novice programmers

at Sebha University
Understanding issues No. of participants

Error messages 52

Pointers 34

Loop statements (Do. While) 29

All programming concepts 17

Array 14

Program design 11

Condition statements 8

Syntax 7

Semantics 1

Data types 1

No issues 1

Participants’ comments and feedback were collected and categorised.

Then, by reading the text closely, the text was organised for analysis
and units for analysis were determined. The text was checked again,
looking for evidence of expected and unexpected categories. Lists,
schemes and categories that emerged following that were:

 A novice who sees the fault as one of course design such as:

Lecturer should make more effort to teach programming step by
step, lecturer should explain programming topics in a simple way
and without ambiguity, increase tutorial time, stimulate the
imagination of students' creativity, explain and simplify programs
and dealing with students as beginners.

 Required skills related to learning programming languages:

Learning, thinking and research skills, improving typing skills to
save time, developing students’ skills in the English language,

program design skills and how to write a program correctly,
problem-solving skills.

In summary, the results of the Sebha University survey displayed in
Table 2, which contains specific programming issues faced by novice
programmers at Sebha University in Term 1, 2016, revealed that
there was a difference between these Libyan students and the

Identifying the Difficulties of Learning Programming for Non-English Speakers at CQUniversity and Sebha University Nnass et al.

JOPAS Vol.21 No. 4 2022 294

CQUniversity students, and the researcher identified one problem
(error messages) that was particularly influential on the ability of
novice programmers to learn programming language at the main
Sebha University campus. Two other issues of importance for these
students were pointers and loop statements (Do…While).

Error messages being indicated by students so frequently as an issue
is likely not surprising given that each error message, in English,
must be interpreted by someone with limited English ability. Error
messages should, therefore, have the highest priority for addressing
and finding appropriate solutions or developing methods or skills that
may help novice programmers to learn programming.
In contrast, the results from CQUniversity (Table 1) suggest that the
main issues for novice programmers in learning programming are
loop statements (Do...While), all programming concepts and

program design.

3- Updating the theoretical framework
Through this research study the theoretical framework was also
updated to show which programming issue has the greatest influence
(error messages) on non-English speakers at Sebha University.
Based on results from previous studies and results from
CQUniversity and Sebha University, the researcher concluded that
novices must master basic programming concepts in the knowledge

level of Bloom’s Taxonomy such as syntax, abstract data types and
using the language libraries before moving to the advanced
programming concepts at higher levels of Bloom’s Taxonomy. It is
clear that many students remain stuck on these lower levels, related
to the syntax and concepts of programming. Thus, students at Sebha
University have a lack of understanding of the English language that
can lead to a lack of comprehension of error messages in the synthesis
level of Bloom’s Taxonomy. The feedback from participants

(undergraduate students) at Sebha University supporting this point
includes: practising programming frequently to gain experience,
developing students’ skills in the English language and developing
learning, thinking and research skills. Bloom’s Taxonomy attempts
to divide the cognitive domain into subdivisions extending from the
simplest to the most complex. So, error messages are in the most
complex levels of Bloom’s Taxonomy (analysis, synthesis and
evaluation), for example, Java error ''Possible loss of precision''. It

means that the student did something like K = H; where K is an int
and H is a double. The novice must have the ability to read and
understand error messages, then, to determine the exact location of
the error in the program and then process and correct the error. This
will not occur if the novice lacks the ability to read and understand
the error message. Furthermore, novices may face difficulties in
understanding basic programming concepts at the lower levels of the
Bloom classification. Thus, all these difficulties will make learning
and understanding error messages extremely challenging for novices,

especially for Sebha University students. Figure 2 contains an
updated theoretical framework for this research study. The updated
theoretical framework presents clearly the programming issue that
has the greatest influence on novice programmers (non-English
speakers) at Sebha University, which are error messages (System
Errors, Syntax Errors and Semantic Errors).

Fig. 2: Updated Theoretical framework of research

So, to deal with and address all of these challenges discovered in the
literature, which face programming novices at the same time, it needs
to be acknowledged that learning and understanding programming by
novice programmers is difficult. Also, novices need to understand the

program code comprehensively if they genuinely wish to be able to
handle any program error. In addition, novices need to independently
search the information that will help them use the language libraries,
which is a very difficult step for novices. Thus, with the results from
CQUniversity and Sebha University, this provides an answer to
research questions RQ 1.0, RQ 1.2 and RQ 1.3, and lays the
foundation for future work with non-English speakers. Based on the
literature review, the results from the previous study, as well as these
new results, it is clear that the problems faced by students in the

surveys at the two universities were different.
Thus, these concepts that were identified in survey results at Sebha
University and CQUniversity should have high priority for
addressing and finding appropriate solutions. The ultimate purpose
behind conducting these surveys is to study in depth these
programming issues from both previous studies and through
collecting and analysing data from CQUniversity and Sebha
University, then develop a method to help novices in general and

non-English speakers in particular. Any planned intervention at
Sebha University should be targeted towards the biggest problem
faced by those students, which is interpreting error messages.
In conclusion, this research study contributes new knowledge to the
literature and practice, providing insight that has not been researched
before, namely problems faced by novice programmers who are non-
English speakers.

Conclusion
Writing and debugging programs can be very difficult, especially for
novice programmers. Novices need to be able to search the language
libraries and understand the program code comprehensively if they
genuinely wish to be able to debug their programs and avoid/reduce
error messages, which is a very difficult step for novices particularly
as it is English language intensive. The ultimate purpose behind

conducting this research was to investigate these challenges faced by
novice programmers in general and non-English speakers in
particular. In summary, this research study examined the difficulties
and challenges faced by programming novices at both CQUniversity
and Sebha University. The results from surveys conducted at both
universities were different. The results from Sebha University are
interesting in that the main issues were error messages, pointers, and
loop statements (Do...While). However, the results from

CQUniversity suggest that the main issues that faced novice
programmers when learning programming were loop statements
(Do...While), all programming concepts and program design.
Perhaps the most interesting finding is that error messages have the
largest impact on novice programmers at Sebha University and
should therefore have high priority for finding appropriate solutions.
These programming issues must be studied in-depth and understood
so as to design the most suitable solution. The qualitative data at

Sebha University points out that one of the key areas of concern for
Sebha University participants is one of course design, for example,
the lecturer should make more effort to teach debugging and explain
programming topics step by step in a simple way and without
ambiguity, specifically, what do error messages mean and how to
deal with them, and to increase tutorial time. (Maybe they also need
to teach debugging – specifically, what do error messages mean and
how to deal with them). Also, participants pointed out some required

skills related to learning programming languages, for instance,
practising programming frequently to gain experience, developing
students’ skills in the English language and improving learning,
thinking and research skills. However, this research has some
limitations, like all research, for instance, the research intervention
through this study was also geographically limited to one Australian
University and one Libyan University. That may have led to
limitations with regards to the implication of findings or improving
solutions based on identified problems for other universities or other

countries.
References

Identifying the Difficulties of Learning Programming for Non-English Speakers at CQUniversity and Sebha University Nnass et al.

JOPAS Vol.21 No. 4 2022 295

[1] Al-Hussein, S. M. (2014), Teaching English as a Foreign
Language in Libya. Scientific Research Journal (SCIRJ).
58-64.

[2] Al-Imamy, S., and Alizadeh, J. (2006), On the development of a
programming teaching tool: the effect of teaching by templates on

the learning process. Journal of Information Technology
Education. 5. 271-283.
http://www.jite.org/documents/Vol5/v5p271-283Al-
Imamy115.pdf

[3] Al-Nuaim, H, Allinjawi, A, Krause, P, & Tang, L 2011,
‘Diagnosing student learning problems in object oriented
programming’, Computer Technology and Application, vol. 2,
pp. 858–865.

[4] Bloom, BS 1956, Taxonomy of educational objectives: the

classification of educational goals, New York: Longmans,
Green.

[5] Bonar, J & Soloway, E 1983, ‘Uncovering principles of
novice programming’. Proceedings of the 10th ACM
SIGACT-SIGPLAN symposium on principles of
programming languages, pp.10–13.

[6] Butler, M., and Morgan, M. (2007), Learning challenges
faced by novice programming students studying high level

and low feedback concepts. Proceedings ascilite
Singapore. 99-107.

[7] Casey, P. J. (1997), Computer programming: a medium for
teaching problem solving. Computers in the Schools. 13.
1-2. 41-51.

[8] Creswell, JW. (2009), Research design: qualitative.
quantitative and mixed methods approaches. Sage.
Thousand Oaks. CA.

[9] Golding, P., Donaldson, O., and Tennant, V. (2009),
Application of modified perceived learning Problem
Inventory (PLPI) to investigate performance in
introductory programming. IEEE Frontiers in Education
Conference. 1-6.

[10] Hadjerrouit, S. (2008), Towards a blended learning model
for teaching and learning computer programming: A case
study. Informatics in Education-An International Journal.

7. 2. 181-210.
[11] Hook, LJ & Eckerdal, A 2015, ‘On the bimodality in an

introductory programming course’, Proceedings of IEEE
International Conference on Learning and Teaching in
Computer and Engineering (LaTiCE), pp. 79-86.

[12] Hu, M, Winikoff, M & Cranefield, S 2012, ‘Teaching
novice programming using goals and plans in a visual
notation’, In Proceedings of the Fourteenth Australasian
Computing Education Conference, vol. 123, pp. 43-52.

[13] Iqbal, S., & Coldwell-Neilson, J (2016), A model for
teaching an introductory programming course using ADRI,
Education and Information Technologies, vol.
22, no. 3, pp.1089-1120.

[14] Iqbal, S., & Coldwell-Neilson, J (2017), Impact of a New
Teaching and Learning Approach in an Introductory
Programming Course, Journal of Educational Computing
Research, vol.55, no. 6, pp.789–819.

[15] Iqbal, S., & Harsh, O. K (2013), A self-review and external
review model for teaching and assessing novice programmers,
International Journal of Information and Education
Technology, vol.3, no.2, pp.120-123.

[16] Johnson, RB., and Onwuegbuzie, AJ. (2004), Mixed
methods research: A research paradigm whose time has
come. Educational Researchers. 33. 7. 14-26.

[17] Kelleher, C., and Pausch, R. (2005), Lowering the Barriers to

Programming: A Taxonomy of Programming Environments and
Languages for Novice Programmers. ACM Computing Surveys.
37. 2. 83-137.

[18] Lahtinen, E., Ala-Mutka, K., and Järvinen, H. (2005), A study
of the difficulties of novice programmers. ACM SIGCSE
Bulletin. 37. 3. 14-18.

[19] Lee, M & Ko, A 2011, ‘Personifying programming tool feedback
improves novice programmers' learning’, Proceedings of the

seventh international workshop on computing education research,
pp.109–116.

[20] Mhashi, M. M., and Alakeel, A. (2013), Difficulties
Facing Students in Learning Computer Programming
Skills at Tabuk University. Recent Advances in Modern

Educational Technologies. 15-24.
[21] Milne, I & Rowe, G 2002, 'Difficulties in learning and teaching

programming—views of students and tutors', Education and
Information technologies, vol. 7, no. 1, pp. 55-66.

[22] Morse, JM. (1991), 'Approaches to qualitative-quantitative
methodological triangulation. Nursing Research. 40. 2. 120–123.

[23] Pillay, N 2003, ‘Developing intelligent programming tutors for
novice programmers’, ACM SIGCSE Bulletin, vol. 35, no. 2,
pp.78–82.

[24] Piteira, M., and Costa, C. (2012), Computer programming and
novice programmers. Proceedings of the Workshop on
Information Systems and Design of Communication ACM. 51-
53.

[25] Piteira, M., and Costa, C. (2013), Learning computer
programming: study of difficulties in learning programming.
International Conference on Information Systems and Design of
Communication. 75-80.

[26] Schulte, C., and Bennedsen, J. (2006), What do teachers teach in
introductory programming?. ACM. 17-28.

[27] Shuhidan, S., Hamilton, M & D'Souza, D 2009, ‘A taxonomic
study of novice programming summative
assessment’, Proceedings of the Eleventh Australasian
Conference on computing education, vol. 95, pp.147–156.

[28] Soloway, E & Spohrer, J 1989, Studying the novice programmer,
Lawrence Erlbaum Associates, Hillsdale, NJ, pp. 497.

[29] Soloway, E 1986, ‘Learning to program = learning to construct
mechanisms and explanations’, Communications of the The
Association for Computing Machinery (ACM), vol. 29, no. 9,
pp.850–858

[30] Stefik, A & Siebert, S 2013, ‘An empirical investigation into
programming language syntax’, ACM Transactions on
Computing Education, vol. 13, no. 4, pp. 1-40.

[31] Tan, J, Guo, X, Zheng, W & Zhong, M 2014, 'Case-based

teaching using the laboratory animal system for learning C/C++
programming', Computers & Education, vol. 77, pp. 39-49

[32] Tie, Z., Zhuang, H., Zhang, Q., and Wang, Z. (2012), Analysis on
the relationship between student grades and computer
programming time in learning the C programming
language. International Conference On Computer Science &
Education (ICCSE). 1584-1589.

[33] Xinogalos, S. (2012), Programming techniques and environments
in a technology management department. ACM. 136-141.

[34] Winslow, LE 1996, 'Programming pedagogy a psychological
overview', ACM SIGCSE Bulletin, vol. 28, no. 3, pp. 17-22.

[35] Yinnan, Z., and Chaosheng, L. (2012), Training for
computational thinking capability on programming language
teaching. International Conference on Computer Science &
Education (ICCSE). 1804-1809.

http://www.jite.org/documents/Vol5/v5p271-283Al-Imamy115.pdf
http://www.jite.org/documents/Vol5/v5p271-283Al-Imamy115.pdf
http://www.jite.org/documents/Vol5/v5p271-283Al-Imamy115.pdf

