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outlier's detection is very essential issue due to their responsibility for producing interpretative problem
in linear as well as in nonlinear regression analysis. Much work has been accomplished on the
identification of outlier in linear regression, but not as in nonlinear regression. This paper aims to evaluate
several outlier detection techniques for nonlinear regression based on Studentized Residuals, Hadi
Potential, Cook Distance, Difference in Fits and Atkinson's Distance). The main idea is to use the linear
approximation of a nonlinear model and consider the gradient as the design matrix. Subsequently, the
detection techniques are formulated. A real life data showed that among the five measures, only

Difference in Fits and Cook Distance consistently capable of identifying the correct outlier.
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1. Introduction
Nonlinear regression is one of the most popular and widely used
models in analyzing the effect of explanatory variables on a response
variable when the underling regression function is nonlinear. It has
many applications in scientific research such as in dose response
studies conducted in agricultural sciences, toxicology and other
biological sciences; see [1] and [2]. With the presence of outliers in
the data, the ordinary least squares LS method provides misleading
values for the parameters of the nonlinear regression, and predictions
may no longer be reliable, see [3]. Outliers are those observations that
deviate markedly from other members of the observations or data
points which are unusually large or small from the majority of the
observations. They are also called the abnormal data. Outliers can
arise due to measurement or recording error, natural variation of the
underlying distribution, or a sudden alteration in the operating

system. An exact definition of an outlier often depends on hidden
assumptions regarding the data structure and the applied detection
method. Yet, some definitions are regarded general enough to cope
with various types of data and methods. [4] defines an outlier as an
observation that deviates so much from other observations as to
arouse suspicion that is was generated by a different mechanism. [5]
defines an outlier as an observation in a data set which appears to be
inconsistent with the remainder of that set of data. [6] indicate that an
outlying observation, or outlier, is one that appears to deviate
markedly from other members of the sample in which it occurs. [7]
stated that an outlier is a value or an observation which is positioned
outside the general mold of a distribution. [8] designate outliers to be
the values or observations that deviate from the sketch that is laid
down by the best part of the data. An outlier is a value or observation
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which is located at anomalous distance from the rest of the values or
observations in a random sample taken from a population. [9] defined
the outlier to be a value or observation which is far away from the
bulk of the data. Many statistics practitioners have been using
residuals for the identification of outliers. The use of residuals
resulting from the ordinary least squares (OLS) estimates will give a
misleading conclusion because the residuals are functions of
leverages and true errors. There are many measure to identification
of outliers in linear regression [see for example,
Hadi [10], Habshah et al. [11], Cook and Weisberg [12], Belsley et
al. [13], Anscombe and Tukey [14] and the discussion on the
properties of Atkinson’s distances in [15] and [16]). However, not
much work has been explored in the formulation of the outlier‘s
identification method in nonlinear regression. Cook and Weisberg
[12] and Fox et al.[17] introduced a measure for the identification of
outliers in nonlinear model, which is based on the OLS method.

The remainder of this paper is organized as follows: Section 2 gives
a brief review to the Studentized Residuals, Hadi Potential, Elliptic
Norm (Cook Distance), Difference in Fits and Atkinson's Distance.
In section 3 real data applications are present. Conclusions are drawn
in section 4.

1. Methods and Models

This section is devoted to introduce the theoretical descriptions of
Studentized Residuals, Hadi Potential, Elliptic Norm (Cook
Distance), Difference in Fits and Atkinson's Distance. We shall first
introduce the concept of the hat matrix in nonlinear Regression. In
nonlinear regression, the linear approximation of function model is
used, and replaces the explanatory matrix in linear regression, by the
gradient of the function model. The linear approximation form can
be derived by expanding the function model
y=n() +e €
Where y = [y1,¥2,...¥.]" is nx 1 response vector, n(8) =
[f(x1;0), ..., f(x;6)] is mx1 vector of function models
flx;0)'s , x; =[xy, X2, ., Xy )T is Kk dimensional predictor
(design) vector, € = [, &, ..., &,] isn x 1 vector of iid residuals,
around the true value 6~
n0) =n(6")+V(-6) )
Where V = % is nxp gradient matrix computed at estimated

point. Based on this approximation, an equivalent measure for
equation of the Hat matrix which is called as tangent plane leverage
matrix is given by

H=vETv)=yT (3)
This leverage matrix in nonlinear plays a similar role as the Hat
Matrix in linear form. Linear regression uses the Hat matrix as a
beginning idea of influence detection tool, and creates several
statistical measures for outlier detection. Next, we shall briefly
discuss some outlier’s detection measures.

1.1 Studentized Residuals

This measure (hereafter refer as ¢; ) is used for identifying outliers.
Suppose h;; is the diagonal of leverage matrix H based on gradient in
equation (3), the studentized residuals are defined by

— Ti
ti - 3\/1——hii (4)
where 6_;, is the estimated standard deviation in the absence of the

i'th observation. The residual, denoted as:7; = y; — f(x;;8) is
obtained from the NLS, M and MM estimates. The i'th observation
is considered as an outlier if |t;| > 2.5 or 3 [14] and [18].

1.2 Hadi Potential
Hadi [10] proposed Hadi's potential denoted as p;; to detect high
leverage points or large residuals :
hii
Pi = 1, ©)

Where h;; is the i'th diagonal element of H. Hadi [10] proposed a cut-
off point for p;; as :

Median(p;;) + c. MAD(p;;) (6)
Where MAD represents the Mean Absolute Deviance defined by:
MAD (p;;) = Median|p;; — Median(p;;)|/0.6745 (7)
c is an appropriately chosen constant such as 2 or 3.

1.3 Elliptic Norm (Cook Distance)

The Cook Distance (hereafter is refereed as CD) which is defined
by Cook and Weisberg [12], is used to assess the influential
observations. An observation is influence if the value of CD is

greater than one. They defined CD as
e 0-0_1) (VTV)(6-B 1
CDL'(VTV,pO'Z) — ( ( )) (paz )( ( )) (8)
where §_, is the parameter estimates when the i'th observation is
removed. When é(_l) is replaced by the linear approximation, this

norm changes to

PN 2 .
CD(V7V,p6?) =L M- ©)
where t; and p is the studentized residual and the number of
parameters in the model, respectively. With the cut of point equal to
1, that is the expectation of 50% confidence ellipsoid of parameter
estimates.

1.4 Difference in Fits

Difference in Fits, denoted by DFFITS, is another diagnostics
measure used in measuring the influence, defined by Belsley et
al.[13]. For the i'th observation, DFFITS is defined as:

DFFITS; = ( /ﬁ) Id;] (10)

where d; is the deleted studentized residual. They considered
observation is an outlier when DFFITS exceeds the cut of point

equalsto 2,/p/n.

1.5 Atkinson's Distance

Atkinson distance (hereafter refer as C;) for observation i was
developed by Atkinson [15] and it is used to detect the influential
observation. Atkinson defined the Atkinson's distance as follows:

C = ( /%%) ], i=1..n (1)
where d; is the deleted studentized residuals. He suggested a cut-off
value equals to 2.

2. Results and Discussion

In this section we summarize and discus the numerical results from
real life data, a set of real data which is referred to as the Drug
concentration data and Tumor metastasis data. Kenakin [19] used a
set of responses to the concentration of an agonist in a functional
assay. In drug concentration data, observation 5 has an outlier in the
response direction. The model associated with this data is Michaelis-
Menten model [20] and [21], expresses the reaction velocity as a
function of concentration of substrate as

y; = Box;

Bt x

Where response variable y; is velocity and predictor variable x; is
substrate; the parameter is 8, the maximum reaction velocity and 3,
denotes concentration of substrate. However, different true
parameters are possible as long as convergence occurs in
optimization process. In Tumor metastasis data, it is taken from
Tabatabai et al.[22] which was primarily collected by Tubiana &
Koscielny [23]. The given data is clean as there is no outlier
present. Then outliers are inserted in X direction, both XY direction
and in Y direction. In X space shifting the value in observation 12
from 90 to 2. In the Y space changing the Y value in observation 6
from 0.55 to 1. And in both XY space transforming Y value in
observation 7 from 0.56 to 3 and X value in observation 12 from 90
to 2. The model associated with this data is Exponential Model, it is
a two parameter model given by the following relationship

yi = Bo ﬁ1xi + &
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Where B,, B, are parameters, x is independent predictor, y response
predictor, € is random variable.

Having examined Tables 1 to 4 carefully, we have noted many
important features: In Table 1 suggest that most of the diagnostic
measures that are based on OLS fail to identify the observation 5 as
outlier. The DFFITS and C; identify correctly observation 5 as
outlier. The results of tables 2,3 and 4 can be observed the best
performance has been achieved by the DFFITS and C;. An important
feature to note is that the Cook Distance €D; and Hadi Potential P;;
is the worst one and fail to identify any outlier.

Table 1: Five outlier measures based on OLS for drug
concentration data.

Cutofpoint cp, P, DFFITS, G
ndex 30 10 (0.896-1.118) 107  2.000
1 0303 0.030 0.020 2146 0480
2 0587 0147 0.126 1651 0928
3 0666  0.341 0523 0921 1.053
4 0190  0.090 0.451 0.283  0.300
5 2072 0.804 0.301 3775 3276
6 0785  0.394 0.503 1107 1241
7 -1.000  0.605 0.730 1171 1582

Table 2: Five outlier measures based on OLS for tumor
metastasis data with outlier in the X direction

Cutofpoint D, P DFFITS;,  C

| 30 10  (0.2490.303) 0816  2.000

ndex
1 0670 0191 0.162 1663 1498
2 0601  0.161 0.143 1589 1344
3 0504  0.135 0.143 1333 1128
4 0309 0075 0117 0902 0.690
5 0385 0,088 0.105 1188 0.860
6 0276 0.060 0.094 0902 0618
7 3030  0.655 0.094 9902  6.774
8 0221 0052 0.109 0670 0494
9 0153 0,045 0170 0371 0342
10 0196 0,079 0322 0346 0439
1 039 0232 0.710 0463 0872
12 0505  0.162 0.205 1116 1129

Table 3: Five outlier measures based on OLS for tumor
metastasis data with outlier in the Y direction.

Cut of point t; CD; P; DFFITS; C;
3.0 1.0 (0.288-0.351) 0.816 2.000
Index

1 -1.304  0.387 0.176 -3.106 2917
2 -1.068  0.302 0.160 -2.669 2.389
3 -0.726  0.206 0.160 -1.814 1.623
4 -0.044  0.011 0.135 -0.121 0.099
5 -0.320 0.078 0.120 -0.924 0.716
6 0.047  0.011 0.102 0.146 0.104
7 0.064  0.014 0.101 0.202 0.144
8 0.221  0.051 0.108 0.673 0.494
9 0.445  0.130 0.171 1.077 0.996
10 0.297 0.128 0.375 0.485 0.664
11 -0.394  0.295 1.123 -0.372 0.882
12 2.835 0.910 0.206 6.247 6.340

Table 4: Five outlier measures based on OLS for tumor
metastasis data with outlier in the XY direction.

Cut of t; CD; Py DFFITS; G
point 3.0 1.0 (0.209- 0.816 2.000
0.246)

Index
1 -1.326 0.358 0.146 -3.473 2.965
2 -1.072 0.284 0.141 -2.858 2.396
3 -0.683 0.181 0.141 -1.821 1.527
4 0.077 0.020 0.130 0.214 0.173
5 -0.250 0.062 0.123 -0.714 0.559
6 2.613 0.611 0.109 7.898 5.842
7 0.164 0.038 0.108 0.498 0.366
8 0.306 0.069 0.100 0.967 0.685
9 0.505 0.120 0.112 1.507 1.130
10 0.261 0.076 0.170 0.633 0.584
11 -0.498 0.206 0.343 -0.850 1.114
12 -0.699 0.475 0.925 -0.727 1.563

3. Conclusion

In this paper, a linear approximation of a nonlinear model is
formulated and subsequently leverage matrix based on the gradient
is formed. The outlier measures for nonlinear regression are then
formulated by incorporating the leverage matrix and the commonly
used detection measures, namely Studentized Residuals t;, Hadi
Potential p;;, Cook Distance CD;, Difference in Fits DFFITS and
Atkinson's Distance c;. The results of the study clearly reveal that the
proposed measures Difference in Fits DFFITS and Atkinson's
Distance c; are the best outlier measures in nonlinear regression
because they consistently can identify outliers correctly in different

outliers scenarios.
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