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 A B S T R A C T 

This paper presents a detailed investigation of absolutely continuous invariant measures (ACIMs) for 

piecewise expanding chaotic transformations in ℝ𝒏  , with particular attention paid to the case where 

the derivative has summable oscillations. ACIMs are important objects in the study of dynamical 

systems, as they provide a way to understand the long-term behavior of trajectories and the statistical 

properties of the system. The paper covers a range of important topics related to ACIMs, including the 

boundedness condition, distortion condition, localization condition, and Schmitt's condition. It also 

discusses the Perron-Frobenius operator, which plays a critical role in the existence and properties of 

ACIMs. The main result of the paper is the proof that the Perron-Frobenius operator is constrictive, 

which implies the existence of a finite number of ergodic ACIMs that satisfy Schmitt's condition and a 

condition dependent on the defining partition. This finding has significant implications for the 

understanding of complex systems and the advancement of research in this field. The paper also 

discusses the relationship between ACIMs and dynamical systems, highlighting the role of ACIMs in 

ergodic theory. Overall, this paper provides a valuable reference for researchers interested in the study 

of ACIMs and their significance in the analysis of dynamical systems and ergodic theory. 
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 ( المتصلة  المطلقة  الدائمة  للمقاييس   
ً

مفصلا تحقيقًا  الورقة  هذه  المتسعة ACIMsتقدم  الفوضوية  للتحويلات   )

 للإشتعال. تعتبر      ℝ𝒏القطعية في 
ً
كائنات   ACIMs، مع الاهتمام الخاص المولى للحالة التي يكون فيها المشتق قابلا

حيث توفر وسيلة لفهم السلوك طويل الأمد للمسارات والخصائص الإحصائية    الديناميكية،هامة في دراسة الأنظمة  

، بما في ذلك شرط القابلية المحدودة ، وشرط    ACIMsللنظام. تغطي الورقة مجموعة من المواضيع المهمة المتعلقة بـ  

فروبينيوس ، الذي يلعب دورًا حاسمًا في وجود  -التشويه ، وشرط التموضع ، وشرط شميت. كما يناقش المشغل بيرون 

بين  ACIMsوخصائص   العلاقة  أيضًا  تناقش  الورقة   .ACIMs    دور مبرزة  الديناميكا،  نظرية   ACIMsوأنظمة  في 

بش بدراسة  الإرغوديك.  المهتمين  للباحثين  قيم  الورقة مرجع  تقدم هذه  أنظمة    ACIMsكل عام،  تحليل  في  وأهميتها 

 الديناميكا ونظرية الإرغوديك.

 

1.Introduction 

In the study of complex systems, dynamical systems theory provides a 

powerful framework for understanding their behavior over time. A 

fundamental concept in this theory is the notion of invariant measures, 

which capture the statistical properties of system trajectories. Among 

these measures, absolutely continuous invariant measures (ACIMs) 

have received significant attention due to their crucial role in 

characterizing the long-term dynamics of chaotic systems. This paper 

focuses on exploring ACIMs for piecewise expanding chaotic 

transformations in n-dimensional Euclidean space ( 𝑅𝑛 ). These 

transformations possess the ability to stretch and fold the state space, 

giving rise to intricate and diverse dynamics. Our investigation 

specifically considers a scenario where the derivative of the 

http://www.sebhau.edu.ly/journal/jopas
mailto:abd.beitalmal@sebhau.edu.ly


Absolutely Continuous Invariant Measures for Piecewise Expanding Chaotic Transformations in R^n with Summable Oscillations…          Beitalmal. 

JOPAS Vol.22 No.  2 2023                                                                                                                                                                                     74  

transformation exhibits summable oscillations. This particular case 

presents intriguing challenges and necessitates a meticulous analysis to 

comprehend the resulting ACIMs. The significance of invariant 

measures in capturing general characteristics observed across different 

datasets has been highlighted in a recent validation and measurement 

study (2022) [1]. This understanding contributes to the comprehension 

of complex system behavior, enabling the analytical analysis of control 

parameters and the forecasting of future conditions based on underlying 

dynamic models. In the realm of dynamical systems theory, a self-

consistent dynamical system refers to a system whose dynamics align 

with specific mathematical properties, including the existence of 

invariant measures, as discussed in a reference from 2019 [2]. In 

conjunction with ergodic theory (2016) [3], dynamical systems theory 

provides robust tools and concepts for comprehending the behavior and 

statistical properties of systems that evolve over time. These theories 

lay a solid mathematical foundation for studying a wide range of 

phenomena and find broad applications in various scientific and 

engineering disciplines. Another important concept pertains to random 

non-uniformly expanding maps, which are families of maps where each 

map possesses a distinct expansion rate, and the choice of the map is 

determined by a random process (2014) [4]. Such maps are often 

employed to model systems that exhibit a combination of deterministic 

and stochastic components. The study of random non-uniformly 

expanding maps involves investigating the existence and properties of 

absolutely continuous invariant measures. These measures assign zero 

probability to individual points and instead assign positive probabilities 

to sets of points, characterized by an integrable density function. M. 

Viana's "Lectures on Lyapunov Exponents" (2014) [5] focuses on 

quantifying the rate of exponential growth or decay of trajectories in 

dynamical systems through Lyapunov exponents. The book delves into 

the theory of Lyapunov exponents, their relationship with ACIMs, and 

the statistical properties of dynamical systems.  In their Encyclopaedia 

of Complexity and Systems Science (2009/2013) [6], Kelso, James 

further highlights the importance of absolutely continuous invariant 

measures (ACIMs) in such research, particularly with regard to 

understanding behaviors over time. Kelso's subsequent studies [6] 

confirmed the value of ACIMs, especially in simulating chaotic 

processes or analyzing structured but challenging-to-quantify 

experimental data. "The Encyclopedia of Complexity and Systems 

Science, published in 2009 [7], is a comprehensive reference work that 

explores various aspects of complexity science and systems science. It 

offers an interdisciplinary overview of the field, covering fundamental 

principles, theories, methodologies, and applications related to 

complexity and systems science. In his book "Mathematics of 

Complexity and Dynamical Systems" (2011) [8], Robert Mayers 

emphasizes the importance of invariant measures in understanding the 

long-term behavior of dynamical systems. The book "Chaotic Billiards" 

by N. Chernov and R. Markarian [9] focuses on the dynamics of billiard 

systems characterized by particles rebounding off walls. It discusses the 

existence and properties of absolutely continuous invariant measures 

(ACIMs) in billiard systems and their connection to chaotic behavior. 

Another book, "Lyapunov Exponents and Smooth Ergodic Theory" by 

L. Barreira and Y. Pesin [10], offers a rigorous mathematical treatment 

of Lyapunov exponents and their significance in smooth ergodic theory. 

The book explores the interconnections between Lyapunov exponents, 

ACIMs, and the statistical behavior of dynamical systems. 

The paper examines the relationship between metric entropy, ACIMs, 

and the ergodic properties of diffeomorphisms. C. Liverani's article on 

"Ergodicity properties of dynamical systems" [11] provides an 

overview of ergodic theory and its applications in the study of 

dynamical systems. The article discusses various ergodicity properties, 

including the existence and properties of ACIMs, and highlights 

connections to other mathematical areas. L.-S. Young's paper "What are 

SRB measures, and which dynamical systems have them?" [12] 

explores Sinai-Ruelle-Bowen (SRB) measures, a type of ACIMs 

associated with hyperbolic dynamical systems. The paper investigates 

the existence and properties of SRB measures and sheds light on the 

systems that possess them. V. Baladi's book "Positive Transfer 

Operators and Decay of Correlations" [13] delves into the theory of 

transfer operators and their applications in studying dynamical systems. 

The book covers the phenomenon of the decay of correlations, which is 

closely linked to the existence and properties of ACIMs, providing 

detailed mathematical analysis. Our research focuses on the exploration 

of absolutely continuous invariant measures (ACIMs) for piecewise 

expanding chaotic transformations in 𝑅𝑛 . We investigate several 

crucial conditions necessary for understanding the existence and 

properties of ACIMs. One of these conditions is the boundedness 

condition, which ensures that the transformation does not stretch the 

state space to infinity. The boundedness condition is essential for the 

well-definedness of ACIMs, as it guarantees that the measures remain 

finite. We also examine the distortion condition, which quantifies the 

expansion and contraction rates of the transformation. By imposing 

bounds on these rates, we ensure that the system possesses a well-

defined ACIM. This condition is closely tied to the concept of 

hyperbolicity, which characterizes the stretching and folding dynamics 

of chaotic systems. 

Furthermore, we analyze the localization condition, which restricts the 

spread of trajectories in the state space. This condition ensures that the 

ACIM concentrates its mass on a finite region, providing a localized 

statistical description of the system's behavior. The localization of 

ACIMs is crucial for understanding the concentration of points and the 

emergence of coherent structures in chaotic systems. Another aspect of 

our investigation is the examination of Schmitt's condition [14], which 

imposes additional constraints on ACIMs. This condition ensures that 

the measures satisfy certain regularity properties, leading to a more 

refined understanding of the system's statistical behavior. By 

considering Schmitt's condition together with a condition dependent on 

the defining partition, we establish the existence of a finite number of 

ergodic ACIMs that exhibit desirable properties. To analyze the 

existence and properties of ACIMs, we delve into the theory of Perron-

Frobenius operators. These operators play a fundamental role in the 

study of invariant measures, as they capture the evolution of probability 

densities under the action of the chaotic transformation. By 

investigating the properties of the Perron-Frobenius operator in the 

context of piecewise expanding chaotic transformations with summable 

oscillations of the derivative, we establish its constrictive nature. This 

result has profound implications, as it guarantees the existence of a 

finite number of ergodic ACIMs that satisfy Schmitt's condition and a 

condition dependent on the defining partition. 

In summary, our paper provides a comprehensive investigation of 

ACIMs for piecewise expanding chaotic transformations in 𝑅𝑛 , with a 

particular focus on scenarios where the derivative exhibits summable 

oscillations. By studying the boundedness, distortion, localization, and 

Schmitt's conditions, as well as the constrictiveness of the Perron-

Frobenius operator, we establish the existence and properties of a finite 

number of ergodic ACIMs. This research contributes to our 

understanding of complex systems, their long-term behavior, and the 

statistical properties that govern their dynamics. 

 

The article is structured as follows: Section 1 provides an introduction 

to absolutely continuous invariant measures (ACIMs), while Section 2 

discusses the properties of piecewise expanding transformations. In 

Section 3, the article demonstrates how the transformation 𝜏 ∈ 𝐶1+𝜖 , 
which satisfies the three Rychlik criteria (distortion, localization, and 

boundedness), also satisfies certain conditions, including Schmitt's 

condition and the condition on the defining partition. Section 4 covers 

the construction of ACIMs, and the main result is presented in Section 

5. Finally, Section 6 provides a discussion and conclusion, summarizing 

the findings of the article. 

 

1.1. The concept of absolutely Continuous Invariant Measures 

(ACIMs) 

In the field of dynamical systems, ACIMs are a crucial notion that 

enable the analysis of long-term behavior. These measures represent 

probability distributions that remain unchanged when subjected to a 

given transformation, allowing researchers to study the statistical 

properties of the system and make predictions about its future behavior. 

1.2. Expanding Transformations in ℝ𝒏   
Focuses on expanding transformations in 𝑅𝑛, which are an important 

class of systems in the realm of dynamical systems. These 

transformations cause the distances between points in the phase space 

to increase when the transformation is applied. Because of their 

tendency to exhibit chaotic behavior, they are particularly intriguing 

and have practical applications in various scientific fields, such as fluid 

dynamics, celestial mechanics, and population dynamics. The section 

also introduces notation for transformations, where the Jacobian matrix 
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of a transformation is denoted by 𝒥 , and the absolute value of its 

determinant is denoted by |𝒥|.  
1.3 Definition. presents the definition of an 𝛼 -expanding 

transformation. Consider a finite partition of the phase space  𝛺 , 

denoted by {𝑃𝑖 , 𝑃2, … , 𝑃𝑚}, and let 𝜏: 𝛺 → 𝛺  preserves this partition. 

That is, 𝜏 ≡ 𝜏|𝑃𝑖
. We say that 𝜏 is 𝛼-expanding if the 2-norm of the 

inverse Jacobian matrix of 𝜏 evaluated at any point in each partition 

element 𝑃𝑖  is less than 𝛼−1, where 𝛼 is a constant greater than 1. In 

other words for 𝑖 =  1, 2, . . . , 𝑚 and 𝑎 >  1, we have: 

‖𝐽𝜏𝑖
−1‖2 < 𝛼

−1, 

2. Piecewise Expanding Transformations  

2.1. Definition of piecewise expanding transformations 

Piecewise expanding transformations are a type of mathematical 

transformation that is commonly used in the study of dynamical 

systems and chaotic behavior. A piecewise expanding transformation is 

a map that is defined on a domain that is partitioned into regions, such 

that the map is expanding [15] (i.e., it stretches the distances between 

points) within each region. The map may also be discontinuous at the 

boundaries between regions. 

More formally, let 𝑇: 𝑋 → 𝑋 Where 𝑋 is metric  space. 𝑇 is said to be a 

piecewise expanding transformation if there exists a partition of 𝑋 into 

finitely many disjoint open sets {𝑈1, 𝑈2, . . . , 𝑈𝑛} such that: 

1. 𝑇  is continuously differentiable on each 𝑈𝑖  , and the derivative  
|𝑇′| > 1, ∀ 𝑈𝑖   

2. The boundary of each 𝑈𝑖 has zero Lebesgue measure. 

3. 𝑇 is discontinuous at the boundaries between the 𝑈𝑖′𝑠. 

This means that 𝑇 stretches distances between points within each open 

set 𝑈𝑖, but it does not stretch distances across the boundaries between 

the 𝑈𝑖′𝑠. The discontinuity at the boundaries allows for the possibility 

of chaotic behavior, as small changes in the initial conditions can lead 

to very different trajectories within different regions. 

2.2. Properties of piecewise expanding transformations 

Piecewise expanding transformations have several important properties 

that are relevant to their study in dynamical systems and chaos theory. 

Here are some of the main properties: 

1. Expansivity: Within each open set 𝑈𝑖  of the partition, the 

transformation 𝑇 expands distances between points. More precisely, the 

derivative |𝑇′| is uniformly greater than 1 on each 𝑈𝑖. This means that 

nearby points in  𝑈𝑖.  will be pushed farther apart by the action of 𝑇, 

which is an essential ingredient in generating chaotic behavior. 

2.Discontinuity: Piecewise expanding transformations are 

discontinuous at the boundaries between the open sets  𝑈𝑖.. This allows 

for the possibility of chaotic behavior, as small perturbations near the 

boundaries can cause trajectories to diverge rapidly in different 

directions. 

3. Bounded distortion: Although distances between points within each 

 𝑈𝑖.  are expanded by 𝑇, the expansion is controlled by a uniform bound 

on the derivative |𝑇′|. This means that 𝑇 does not distort distances too 

much, and nearby points remain approximately close to each other even 

after several iterations of 𝑇. 

4. Invariant measures: Piecewise expanding transformations often 

possess invariant measures, which are probability measures that are 

preserved by the action of  𝑇 . These measures provide a way to 

understand the long-term statistical behavior of the system, and they are 

often used to compute statistical properties such as fractal dimensions 

and Lyapunov exponents. 

5.Ergodicity: Many piecewise expanding transformations are ergodic, 

which means that they exhibit a strong form of statistical mixing. In 

particular, if a transformation is ergodic with respect to an invariant 

measure, then almost every trajectory in the system visits every part of 

the phase space with the same frequency, regardless of the initial 

conditions. This property is important for understanding the long-term 

behavior of chaotic systems. 

 

2.3. Summable Oscillations of Derivative 

One essential feature of piecewise expanding chaotic transformations is 

the summable oscillations exhibited by their derivative. This property 

guarantees that the transformation's derivative has a uniformly bounded 

variation, which is crucial for the existence and uniqueness of ACIMs 

in these systems. The summability of the oscillations allows researchers 

to examine the statistical characteristics of the system and extract 

valuable insights into its long-term behavior. 

 

2.4. Definition. We consider an open and bounded subset 𝛺, of ℝ𝒏   

with a piecewise 𝐶2 boundary. A partition 𝒫 = {𝑃1, 𝑃2, … , 𝑃𝑚},  where  

𝑚 is a finite number, is said to be smooth if each 𝑃𝑖 , 𝑖 = 1,2,… . ,𝑚 has 

a boundary that is piecewise 𝐶1. 

2.5. Remark. Let 𝒫 = 𝒫(1) = {𝑃}𝑖=1
𝑚  be a smooth partition of an open 

and bounded subset 𝛺, of 𝑅𝑛, and 

 

𝒫(𝑘) =⋁𝜏−𝑗(𝒫)

𝑘−1

𝑘=0

 

 

                = {𝑃𝑖1 ∩ 𝜏
(−1)(𝑃𝑖2) ∩ … . 𝜏

−𝑗+1 (𝑃𝑖𝑗) : 𝑃𝑖𝑘

∈ 𝒫  𝑓𝑜𝑟 1 ≤ 𝑘 ≤ 𝑗} 

 

let 𝜏 be a piecewise expanding transformation. We define, 𝑃(𝑘) as the 

partition obtained by successively precomposing 𝑃 with the inverse of 

𝜏, up to 𝑘 times. The sets in 𝑃(𝑘)  are defined as intersections of 𝑘 sets 

from 𝑃, possibly permuted by the inverse of 𝜏.  

We also define 𝐼𝑗 = {𝑖: 𝑃𝑖 ∈ 𝒫
(𝑘)}.  For a fix 𝑖 ∈ 𝐼𝑘  Here are the 

following: 

 max
𝑖∈𝐼𝑗

𝜆𝑛(𝑃𝑖)  ≤ 𝛼
−𝑘 ,  

where  𝜆𝑛  denotes the Lebesgue measure on 𝑅𝑛.   The Lebesgue 

measure is a mathematical concept used to assign a measure or size to 

subsets of Euclidean space. It is named after the French mathematician 

Henri Lebesgue [16], who developed this theory in the early 20th 

century as an extension of the concept of length or area. The Lebesgue 

measure is defined as a class of subsets of Euclidean space, such as the 

real line, the plane, or higher-dimensional spaces. The basic idea is to 

assign a non-negative number to each subset of the space, which 

represents its "size" or "volume" in an intuitive sense.). This implies 

that the size of the largest element in 𝑃(𝑗) converges to zero as 𝑗 → ∞. 
Consequently, the 𝜎 -algebra generated by the nested sequence of 

partitions ∪𝑗≥1 𝒫
(𝑗) coincides with the Borel 𝜎-algebra ℬ of 𝛺. 

Moreover, for 𝒊 ∈ 𝑰𝒌, we define the  

 osc
𝑃𝑖
𝒥𝜏  = max

𝑃𝑖
𝒥𝜏 −min

𝑃_𝑖
𝒥𝜏 ,  

Where 𝒥𝜏 is the Jacobian determinant of 𝜏. We then define  

𝛥𝑘 = max
𝑖∈ℐk

osc
𝑃𝑖
𝒥𝜏  , 

To measure the maximum oscillation of 𝒥𝜏  on the sets in 𝒫(𝑘) . 

Piecewise Expanding Chaotic Transformations are known to exhibit 

chaotic behaviour, which enables us to study invariant measures and the 

long-term behavior of systems described by Absolutely Continuous 

Invariant Measures (ACIM). 

3. Meeting the conditions for ACIMs 

The purpose of this section is to explore how piecewise expanding 

transformations can meet the conditions required for ACIMs to exist 

and be unique. Additionally, we discuss Schmitt's condition and the 

Rychlik criteria (distortion, localization, and boundedness) and provide 

a lemma and remarks on how these conditions can be satisfied. 

3.1. Definition. This subsection introduces the concept of an ϵ-

transformation, which is a piecewise expanding transformation that 

satisfies Schmitt's Condition. The condition requires that the sum of 

maximum oscillations of Jacobian determinants, denoted by  ∆𝑘 , is 

finite. Moreover, there exists a constant 𝛬  such that the Jacobian 

determinant of the transformation is bounded above by 𝛬 on the entire 

phase space 𝛺. 

  ∑ ∆𝑘𝑘≥1 = 𝛥 < +∞.  

The condition of Schmitt suggests that there is a constant Λ, such that 

 𝐽𝜏(𝑥) ≤ 𝛬, 𝑥 ∈ 𝛺.  

Prior to continuing to the following Remark 3.4, let 

𝒫(𝐵) = {𝐴 ∈ 𝒫 ∶ 𝜆(𝐴 ∩ 𝐵) > 0}, 
as the collection of elements in the partition 𝒫  that have non-zero 

intersection with a Borel set 𝐵. 

3.2. Remark: It was demonstrated by Rychlik [17] that these Schmitt 

conditions have a fixed point. 𝒫𝜏.   In our context, we assume the 

following operator for the three conditions: 
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I. For the Distortion condition: There exists 𝛿 >  0 such that for 

any 𝑘 ≥  1 and any 𝐵 ∈ 𝒫(𝑘) , we have 

 sup
𝐵
𝒥𝜏𝑘 (𝜏𝑖

−𝑘(𝑥))   ≤ 𝛿 inf
𝐵
𝒥𝜏𝑘 (𝜏𝑖

−𝑘(𝑥)).   

II. For the Localization condition: There exist 𝜂 >  0  and          

0 <  𝜌 <  1 such that for any 𝑖 ≥ 1 and any 𝐵 ∈ 𝒫(𝑖): 
 𝜆𝑛 (𝜏

𝑖(𝐵)) < 𝜂  ⟹ ∑ sup
𝐴
𝒥𝜏 (𝜏𝑖

−𝑘(𝑥))𝐴∈𝑃(𝜏𝑖(𝐵))  ≤ 𝜌.  

III. For the Boundedness condition: 

 𝛾 = ∑ sup
𝐵
𝒥𝜏(𝜏

−1(𝑥))

𝐵∈𝑃

< ∞.   

The Localization condition holds if  𝜏𝑖𝐵   is small in measure and does 

not intersect too many elements of 𝒫 with a large value of 𝒥𝜏(𝜏
−1(𝑥)). 

These conditions ensure that the transformation satisfies Schmitt's 

Condition. In particular, the Distortion Condition guarantees that the 

expansion rate is bounded, the Localization Condition ensures that the 

transformation is well-behaved in a local sense, and the Boundedness 

Condition guarantees that the ACIM is supported on a compact set. 

3.3. Remark: Suppose that 𝑥, 𝑦 ∈ 𝐵 ∈ 𝒫(𝜈+𝑘)(𝜏𝑖(𝑦), 𝜏𝑖(𝑥) ∈ 𝜏−1𝐵 ∈

𝒫(𝜈+𝑘−𝑖)), then: 

𝒥𝜏 (𝜏
𝑖(𝑦)) − 𝒥𝜏 (𝜏

𝑖(𝑥))

≤ max
𝜏−1𝐵∈𝑃𝜈+𝑘−𝑖

(max
𝜏−1𝐵

𝒥𝜏 (𝜏
𝑖(𝑦)) − min

𝜏−1𝐵
𝒥𝜏(𝜏

𝑖(𝑥))) 

= max
𝜏−1𝐵∈𝑃^{(𝜈+𝑘−𝑖)}

osc
𝜏−1𝐵

𝒥𝜏 

= ∆𝜈+𝑘−𝑖                                        
This is equal to the maximum oscillation of the Jacobian determinant 

of 𝜏 on the set 𝜏−1𝐵, denoted by ∆𝜈+𝑘−𝑖. In other words, Remark 3.3 

highlights a relationship between the maximum difference in the 

Jacobian determinant of 𝜏 at points 𝜏𝑖(𝑦) and 𝜏𝑖(𝑥) and the maximum 

oscillation of the Jacobian determinant on the set  𝜏−1𝐵 . This 

relationship is useful in analysing the behavior of expanding 

transformations and can be used to establish conditions for the existence 

of Absolutely Continuous Invariant Measures (ACIMs). 

3.4. Lemma: Show that if 𝜏  is an 𝜀-transformation, then the distortion 

conditions are satisfied. 

Proof. To prove this, consider any    𝑥, 𝑦 ∈ 𝐵 ∈ 𝒫(𝜈+𝑘)(𝜏𝑖(𝑦), 𝜏𝑖(𝑥) ∈

𝜏−1𝐵 ∈ 𝒫(𝜈+𝑘−𝑖)).           

Using the definition of an 𝜀-transformation and Remark 3.5, we obtain:           

 𝒥𝜏𝑘(𝑦)

𝒥𝜏𝑘(𝑥)
 =  ∏

𝒥𝜏(𝜏
𝑖(𝑦))

𝒥𝜏(𝜏
𝑖(𝑥))

𝑘−1

𝑖=0

 

 

                           ≤ ∏ 𝑒𝑥𝑝 (
𝒥𝜏(𝜏

𝑖(𝑦))−𝒥𝜏(𝜏
𝑖(𝑥))

𝒥𝜏(𝜏
𝑖(𝑥))

)𝑘−1
𝑖=0 . 

According to Remark 3.3 and the definition of an 𝜀- transformation, we 

obtain: 

 𝒥𝜏𝑘(𝑦)

𝒥𝜏𝑘(𝑥)
 ≤  ∏𝑒𝑥𝑝 (

1

𝛼
∆𝜈+𝑘−𝑖)

𝑘−1

𝑖=0

 

 

= 𝑒𝑥𝑝(
1

𝛼
 ∑∆𝜈+𝑘−𝑖

𝑘−1

𝑖=0

) 

=  𝑒𝑥𝑝(
1

𝛼
 ∑∆𝜈+𝑖

𝑘

𝑖=0

). 

Letting 𝛿 = 𝑒𝑥𝑝 (
1

𝛼
 ∑ ∆𝜈+𝑖

𝑘
𝑖=1 )  complete the proof. 

The distortion condition is critical for establishing the existence of 

Absolutely Continuous Invariant Measures (ACIMs) for expanding 

transformations. It relates the local behavior of the transformation to its 

global behavior and is essential for understanding the long-term 

behavior of the system. Lemma 3.4 provides a fundamental result that 

helps to establish the distortion condition for a broad class of expanding 

transformations. 

3.5. Lemma: If 𝜏 is an 𝜀 -transformation, then the boundedness 

conditions are satisfied. 

Proof. We have γ = ∑ sup
𝐵
𝒥𝜏(𝜏

−1(𝑥))𝐵∈𝑃 = #𝐵
1

𝒥𝜏(𝑥)
≤ #𝐵𝛼−1 < ∞, 

where #𝐵  denotes the number of elements in the partition 𝑃 

containing  𝑥 . This inequality follows from the definition of an 𝜀 -

transformation and the fact that 𝐽𝜏  is bounded away from zero. 

Therefore, the boundedness condition is satisfied. 

This result is important for establishing the existence of Absolutely 

Continuous Invariant Measures (ACIMs) for expanding 

transformations, as it ensures that the ACIM is supported on a compact 

set. Lemma 3.5 shows that the boundedness condition holds for a broad 

class of expanding transformations, namely 𝜀-transformations. 

3.6. Remark: Introduces a way to measure the stability of an expanding 

transformation within a bounded region of the phase space. 

 Let 𝐿𝑖(𝑥1, 𝑥2, … . , 𝑥𝑖−1, 𝑥𝑖+1, … . , 𝑥𝑛), be represented by a straight line 

that is  parallel to the 𝑖 −th axis and has all the coordinates, with the 

exception of  the 𝑖 −th  fixed and equal to 𝑥1, 𝑥2, ……𝑥𝑖−1, , , , , , , , 𝑥𝑛 . 

Let 

 𝑅𝑖
(𝑗)(𝑥1, 𝑥2, … . , 𝑥𝑖−1, 𝑥𝑖+1, … . , 𝑥𝑛) 

= #{𝑃𝑖: 𝑃𝑖
∈ 𝒫(𝑗), 𝑃𝑖 ∩ 𝐿𝑖(𝑥1, 𝑥2, … . , 𝑥𝑖−1, 𝑥𝑖+1, … . , 𝑥𝑛) ≠ 0} 

 

For any 1 ≤ 𝑖 ≤ 𝑛    ,  let   

 

 ℛ𝑖
(𝑗)

= sup
𝑥𝑘

1≤𝑘≤𝑛
𝑘≠𝑖

𝑅𝑖
(𝑗)
 (𝑥1, 𝑥2, … . , 𝑥𝑖−1, 𝑥𝑖+1, … . , 𝑥𝑛)  

 

 
𝑅𝑖
(𝑗)̅̅ ̅̅ ̅
=∏ℛ𝑘

(𝑗)

𝑛

𝑘=1
𝑘≠𝑖

 
 

 𝑅(𝑗) = max
1≤𝑖≤𝑛

ℛ𝑖
(𝑗)́

  

 ℛ = max
𝑗
ℛ(𝑗)  

 

In this case, the expanding transformation is well-behaved and 

demonstrates stable behavior within a bounded region of the phase 

space. Stability is essential to understanding ACIM's long-term 

behavior and establishing its existence. By measuring the stability of an 

expanding transformation through the parameter 𝑅 , Remark 3.6 

provides a useful tool for analyzing the behavior of ACIMs and for 

identifying conditions under which they exist. 

3.7. Lemma: If   𝜏 is an 𝜀 -transformation, and  𝛼 > 2ℛ  ,  then the 

localization condition is satisfied. 

Proof. Take   𝜂 > 0  such that 𝜂
1

𝑛 < 𝑚𝑖𝑛𝑖∈𝐼1𝑑𝑖𝑎𝑚 𝑃𝑖 and  0 < 𝜌 < 1, 

such that  

 
0 <

2ℛ

𝛼
< 𝜌 < 1. 

 

Since  𝑚𝑖𝑛 𝑑𝑖𝑎𝑚𝑖∈𝐼1𝑃𝑖 > 𝜂
1

𝑛 , for any 𝐵 ∈ 𝒫𝑖 , 𝜆𝑛 (𝜏
𝑖(𝐵)) < 𝜂, means 

that at least one of the widths of  𝜏𝑖(𝐵)  is smaller than  𝜂
1

𝑛  <

𝑚𝑖𝑛𝑖∈𝐼1𝑑𝑖𝑎𝑚𝑃𝑖  , and the number of 𝒫 (𝜏𝑖(𝐵))  is at most 2ℛ . 

Therefore 

∑ sup
𝐴
𝒥𝜏 (𝜏

−1(𝑥))

𝐴∈𝑃(𝜏𝑖(𝐵))

≤
2ℛ

∝
< 𝜌 . 

When the localization condition is met, the expanding transformation is 

likely to be rather stable in the phase space. Understanding the system's 

long-term behavior and ensuring ACIM's existence depends on its 

stability.  Lemma 3.7 provides a condition for the localization of an 

expanding transformation, which is a crucial step in establishing the 

existence of ACIMs. By ensuring that the localization condition is 

satisfied, we can guarantee that the expanding transformation is stable 

in a bounded region of the phase space, allowing for a better 

understanding of its long-term behavior. 

3.8. Definition. For any 𝑡 > 0 let 𝜈(𝑡) be the largest 𝜈 such that  

 min
𝑃∈𝒫(𝜈)

𝜆𝑛(𝑃) > 𝑡   

The term is defined by 𝜔𝜏(𝑡) = 𝑚𝑎𝑥 {𝑡, 𝑒𝑥𝑝 (
2

𝛼
∑ Δ𝑘𝑘≥𝜈 ) − 1}.  

Notice that: 1 − 𝑒𝑥𝑝 (
−2

𝛼
 ∑ Δ𝑘𝑘≥𝜈  ) ≤  𝑒𝑥𝑝 (

2

𝛼
∑ Δ𝑘𝑘≥𝜈 ) − 1. 

Definition 3.8 provides a way to measure the rate of decay of the tails 

of the distribution of the expanding transformation. The parameter 

𝜔𝜏(𝑡) captures the exponential decay of the tails and is related to the 

distortion and boundedness conditions. The quantity 𝜈(𝑡) determines 
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the scale at which the tails decay, and is related to the localization 

condition. By understanding the behavior of 𝜔𝜏(𝑡) and 𝜈(𝑡), we can 

gain insights into the long-term behavior of the system and establish the 

existence of Absolutely Continuous Invariant Measures (ACIMs). 

3.9. Lemma: If 𝜏 is an 𝜀-transformation, then; for any 𝑡 > 0, 𝐵 ∈ 𝑃(𝑗) 
and 𝑥, 𝑥 + 𝑡 ∈ 𝜏𝑖(𝐵), 𝑖 ≤ 𝑗: 

  

|
𝒥𝜏𝑖(𝑥)

𝒥𝜏𝑖(𝑥 + 𝑡)
− 1| ≤ 𝑒𝑥𝑝(

2

𝛼
∑∆𝜈(𝑡)+𝑘

𝑗

𝑘=1

)− 1. 

 

Where 𝜈(𝑡) is defined in Definition 3.8. 

Proof. According to the definition of  𝜈(𝑡), 𝑥   and 𝑥 + 𝑡 are in the same 

or two neighbouring sets of 𝒫(𝜈(𝑡)). Additionally, as  𝜏𝑖 is a one-to-one 

transformation between 𝐵  and 𝜏𝑖(𝐵) , points 𝜏−𝑖(𝑥)  and 𝜏−𝑖(𝑥 + 𝑡) 
in 𝐵  are likewise found in the same or two neighbouring sets of 

𝒫(𝜈(𝑡)+𝑖). Using Lemma 3.4, we obtain: 

 

𝑒𝑥𝑝 (
−2

𝛼
∑∆𝜈(𝑡)+𝑘

𝑗

𝑖=𝑘

) ≤
𝒥𝜏𝑖(𝑥)

𝒥𝜏𝑖(𝑥 + 𝑡)
 

≤  𝑒𝑥𝑝(
2

𝛼
∑∆𝜈(𝑡)+𝑘

𝑗

𝑘=1

). 

 

That makes the proof complete. Lemma 3.9 provides an estimate of the 

distortion of the expanding transformation between two nearby points 

in the same partition element. The bound on the distortion is 

characterized by the parameter 𝜈(𝑡) and the distortion constant α. By 

understanding the behavior of the distortion, we can gain insights into 

the long-term behavior of the system and establish the existence of 

Absolutely Continuous Invariant Measures (ACIMs). 

4. Construction of ACIM for Expanding Transformations 

Satisfying Schmitt's Condition  

In this section, we describe the techniques and tools used to construct 

Absolutely Continuous Invariant Measures (ACIMs) for expanding 

transformations satisfying Schmitt's condition. These techniques often 

rely on mathematical concepts and tools such as the Perron-Frobenius 

operator and numerical methods such as Monte Carlo sampling and 

Markov chain Monte Carlo (MCMC) [18]. However, there are also 

challenges and limitations involved in constructing ACIMs, which we 

will discuss. 

4.1. Perron-Frobenius Operator 

For expanding transformations satisfying Schmitt's condition, the 

Perron-Frobenius operator is an effective tool for constructing ACIMs. 

This operator allows researchers to locate and analyse the invariant 

measures associated with the system by mapping a given function to its 

future behavior after the transformation. 

4.2. Techniques and Algorithms 

Various methods and algorithms have been developed for constructing 

ACIMs for expanding transformations in ℝ𝒏   that satisfy Schmitt's 

condition. These techniques often rely on mathematical concepts and 

tools such as the Perron-Frobenius operator. The use of the Perron-

Frobenius operator can significantly impact the ergodic properties of 

the system, including ergodicity, mixing, and the Central Limit 

Theorem. The analysis of the Perron-Frobenius operator in the presence 

of an ACIM can yield valuable insights into these properties of the 

system. However, constructing ACIMs can also be challenging and 

computationally intensive, requiring the use of numerical methods such 

as Monte Carlo sampling and MCMC. Furthermore, the existence and 

uniqueness of ACIMs are not guaranteed in all cases, depending on the 

properties of the expanding transformation. 

4.3. Remark: The Perron-Frobenius operator is the main foundation of 

this paper. It is denoted as  𝑃𝜏: 𝐿
1(𝛺) → 𝐿1(𝛺)  For a function 𝑓 in 

𝐿1(𝛺), 𝑃𝜏 f is given by the formula: 

 

𝑃𝜏𝑓(𝑥) =∑
𝑓 (𝜏𝑖

−1(𝑥))

𝒥𝜏 (𝜏𝑖
−1(𝑥))𝑖∈𝐼1

, 𝑓 ∈ 𝐿1(𝛺). 

 

where 𝜏 is a measure-preserving transformation of 𝛺, 𝐼1 is the index set 

of the 𝜏-preimages of 𝑥, and 𝐽𝜏 is the Jacobian determinant of 𝜏. 

 

The Perron-Frobenius operator is a Markov operator [18], which means 

that it satisfies the following properties: 

(A) 𝑃𝜏𝑓 ≥ 0, 𝑓 ≥ 0, for all 𝑓 in 𝐿1(𝛺). 
(B)  ‖𝑃𝜏𝑓‖𝐿1(𝛺), 𝑓𝑜𝑟𝑓 ≥ 0 , for all non-negative functions 𝑓 in 

𝐿1(𝛺). 
It can also be shown that a function 𝑓 ∈ 𝐿1(𝛺) is a density of a 𝜏-

invariant measure if and only if 𝑃𝜏 𝑓 =  𝑓 and 

 

∫ 𝑓 ∙ 𝑔 𝑜 𝜋𝑘𝑑𝜆𝑛
Ω

= ∫ 𝑃𝑘𝑓 ∙ 𝑔 𝑑𝜆𝑛
𝛺

 , 

 

for all 𝑔 in 𝐿∞(𝛺), where 𝜋𝑘 is the 𝑘th power of the Perron-Frobenius 

operator and 𝜆𝑛  is the normalized Lebesgue measure on 𝛺  

4.4. Definition. The Markov operator 𝑃𝜏: 𝐿
1(𝛺) → 𝐿1(𝛺) is said to be 

extremely constrictive if there exists a compact set 𝐹 ⊂ 𝐿1(𝛺)  such 

that for any non-negative function 𝑓 ∈ 𝐿1(𝛺) with 𝑓 ≥ 0  and 

‖𝑓‖𝐿1(𝛺) = 1, hence:  

𝑑𝑖𝑠(𝑃𝜏𝑓, 𝐹) = 0, 𝑖𝑛 𝐿
1(𝛺)  𝑚𝑒𝑡𝑟𝑖𝑐 .                           (1). 

The main goal of this study is to show that for a 𝜀 -transformation 

defined on a partition satisfying a certain condition, the operator 𝑃𝜏  is 

strongly constrictive on 𝐿1(𝛺). The concept of extreme constrictivity is 

important for understanding the long-term behavior of expanding 

transformations and for establishing the existence of ACIMs. 

5. The Main Results 

This section presents the main findings of the article, which focus on a 

new theorem or result related to ACIMs for piecewise expanding 

chaotic transformations in ℝ𝒏    with summable oscillations of 

derivative. The section also explores the potential implications of the 

result and its practical applications. The primary outcomes of the study 

are based on the definitions of an exclusive isomorphism to 𝐿1, as well 

as two subspaces of 𝐿1 = 𝐿1 (𝛺, 𝐵, 𝜆), which facilitates the creation of 

an appropriate subset 𝐹  of 𝐿1(𝛺) . These definitions are firmly 

grounded in Rychlik's theories [9]. Furthermore, a space 𝐹𝑆𝜏 of formal 

series is introduced, defined as follows: 

 

ℱ𝑆𝜏 =

{
 
 

 
 

𝐹𝛽|𝐹𝛽 = ∑ 𝛽(𝑖,𝑗,𝐵)𝑃𝜏
𝑖𝜒𝐵, 𝛽(𝑖,𝑗,𝐵)

1≤𝑖≤𝑗

𝐵∈𝒫(𝑗)

∈ ℝ𝑛

}
 
 

 
 

 𝑎𝑛𝑑 

 

 

 ∑ max
1≤𝑘≤𝑛

|𝛽(𝑖,𝑗,𝐵)
𝑘 |‖𝑃𝜏

𝑖𝜒𝐵‖𝐿∞(𝛺)1≤𝑖≤𝑗

𝐵∈𝒫(𝑗)
< ∞.  

Here,  𝛽(𝑖,𝑗,𝐵) = (𝛽(𝑖,𝑗,𝐵)
1 , 𝛽(𝑖,𝑗,𝐵)

2 , , . . . . . , 𝛽(𝑖,𝑗,𝐵)
𝑛 ) . The norm in 

𝐹𝑆𝜏 defined as: 

 ‖𝐹𝛽‖𝐹𝑆𝜏 = ∑ max
1≤𝑘≤𝑛

|𝛽(𝑖,𝑗,𝐵)
𝑘 | ‖𝑃𝜏

𝑖(𝜒𝐵)‖
𝐿∞(𝛺)

.
(𝑖,𝑗,𝐵)∈𝒜𝜏

   

The space  𝐹𝑆𝜏 is a Banach space. We also define the operator 𝑃𝜏 on 

𝐹𝑆𝜏 and a set 𝐵𝐹𝜏 of bounded functions in 𝐿1(𝛺) as follows: 

For any 𝐹𝛽 = ∑ 𝛽(𝑖,𝑗,𝐵)𝑃𝜏
𝑖(𝜒𝐵) ∈ 𝐹𝑆𝜏1≤𝑖≤𝑗

𝐵∈𝒫(𝑗)
 , has 

 𝑃𝜏𝐹𝛽 = ∑ 𝛽(𝑖,𝑗,𝐵)𝑃𝜏 (𝑃𝜏
𝑖(𝜒𝐵)) .1≤𝑖≤𝑗

𝐵∈𝒫(𝑗)
                           (2)  

Any 𝐹𝛽 ∈ 𝐹𝑆𝜏 defines a bounded function as  

 𝑓𝛽 = 𝛷(𝐹𝛽) = ∑ 𝛽(𝑖,𝑗,𝐵) 𝑃𝜏
𝑖(𝜒𝐵)1≤𝑖≤𝑗

𝐵∈𝒫(𝑗)
,  

Let  

 𝐵𝐹𝜏 = {𝑓 ∈ 𝐿
1(𝛺): 𝑓 = 𝑓𝛽 = 𝛷(𝐹𝛽), 𝐹𝛽 ∈ 𝐹𝑆𝜏}.  

 The norm in 𝐵𝐹𝜏is defined as; 

 ‖𝛷(𝐹𝛼)‖𝐵𝐹𝜏 = inf
𝐹𝛽: Φ(𝐹𝛽)=Φ(𝐹𝛼)𝑎.𝑒

||𝐹𝛽||𝐹𝑆𝜏 .   

𝐵𝐹𝜏 ⊂ 𝐿
∞(𝛺)   and ‖𝑓𝛽‖∞ ≤ ‖𝑓𝛽‖𝐵𝐹𝜏  exist. Furthermore, it is 

straightforward to demonstrate that 𝐹𝛽(𝑘) → 𝐹𝛽0  in 𝐹𝑆𝜏    implies 

pointwise convergence of 𝑓𝛽(𝑘) to 𝑓𝛽0  in   𝐿1(𝛺). According to both 

facts, the operator 𝛷 form 𝐹𝑆𝜏  onto   𝐿1(𝛺) is continuous. Due to the 

face that 𝐵𝐹𝜏 =
𝐹𝑆𝜏

𝐾𝑒𝑟(𝛷)
, 𝐵𝐹𝜏 with the norm  ‖. ‖𝐵𝐹𝜏 is a Banach space. 

Finally, any function 𝑓 ∈ 𝐿1(𝛺) , has an integral modulus of continuity 

that is  
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𝑊𝑓(𝑡) = ∫ |𝑓(𝑥 + 𝑡) − 𝑓(𝑥)|𝑑𝜆𝑛(𝑥).

𝛺

 
 

5.1. Remark: It is worth noting that the integral modulus of continuity 

of the sum of two functions 𝑓 and 𝑔 is bounded by the sum of their 

individual moduli of continuity. That is; 

 
𝑊𝑓+𝑔(𝑡) = ∫ |(𝑓 + 𝑔)(𝑥 + 𝑡) − (𝑓 + 𝑔)(𝑥)| 𝑑𝜆𝑛(𝑥)

𝛺

 
 

                                                  = ∫ |𝑓(𝑥 + 𝑡) + 𝑔(𝑥 +
𝛺

𝑡) − 𝑓(𝑥) − 𝑔(𝑥)| 𝑑𝜆𝑛(𝑥) 

  

 
≤ ∫ |𝑓(𝑥 + 𝑡) − 𝑓(𝑥)|𝑑𝜆𝑛(𝑥)

𝛺

+∫ |𝑔(𝑥 + 𝑡)  −  𝑔(𝑥)|𝑑𝜆𝑛(𝑥)
𝛺

 

   

 =  𝑊𝑓(𝑡)  + 𝑊𝑔(𝑡).    

Let 𝜔(. )be a continuity modulus, which is a non-negative increasing 

function with 𝜔(𝑡) = 0 . We then introduce a subspace of  𝐿1(𝛺), 
denoted by 𝑀𝐶𝜔, consisting of functions with a bounded modulus of 

continuity. This is defined as: 

 𝑀𝐶𝜔 = {𝑓 ∈  𝐿∞(𝛺) ∶  𝑊𝑓(𝑡)

≤ 𝛫 .𝜔(𝑡), 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝛫 > 0  } 

 

Here, 𝜔(. )  is a continuity modulus, i.e. a non-negative increasing 

function with 𝜔(𝑡) = 0. We define a norm on  𝑀𝐶𝜔 as follows: 

 ‖𝑓‖𝑀𝐶𝜔 = 𝑚𝑎𝑥 {‖𝑓‖ 𝐿∞(𝛺), 𝛫𝑓},  

Where 𝛫𝑓 = 𝑖𝑛𝑓 {𝛫 ∶  𝑊𝑓(𝑡) ≤ 𝛫 .𝜔(𝑡)}.  𝑀𝐶𝜔 is a Banach space. In 

the following, we demonstrate some of the space properties of 

𝐹𝑆𝜏 , 𝐵𝐹𝜏  and  𝑀𝐶𝜔 . 

We will use the compact subset of 𝐿1(𝛺)  that is defined by the 

following two propositions as    𝐹. 

5.2. Proposition. Every bounded subset of 𝑀𝐶𝜔 is precompact in 

𝐿1(𝛺) . Hence, 𝑀𝐶𝜔  represents the space of probability measures on 

the infinite sequence space Ω  equipped with the topology of weak 

convergence. 

Proof. This result is obtained from Kolmogorov's theorem [19], which 

is a classical and fundamental theorem in probability theory. The 

theorem establishes a connection between the convergence of a 

sequence of random variables and its convergence in 𝐿1. Specifically, 

the theorem states that a sequence of random variables that are 

uniformly integrable and converge in probability must converge in 𝐿1. 

Since every element of 𝑀𝐶𝜔  is a probability measure, it follows that 

every bounded subset of 𝑀𝐶𝜔    satisfies the conditions of 

Kolmogorov's theorem [19]. Therefore, every bounded subset of 𝑀𝐶𝜔   

is precompact in 𝐿1(𝛺). Which implies that 𝑀𝐶𝜔 represents the space 

of probability measures on 𝛺  equipped with the topology of weak 

convergence. 

5.3. Proposition. Let 𝑓𝑘 be a sequence in 𝑀𝐶𝜔   such that ‖𝑓𝑘‖𝑀𝐶𝜔 ≤
𝛭 , for all 𝑘 = 1,2, . . . .. 
If 𝑓𝑘converges to 𝑓 in 𝐿1(𝛺) , then  𝑓 ∈  𝑀𝐶𝜔and  

 ‖𝑓‖𝑀𝐶𝜔 ≤  𝑙𝑖𝑚  ‖𝑓𝑘‖𝑀𝐶𝜔  ≤ 𝛭    

Proof. We first note that since 𝑓𝑘 → 𝑓  in 𝐿1(𝛺) , there exists a 

subsequence 𝑓𝑘𝑖  such that 𝑓𝑘𝑖  converges to 𝑓  almost everywhere. 

Therefore,  𝑓k converges to 𝑓 almost everywhere. It follows that 

 ‖𝑓‖ 𝐿∞(𝛺) ≤  𝑙𝑖𝑚  ‖𝑓𝑘‖ 𝐿∞(𝛺)  ≤ 𝛭.  

According to the definition of  ‖. ‖𝑀𝐶𝜔, ‖𝑓‖ 𝐿∞(𝛺) ≤  ‖𝑓𝑘‖𝑀𝐶𝜔 , 

applying this along with  ‖𝑓𝑘‖𝑀𝐶𝜔 ≤ 𝛭  , for all 𝑘  , in the previous 

equation, we get: 

 ‖𝑓‖ 𝐿∞(𝛺) ≤ 𝛭.  

To prove that 𝑓 belongs to 𝑀𝐶𝜔, we use the definition of 𝑊𝑓(𝑡)  which 

is the integral modulus of continuity of 𝑓. By the assumption that 𝑓𝑘  

converges to f in 𝐿1(𝛺) , we have the following: 

 
𝑊𝑓(𝑡) = ∫ |𝑓(𝑥 + 𝑡) − 𝑓(𝑥)| 𝑑𝜆𝑛(𝑥)

𝛺

 
(3) 

 
= ∫ |𝑓𝑘(𝑥 + 𝑡) − 𝑓𝑘(𝑥)| 𝑑𝜆𝑛(𝑥)

𝛺

  
 

 = 𝑊𝑓 𝑘(𝑡)   

Since  𝑓𝑘 ∈  𝑀𝐶𝜔 therefore, 

 𝑊𝑓𝑘(𝑡) ≤ 𝑙𝑖𝑚 𝛫𝑓𝑘𝜔(𝑡),   

For some constant  𝛫𝑓𝑘  and for all 𝑡 . Using the definition of 

‖. ‖𝑀𝐶𝜔 , 𝛫𝑓𝑘 ≤  ‖𝑓𝑘‖𝑀𝐶𝜔 ≤ 𝛭 . Substituting this inequality into the 

previous inequality, we get: 

 𝑊𝑓𝑘(𝑡) ≤ 𝛭𝜔(𝑡)  ∀ 𝑘 (4) 

By using (4) in (3) we obtain: 

 𝑊𝑓(𝑡) ≤ 𝛭𝜔(𝑡) =  𝛭𝜔(𝑡).   

Therefore 𝑓 ∈ 𝑀𝐶𝜔 and 

 ‖𝑓‖𝑀𝐶𝜔 = 𝑚𝑎𝑥{‖𝑓‖ 𝐿∞(𝛺), 𝛫𝑓}  

As a result, we can use Equations (3) and (4) we obtain: 

 ‖𝑓‖𝑀𝐶𝜔 = 𝑚𝑎𝑥{𝑙𝑖𝑚 ‖𝑓‖ 𝐿∞(𝛺),   𝛫𝑓}  

 ≤ 𝛭  

This completes the proof, which involves using Equations (3) and (4) 

that rely on the definition of 𝛫𝑓  and 𝑊𝑓(𝑡). 

5.4. Corollary: The set 

 

{𝑓 ∈ 𝑀𝐶𝜔 ∶  ‖𝑓‖𝑀𝐶𝜔 ≤
3𝛾
𝛿
𝜂

1 − 𝜌
} 

 

Is a compact subset of 𝐿1(𝛺) . 
Proof. The proof follows directly from Propositions 5.2 and 

Proposition 5.3, which establish that every bounded subset 𝑀𝐶𝜔 is 

precompact in 𝐿1(𝛺) and that the 𝑀𝐶𝜔 norm of a sequence of functions 

that converges to a function in 𝐿1(𝛺) is bounded by the limit of the 

𝑀𝐶𝜔  norms of the sequence. Since ℱ is defined as a subset of 𝑀𝐶𝜔  

with a bounded 𝑀𝐶𝜔 norm, ℱ is a bounded subset of 𝑀𝐶𝜔. Therefore, 

by Proposition 5.2.  ℱ is precompact in 𝐿1(𝛺).   Furthermore, by 

Proposition 5.3, if a sequence of functions in ℱconverges to a function 

in 𝐿1(𝛺),  then the limit function also belongs to 𝑀𝐶𝜔  and has a 

bounded 𝑀𝐶𝜔 norm. Therefore, ℱ is closed in 𝐿1(𝛺).  
Since ℱ is both precompact and closed in 𝐿1(𝛺), it is compact. Thus, 

we have shown that ℱ is a compact subset of 𝐿1(𝛺). 

5.5. Lemma: For a fixed positive number, for any, 1 ≤ 𝑖 ≤ 𝑗 , and an 

𝐵 ∈ 𝑃(𝑗), then 

 𝑊𝑃𝜏
𝑖𝑋𝐵(𝑡) ≤ 3‖𝑃𝜏

𝑖𝑋𝐵‖ 𝐿∞(𝜏𝑖(𝐵))𝜔𝜏(𝑡). (5) 

where 𝑃𝜏
𝑖𝑋𝐵 denotes the 𝑖-th iterate of the Perron-Frobenius operator 

applied to the function 𝑋𝐵, and 𝑊 is the Wasserstein distance between 

the probability measures induced by the functions.  

Proof. To prove this lemma, we first use the definition of the Perron-

Frobenius operator to express 𝑃𝜏
𝑖𝑋𝐵 in terms of the function 𝑋𝜏

𝑖(𝐵) and 

the Jacobian  𝐽𝜏
𝑖  . Then, we upper bound the Wasserstein distance by 

integrating the absolute difference of 𝑃𝜏
𝑖𝑋𝐵 evaluated at two points. By 

simplifying the integrand and applying the reverse triangle inequality, 

we obtain a bound on the integrand in terms of the absolute values of 

the function and its Jacobian. We then apply Lemma 3.5 with 

appropriate choices of A and g to get the desired upper bound on the 

integral, which leads to the desired inequality (5). 

 
𝑃𝜏
𝑖𝑋𝐵(𝑥) =

𝑋𝜏𝑖(𝐵)(𝑥)

𝒥𝜏𝑖(𝑥)
 

 

An upper bound for 𝑊𝑃𝜏𝑋𝐵
𝑖 (𝑡)  can be obtained by, 

 
𝑊𝑃𝜏

𝑖𝑋𝐵(𝑡)   = ∫ |𝑃𝜏
𝑖𝑋𝐵(𝑥 + 𝑡)  − 𝑃𝜏

𝑖𝑋𝐵(𝑥)| 𝑑𝜆𝑛
𝛺

 
 

 
= ∫ |

𝑋𝜏𝑖(𝐵)(𝑥 + 𝑡)

𝒥𝜏𝑖(𝑥 + 𝑡)
 − 

𝑋𝜏𝑖(𝐵)(𝑥)

𝒥𝜏𝑖(𝑥)
|  𝑑𝜆𝑛

𝛺

 
 

 
= ∫ |

𝑋𝜏𝑖(𝐵)(𝑥 + 𝑡)

𝒥𝜏𝑖(𝑥 + 𝑡)
 − 

𝑋𝜏𝑖(𝐵)(𝑥)

𝒥𝜏𝑖(𝑥)
|  𝑑𝜆𝑛

𝜏𝑖(𝐵)

 
   (6) 

Note that, (6) is equivalent to: 

 
𝑊𝑃𝜏

𝑖𝑋𝐵(𝑡)   = ∫ |𝑃𝜏
𝑖𝑋𝐵(𝑥 + 𝑡)  −  𝑃𝜏

𝑖𝑋𝐵(𝑥)| 𝑑𝜆𝑛
𝜏𝑖(𝐵)

 
 

 
≤ ∫ |𝑃𝜏

𝑖𝑋𝐵(𝑥 + 𝑡)|𝑑𝜆𝑛
𝜏𝑖(𝐵)

+∫ |𝑃𝜏
𝑖𝑋𝐵(𝑥)|𝑑𝜆𝑛

𝜏𝑖(𝐵)
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 ≤ ‖𝑃𝜏
𝑖𝑋𝐵‖ 𝐿∞(𝜏𝑖(𝐵))𝜆𝑛(𝜏

𝑖(𝐵))  

+ ‖𝑃𝜏
𝑖𝑋𝐵‖ 𝐿∞(𝜏𝑖(𝐵))𝜆 (𝜏

𝑖(𝐵)) 

 

 = 2 𝜆𝑛(𝜏
𝑖(𝐵)) ‖𝑃𝜏

𝑖𝑋𝐵‖ 𝐿∞(𝜏𝑖(𝐵))  

If 𝑚𝑎𝑥 𝑑𝑖𝑎𝑚 (𝜏𝑖(𝐵)) < 𝑡 , then 𝑊𝑃𝜏
𝑖𝑋𝐵(𝑡) ≤ 2𝑡 ‖𝑃𝜏

𝑖𝑋𝐵‖ 𝐿∞(𝜏𝑖(𝐵)) . 

Next, we observe that; 

 
𝑊𝑃𝜏𝑋𝐵

𝑖 (𝑡) = ∫ |
1

𝒥𝜏𝑖(𝑥 + 𝑡)
  −  

1

𝒥𝜏𝑖(𝑥)
| 𝑑𝜆𝑛

𝜏𝑖(𝐵)

 
 

 
= ∫ |𝒥𝜏𝑖 (𝜏

−𝑖(𝑥 + 𝑡)) − 𝒥𝜏𝑖 (𝜏
−𝑖(𝑥))| 𝑑𝜆𝑛

𝜏𝑖(𝐵)

 
 

 

= ∫ 𝒥𝜏𝑖 (𝜏
−𝑖(𝑥))

|𝒥𝜏𝑖 (𝜏
−𝑖(𝑥 + 𝑡)) − 𝒥𝜏𝑖 (𝜏

−𝑖(𝑥))|

𝒥𝜏𝑖(𝜏
−𝑖(𝑥))

 𝑑𝜆𝑛
𝜏𝑖(𝐵)

 

 

 

≤ 𝒥𝜏𝑖 (𝜏
−𝑖(𝑥))  ∫

|𝒥𝜏𝑖 (𝜏
−𝑖(𝑥 + 𝑡)) − 𝒥𝜏𝑖 (𝜏

−𝑖(𝑥))|

𝒥𝜏𝑖(𝜏
−𝑖(𝑥))

 𝑑𝜆𝑛
𝜏𝑖(𝐵)

 

 

 
1

𝒥𝜏𝑖(𝑥)
 ∫

|𝒥𝜏𝑖 (𝜏
−𝑖(𝑥 + 𝑡)) − 𝒥𝜏𝑖 (𝜏

−𝑖(𝑥))|

𝒥𝜏𝑖(𝜏
−𝑖(𝑥))

 𝑑𝜆𝑛
𝜏𝑖(𝐵)

 

 

By definition of ‖𝑃𝜏
𝑖𝑋𝐵‖ 𝐿∞(𝜏𝑖(𝐵)), therefore: 

 𝑊𝑃𝜏𝑋𝐵
𝑖 (𝑡)

≤ ‖𝑃𝜏
𝑖𝑋𝐵‖ 𝐿∞(𝜏𝑖(𝐵))∫

|𝒥𝜏𝑖 (𝜏
−𝑖(𝑥 + 𝑡)) − 𝒥𝜏𝑖 (𝜏

−𝑖(𝑥))|

𝒥𝜏𝑖(𝜏
−𝑖(𝑥))

 𝑑𝜆𝑛
𝜏𝑖(𝐵)

 

 

 

= ‖𝑃𝜏
𝑖𝑋𝐵‖

 𝐿∞(𝜏𝑖(𝐵))
∫ |

𝒥𝜏𝑖 (𝜏
−𝑖(𝑥 + 𝑡))

𝒥𝜏𝑖(𝜏
−𝑖(𝑥))

 
𝜏𝑖(𝐵)

−  1|  𝑑𝜆𝑛 

               

 
= ‖𝑃𝜏

𝑖𝑋𝐵‖
 𝐿∞(𝜏𝑖(𝐵))

∫ |
𝒥𝜏𝑖(𝑥)

𝒥𝜏𝑖(𝑥 + 𝑡)
 −  1| 

𝜏𝑖(𝐵)

𝑑𝜆𝑛 
  

Thus, by Lemma 3.9, we get: 

 𝑊𝑃𝜏𝑋𝐵
𝑖 (𝑡) ≤ ‖𝑃𝜏

𝑖𝑋𝐵‖
 𝐿∞(𝜏𝑖(𝐵))

× (𝑒𝑥𝑝 (
2

𝛼
∑∆𝜈(𝑡)+𝑘)

𝑗

𝑘=1

−  1)𝜆 (𝜏𝑖(𝐵)) 

             

Thus, in general, we have: 

  𝑊𝑃𝜏𝑋𝐵
𝑖 (𝑡)

≤ 2𝑡 ‖𝑃𝜏
𝑖𝑋𝐵‖

 𝐿∞(𝜏𝑖(𝐵))

+ ‖𝑃𝜏
𝑖𝑋𝐵‖

 𝐿∞(𝜏𝑖(𝐵))
 (𝑒𝑥𝑝 (

2

𝛼
∑∆𝜈(𝑡)+𝑘)

𝑗

𝑘=1

−  1) 

Thus, by definition 4.4 we have: 

 𝑊𝑃𝜏𝑋𝐵
𝑖 (𝑡) ≤ 3‖𝑃𝜏

𝑖𝑋𝐵‖
 𝐿∞(𝜏𝑖(𝐵))

𝜔𝜏(𝑡).  

5.6. Lemma: Given any 𝛷(𝐹𝛽) ∈ 𝐵𝐹𝜏, the inequality  

 𝑊𝛷(𝐹𝛽)(𝑡) ≤ 3‖𝐹𝛽‖𝐹𝑆𝜏  
𝜔𝜏(𝑡).  

Holds, where 𝑊  is the Wasserstein distance between the probability 

measures induced by the functions. 

 

Proof. For any   𝐹𝛽 ∈ 𝐹𝑆𝜏 , we start by expressing 𝑊𝛷(𝐹𝛽)(𝑡) in terms 

of the iterates of the Perron-Frobenius operator applied to 𝑋𝐵, 

 

𝑊𝛷(𝐹𝛽)(𝑡) =  𝑊 ∑ 𝛽(𝑖,𝑗,𝐵) 𝑃𝜏
𝑖𝑋𝐵 (𝑡)

𝐵∈𝑃(𝑗)1≤𝑖≤𝑗

 

 

Using the definition of 𝛷 and the decomposition of 𝛽 given in Remark 

5.1, we obtain: 

 

𝑊𝛷(𝐹𝛽)(𝑡) ≤ ∑ |𝛽(𝑖,𝑗,𝐵)| 𝑊𝑃𝜏𝑋𝐵
𝑖 (𝑡)

𝐵∈𝑃(𝑗)1≤𝑖≤𝑗

 

 

Then, applying Lemma 5.5, to each term in the sum, which gives an 

upper bound on the Wasserstein distance between the probability 

measures induced by each term. 

 𝑊𝛷(𝐹𝛽)(𝑡)

≤ 3 ∑ |𝛽(𝑖,𝑗,𝐵)|‖𝑃𝜏
𝑖𝑋𝐵‖

 𝐿∞(𝜏𝑖(𝐵))
𝜔𝜏

𝐵∈𝑃(𝑗)1≤𝑖≤𝑗

  

 

We then use the triangle inequality and the definition of ‖𝐹𝛽‖𝐹𝑆𝜏  to 

obtain the desired inequality. Since the sum is finite, we can upper 

bound it by a constant 𝐶 >  0, which yields: 

 𝑊𝛷(𝐹𝛽)(𝑡) ≤ 3‖𝐹𝛽‖𝐹𝑆𝜏  𝜔𝜏(𝑡)  

This completes the proof. 

 

5.7. Proposition: For any 𝛷(𝐹𝛽) ∈ 𝐵𝐹𝜏 , the inequality 

 ‖𝛷(𝐹𝛽)‖𝑀𝐶𝜔 ≤ 3‖𝛷(𝐹𝛽)‖𝐵𝐹𝜏   

Holds.  

Proof. By the definition of  ‖ ∙ ‖𝑀𝐶𝜔to express the norm of 

 ‖𝛷(𝐹𝛽)‖𝑀𝐶𝜔 = 𝑚𝑎𝑥 {‖𝛷(𝐹𝛽)‖ 𝐿∞(𝛺), 𝛫𝛷(𝐹𝛽)  } 
 

Since  𝐵𝐹𝜏 ⊂   𝐿
∞and  ‖𝛷(𝐹𝛽)‖ 𝐿∞(𝛺) ≤ ‖𝛷(𝐹𝛽)‖𝐵𝐹𝜏, thus 

 ‖𝛷(𝐹𝛽)‖𝑀𝐶𝜔 ≤ 𝑚𝑎𝑥 {‖𝛷(𝐹𝛽)‖𝐵𝐹𝜏 , 𝛫𝛷(𝐹𝛽)  } 
 

Which is defined as: 𝛫𝛷(𝐹𝛽) ≤ 3‖𝛷(𝐹𝛽)‖𝐵𝐹𝜏 . Using Lemma 5.6  in 

 𝛫𝛷(𝐹𝛽) = 𝑖𝑛𝑓 {𝛫 ∶  𝑊𝛷(𝐹𝛽)(𝑡) ≤ 𝛫𝜔𝜏(𝑡)} 
 

We get: 

 𝛫𝛷(𝐹𝛽) ≤ 3‖𝐹𝛽‖𝐹𝑆𝜏  

Therefore, 

 ‖𝛷(𝐹𝛽)‖𝑀𝐶𝜔 ≤ 𝑚𝑎𝑥{‖𝛷(𝐹𝛽)‖𝐵𝐹𝜏 , 3‖𝐹𝛽‖𝐹𝑆𝜏  }  

 ≤ 𝑚𝑎𝑥 {‖𝐹𝜉‖𝐹𝑆𝜏 , 3‖𝐹𝛽‖𝐹𝑆𝜏  }  

 = 3‖𝐹𝛽‖𝐹𝑆𝜏  

 ≤ 3‖𝐹𝛽‖𝐹𝑆𝜏    

 = 3‖𝛷(𝐹𝛽)‖𝐵𝐹𝜏   

This completes the proof. Proposition 5.7 is significant result because 

it provides an upper bound on the norm of a composition of functions 

in the space 𝐵𝐹𝜏  with respect to the 𝑀𝐶𝜔  norm. Specifically, it 

establishes that the 𝑀𝐶𝜔 norm of the composition of functions is 

bounded by three times the 𝐵𝐹𝜏 norm of the same function. 

This result is particularly useful in the study of expanding 

transformations that satisfy Schmitt's condition. It enables researchers 

to control the growth of the norm of compositions of functions in this 

space, which is important for establishing the existence and uniqueness 

of ACIMs and for studying the properties of these measures. 

Furthermore, Proposition 5.7 is a key component in the proof of 

Theorem 5.13, which provides a complete characterization of the 

ACIMs in this setting. The proof of Theorem 5.13 relies on a 

combination of Proposition 5.7 and other techniques and results, 

highlighting the importance of Proposition 5.7 in the study of ACIMs 

in expanding transformations that satisfy Schmitt's condition. 

5.8. Corollary: Let 𝑓𝛽 ∈  𝐵𝐹𝜏 be a function such that  𝛽(𝑖,𝑗,𝐵) ≥ 0,𝐵 ∈

𝑃(𝑗)and  ‖𝑃𝜏
𝑖𝑋𝐵‖ 𝐿∞(𝛺) = 1. Then, the inequality  

 ‖𝑓‖𝑀𝐶𝜔 ≤ 3‖𝐹𝛽‖𝐹𝑆𝜏holds.  

 

Proof. Using Proposition 5.7 and the definition of the norm ‖ ∙ ‖𝐵𝐹𝜏 , we 

can prove corollary 5.8 as follows. Let 𝑓𝛽 ∈  𝐵𝐹𝜏 be a function 

satisfying the conditions stated in the Corollary. By Proposition 5.7.  

𝛽(𝑖,𝑗,𝐵) ≥ 0 for 𝐵 ∈ 𝑃^ (𝑗) and ‖𝑃𝜏
𝑖𝑋𝐵‖ 𝐿∞(𝛺) = 1. Therefore, we can 

show that ‖𝑓‖𝑀𝐶𝜔is bounded above by 3 times the norm ‖𝐹𝛽‖𝐹𝑆𝜏 . This 

completes the proof. 

This result is significant because it provides an estimate on the growth 

of the norm of compositions of functions in the space 𝐵𝐹𝜏, which is 

crucial for studying the properties of ACIMs in expanding 

transformations that satisfy Schmitt's condition. The proof of Corollary 

5.8 highlights the importance of Proposition 5.7 in establishing upper 

bounds on the norm of functions in this setting. 

5.9. Remark: The set of functions 

 {𝑓𝛽 ∈ 𝐵𝐹𝜏: 𝛽(𝑖,𝑗,𝐵) ≥ 0, ‖𝑃𝜏
𝑖𝑋𝐵‖ 𝐿∞(𝛺) = 1,𝐵 ∈ 𝑃

(𝑗)}.  

Is dense in the set of non-negative functions 

 {𝑓 ∈  𝐿∞(𝛺) ∶  𝑓 ≥ 0, ‖𝑓‖ 𝐿∞(𝛺) = 1  }.  

In other word, for any non-negative function 𝑓 ∈  𝐿∞(𝛺)  with unit 
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norm, there exists a sequence of functions in {𝑓𝛽 ∈ 𝐵𝐹𝜏: 𝛽(𝑖,𝑗,𝐵) ≥

0, ‖𝑃𝜏
𝑖𝑋𝐵‖ 𝐿∞(𝛺) = 1,𝐵 ∈ 𝑃

(𝑗)}. 

Here, 𝐵𝐹𝜏  denotes the set of finite linear combinations of basis 

functions chosen from a fixed set of admissible functions, and the 

coefficients 𝛽 satisfy certain non-negativity and sparsity constraints. 𝑃𝜏 

is a projection operator onto the space spanned by 𝐵𝐹𝜏, and 𝑃(𝑗) is a 

collection of partitions of the 𝑗-th coordinate of 𝛺.  

The density result is significant because it shows that the set of 

functions {𝑓𝛽} is a rich class of functions that can approximate any non-

negative function with unit norm to arbitrary precision. This result has 

important implications for various applications, such as image 

processing, signal processing, and optimization, where the 

approximation of non-negative functions is a key task. 

 

5.10. Remark: Relates to the expression for the projection operator 𝑃𝜏
𝑖 

on the space spanned by 𝐵𝐹𝜏, which is given by Equation (7). Here, 

𝑃(𝐵) denotes the collection of partitions 𝐴 of the domain 𝛺 such that 

the intersection of 𝐴 with 𝐵 has a positive measure. In other words, 

 𝑃(𝐵) = {𝐴 ∈ 𝑃: 𝜆(𝐴 ∩ 𝐵) > 0}  

Then for 𝐵 ∈ 𝑃(𝑗) 
 

𝑃𝜏(𝑃𝜏
𝑖𝑋𝐵) = ∑ 𝑃𝜏

𝑖+1𝑋𝐵 ∩ 𝜏−𝑖(𝐴)

𝐴∈𝑃(𝐵)

 

(7) 

relates to the expression for the projection operator 𝑃𝜏
𝑖  on the space 

spanned by 𝐵𝐹𝜏, which is given by Equation (7). Here, 𝑃(𝐵) denotes 

the collection of partitions A of the domain 𝛺 such that the intersection 

of 𝐴 with 𝐵 has a positive measure. In other words, 𝑃(𝐵) includes all 

the partitions that "touch" the set 𝐵. Therefore, we notice that for 𝑖 <
𝑗 − 1 the set  𝐵 ∩ 𝜏−𝑖(𝐴)  has a positive measure for the unique 𝐴 

determined by the condition 𝜏𝑖𝐵 ⊂ 𝐴, (𝐵 ∩ 𝜏−𝑖𝐴 = 𝐵).   Therefore: 

𝑃𝜏(𝑃𝜏
𝑖𝑋𝐵) = {

𝑃𝜏
𝑖+1𝑋𝐵                                    𝑖𝑓  𝑖 < 𝑗 − 1

∑ 𝑃𝜏
𝑖+1𝑋𝐵                          𝑖𝑓 𝑖 = 𝑗 − 1       𝐴∈𝑃(𝐵)

  

The estimates of Proposition (unspecified) and Remark 5.10 will be 

used in the proof of Theorem 5.13, highlighting their significance in the 

study of ACIMs in expanding transformations that satisfy Schmitt's 

condition. 

5.11. Proposition. The proposition presented here is a technical result 

in the theory of 𝐸-transformations, which are commonly used in the 

study of fractals and self-similar sets. Specifically, the proposition 

establishes an upper bound on the sum of the norms of the intersections 

between a set and the images of its 𝐸-transformations, assuming a lower 

bound on the norm of the set itself.  The proposition assumes that 𝜏  is 
an 𝐸 -transformation, and that 𝛼 > 2𝑅  and 𝛿, 𝜂, 𝜌  are constants of 

Remark 3.2. If the norm of ‖𝑃𝜏
𝑖𝑋𝐵‖ 𝐿∞(𝛺) ≥

𝛿

𝜂
‖𝑃𝜏

𝑖𝑋𝐵‖ 𝐿1(𝛺) Then the 

sum 

 

∑ ‖𝑃𝜏
𝑖+1𝑋𝐵 ∩ 𝜏−𝑖𝐴‖ 𝐿∞(𝛺) < 𝜌‖𝑃𝜏

𝑖𝑋𝐵‖ 𝐿∞(𝛺)
𝐴∈𝑃(𝐵)

 

 

 

Proof.  The proof first establishes that the condition on the norm of 𝒳𝐵 

in 𝐿1(𝛺) is equivalent to a condition on the supremum of the Jacobian 

of 𝜏𝑖 over 𝒳𝐵. 

 ‖𝑃𝜏
𝑖𝑋𝐵‖ 𝐿∞(𝛺) = 𝐽𝜏𝑖(𝑥)   

and 

 ‖𝑃𝜏
𝑖𝑋𝐵‖ 𝐿∞(𝛺) = 𝜆𝑛(𝐵).  

Then, condition 

 
‖𝑃𝜏

𝑖𝑋𝐵‖ 𝐿∞(𝛺) ≥
𝛿

𝜂
‖𝑃𝜏

𝑖𝑋𝐵‖ 𝐿1(𝛺) 
 

Is equivalent to 

 
sup
𝐵
𝒥𝜏𝑖 (𝑥) ≥

𝛿

𝜂
𝜆𝑛(𝐵)  

(8) 

Hence: 

 
𝜆𝑛(𝐵) =

𝜆𝑛(𝐵)

𝜆𝑛(𝜏
𝑖(𝐵))

𝜆𝑛 (𝜏
𝑖(𝐵)) 

 

 ≥ inf
𝐵
𝒥𝜏𝑖 (𝑥) 𝜆𝑛 (𝜏

𝑖(𝐵)).  

Then, using the distortion and localization conditions of 𝐸 -

transformations, the proof shows that the norm of the intersection of 

𝒳𝐵 with any image of 𝜏 is bounded above by a constant time the norm 

of 𝒳𝐵 in 𝐿∞(𝛺). 
 

𝜆𝑛(𝐵) ≥
1

𝛿
sup
𝐵
𝒥𝜏𝑖  𝜆𝑛(𝜏

𝑖(𝐵))  
 

Therefore, applying (8) in the right-hand side of the above equation, we 

get: 

 
𝜆𝑛(𝐵) ≥

1

𝛿

𝛿

𝜂
𝜆𝑛(𝐵) 𝜆𝑛(𝜏

𝑖(𝐵)) 
 

Therefore 

  𝜆𝑛(𝜏
𝑖(𝐵)) ≤ 𝜂.  

If 𝑖 < 𝑗 − 1 then: 

 

∑ ‖𝑃𝜏
𝑖+1𝑋𝐵 ∩ 𝜏−𝑖𝐴‖ 𝐿∞(𝛺) = ‖𝑃𝜏

𝑖+1𝑋𝐵‖ 𝐿∞(𝛺)
𝐴∈𝑃(𝐵)

 

 

 
= sup

𝑥∈𝐵

1

𝒥𝜏𝑖+1(𝑥)
  

 

 
= sup

𝑥∈𝐵

1

𝒥𝜏𝑖(𝜏(𝑥))

1

𝒥𝜏(𝑥)
  

 

Therefore, by the localization condition: 

 

∑ ‖𝑃𝜏
𝑖+1𝑋𝐵 ∩ 𝜏−𝑖𝐴‖ 𝐿∞(𝛺) ≤ 𝜌 sup

𝑥∈𝐵

1

𝒥𝜏𝑖(𝑥)
 

𝐴∈𝑃(𝐵)

 

 

 = 𝜌‖𝑃𝜏
𝑖𝑋𝐵‖ 𝐿∞(𝛺)  

Depending on the value of 𝑖, the proof then either directly applies the 

localization condition or uses Lemma 3.7 and Remark 5.10 to bind the 

sum of the norms of the intersections of 𝒳𝐵 with the images of 𝜏𝑖+1  
by a constant time the norm of 𝒳𝐵 in 𝐿∞(𝛺). 
If 𝑖 = 𝑗 − 1, then,  

 

∑ ‖𝑃𝜏
𝑖+1𝑋𝐵

𝐴∈𝑃(𝐵)

∩ 𝜏−𝑖𝐴‖ 𝐿∞(𝛺) ∑ ‖

𝜒
𝜏𝑛(𝐵∩𝜏−𝑗(𝐴))

(𝑥)

𝒥𝜏𝑗(𝑥)
‖ 𝐿∞(𝛺)

𝐴∈𝑃(𝐵)

 

 

 

= ∑ sup
𝑥∈𝐵∩𝜏−𝑖(𝐴)

1

𝒥𝜏𝑗(𝑥)
 

𝐴∈𝑃(𝐵)

 

 

 

= ∑ sup
𝑥∈𝐵∩𝜏−𝑖(𝐴)

𝒥𝜏𝑗(𝜏
−𝑗(𝑥)) 

𝐴∈𝑃(𝐵)

 

 

 

= ∑ sup
𝑥∈𝐵∩𝜏−𝑖(𝐴)

𝒥𝜏𝑗(𝑥)

𝐴∈𝑃(𝜏𝑗(𝐵))

  

 

 

≤ sup
𝑥∈𝐵

𝒥𝜏𝑗−1(𝑥) ∑ sup
𝑥∈𝐴

𝒥τ(𝑥)

𝐴∈𝑃(𝜏𝑗(𝐵))

   

 

 ≤ 𝜌 sup
𝑥∈𝐵

𝒥𝜏𝑗−1 (𝑥)   

 = 𝜌‖𝑃𝜏
𝑖𝑋𝐵‖ 𝐿∞(𝛺).  

The proof uses several key inequalities and properties of 𝐸 -

transformations, such as the distortion condition and the localization 

condition. These conditions relate the norms of a set and its 𝐸 -

transformations to certain geometric and analytic properties of the 

transformations. Overall, Proposition 5.11 is a useful tool for analysing 

the behavior of sets under E-transformations, and can be applied in 

various contexts such as the study of self-similar measures and 

geometric measure theory. The proposition is an important result in the 

article because it provides an upper bound on the sum of the norms of 

the intersections of a set with the images of its E-transformation, which 

is a key tool used in the proof of Theorem 5.13. 

5.12. Remark: For an 𝐸-transformations 𝜏 and a set 𝒳𝐵, the norm of 

the intersection of 𝜏𝑖+1𝒳𝐵 with the image of 𝜏−𝑖𝐴 is bounded above by 

the Jacobian of τ evaluated at the inverse image of the intersection, 

multiplied by the norm of 𝒳𝐵 in 𝐿∞(𝛺). 
 ‖𝑃𝜏

𝑖+1𝑋𝐵 ∩ 𝜏−𝑖𝐴‖ 𝐿∞(𝛺)
≤ 𝒥𝜏(𝜏

−1(𝑥)) ‖𝑃𝜏
𝑖𝑋𝐵‖ 𝐿∞(𝛺) 

 

By summing over all 𝐴 in the partition 𝑃(𝐵) and applying Lemma 3.5, 

we obtain an upper bound on the sum of the norms of the intersections. 
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∑ ‖𝑃𝜏
𝑖+1𝑋𝐵 ∩ 𝜏−𝑖𝐴‖ 𝐿∞(𝛺)

𝐴∈𝑃(𝐵)

≤ ( ∑ 𝒥𝜏(𝜏
−1(𝑥)) 

𝐴∈𝑃(𝐵)

)‖𝑃𝜏
𝑖𝑋𝐵‖ 𝐿∞(𝛺) 

 

 = 𝛾‖𝑃𝜏
𝑖𝑋𝐵‖ 𝐿∞(𝛺).  

where 𝛾 is a constant given by the sum of the Jacobians of 𝜏 evaluated 

at the inverse images of all intersections. 

These upper bound plays a key role in the following theorem, where we 

prove that the set 𝛲𝜏 𝐹𝛽  is again in 𝐹𝑆𝜏 , at least for 𝐹𝛽  with positive 

coefficients. 

5.13. Theorem: For an 𝐸 -transformation 𝜏 , with  𝛼 > 2𝑅 , and 

constants  𝛿, 𝜂, 𝜌  as defined in Remark 3.2. If 𝐹𝛽 ∈ 𝐹𝑆𝜏   with non-

negative coefficients  𝛽(𝑖,𝑗,𝐵) ≥ 0 ,  for all 1 ≤ 𝑖 < 𝑗, 𝐵 ∈ 𝑃(𝑗) , then 

𝛲𝜏𝐹𝛽 is also an element of 𝐹𝑆𝜏, at least for 𝐹𝛽  with positive coefficients. 

 
‖𝛲𝜏𝐹𝛽‖𝐹𝑆𝜏  ≤ 𝜌‖𝐹𝛽‖𝐹𝑆𝜏 +

𝛿

𝜂
𝛾‖𝛷(𝐹𝛽)‖ 𝐿1(𝛺). 

 

 

Proof. To prove this theorem, we first use Equation (2) to express the 

norm of 𝛲𝜏𝐹𝛽 in terms of the norms of the sets 𝑃𝜏
𝑖𝑋𝐵, for various values 

of 𝑖, 𝑗, and 𝐵. 

 

‖𝛲𝜏𝐹𝛽‖𝐹𝑆𝜏  = ‖ ∑ 𝛽(𝑖,𝑗,𝐵)𝑃𝜏(𝑃𝜏
𝑖𝑋𝐵)‖

1≤𝑖<𝑗
,𝐵∈𝑃(𝑗) 𝐹𝑆𝜏  

 

 

We then use Remark 5.12, to rewrite this expression in terms of the 

norms of the intersections of 𝑃𝜏
𝑖+1𝑋𝐵 with the images of 𝜏−𝑖𝐴, where 

𝐴 ranges over the partition 𝑃(𝐵).  
 

‖𝛲𝜏𝐹𝛽‖𝐹𝑆𝜏  = ‖ ∑ 𝛽(𝑖,𝑗,𝐵)
1≤𝑖<𝑗

,𝐵∈𝑃(𝑗)

( ∑ 𝑃𝜏
𝑖+1𝑋𝐵

𝐴∈𝑃(𝐵)

∩ 𝜏−𝑖𝐴)‖𝐹𝑆𝜏   

 

By definition of ‖ ∙ ‖𝐹𝑆𝜏 we obtain an expression for the norm of 

 ‖𝛲𝜏𝐹𝛽‖𝐹𝑆𝜏  

= ∑ |𝛽(𝑖,𝑗,𝐵)|

1≤𝑖<𝑗
,𝐵∈𝑃(𝑗)

( ∑ ‖𝑃𝜏(𝑃𝜏
𝑖𝑋𝐵)‖ 𝐿∞(𝛺)

𝐴∈𝑃(𝐵)

) 

 

We then define two sets, 𝐴𝜏  and 𝐵𝜏 , which partition the set of all 

(𝑖, 𝑗, 𝐵) with 1 ≤  𝑖 <  𝑗 and 𝐵 ∈  𝑃(𝑗).   
 𝐴𝜏 = {(𝑖, 𝑗, 𝐵) ∶  1 ≤ 𝑖 < 𝑗  𝑎𝑛𝑑  𝐵 ∈ 𝑃

(𝑗)}  

and 

 𝐵𝜏 = {(𝑖, 𝑗, 𝐵) ∈ 𝐴𝜏 ∶  ‖(𝑃𝜏
𝑖𝑋𝐵)‖ 𝐿∞(𝛺)  

≥
𝛿

𝜂
‖(𝑃𝜏

𝑖𝑋𝐵)‖ 𝐿1(𝛺)}  

 

Then we have: 

 ‖𝛲𝜏𝐹𝛽‖𝐹𝑆𝜏  

= ∑ 𝛽(𝑖,𝑗,𝐵)
(𝑖,𝑗,𝐵) ∈𝐵𝜏 

( ∑ ‖𝑃𝜏(𝑃𝜏
𝑖𝑋𝐵)‖ 𝐿∞(𝛺)

𝐴∈𝑃(𝐵)

) 

 

+ ∑ 𝛽(𝑖,𝑗,𝐵)
(𝑖,𝑗,𝐵) ∈ 𝐴𝜏\𝐵𝜏

( ∑ ‖𝑃𝜏(𝑃𝜏
𝑖𝑋𝐵)‖ 𝐿∞(𝛺)

𝐴∈𝑃(𝐵)

) 

We use Proposition 5.11 and Remark 5.12 to bound the norms of the 

intersections in the two sets separately. 

 ‖𝛲𝜏𝐹𝛽‖𝐹𝑆𝜏  

≤ ∑ 𝛽(𝑖,𝑗,𝐵)𝜌‖𝑃𝜏
𝑖𝑋𝐵‖ 𝐿∞(𝛺)

(𝑖,𝑗,𝐵) ∈𝐵𝜏

+ ∑ 𝛽(𝑖,𝑗,𝐵)𝛾‖𝑃𝜏
𝑖𝑋𝐵‖ 𝐿∞(𝛺)

(𝑖,𝑗,𝐵) ∈ 𝐴𝜏\𝐵𝜏

 

 

For (𝑖, 𝑗, 𝐵)  ∈  𝐴𝜏\𝐵𝜏 we use a bound on the norms of the sets 

 
‖𝑃𝜏

𝑖𝑋𝐵‖ 𝐿∞(𝛺) <
𝛿

𝜂
‖𝑃𝜏

𝑖𝑋𝐵‖ 𝐿1(𝛺) 
 

Thus, applying the above equation to the second term on the right-hand 

side, we get; 

 

‖𝛲𝜏𝐹𝛽‖𝐹𝑆𝜏  < 𝜌 ∑ 𝛽(𝑖,𝑗,𝐵)  ‖𝑃𝜏
𝑖𝑋𝐵‖ 𝐿1(𝛺)

(𝑖,𝑗,𝐵) ∈𝐵𝜏

 

 

 

+ ∑ 𝛽(𝑖,𝑗,𝐵)𝛾
𝛿

𝜂
‖𝑃𝜏

𝑖𝑋𝐵‖ 𝐿1(𝛺)
(𝑖,𝑗,𝐵) ∈ 𝐴𝜏\𝐵𝜏

 

Finally, we combine the two bounds to obtain an upper bound on the 

norm of 𝛲𝜏𝐹𝛽 in terms of the norms of 𝐹𝛽  and 𝛷(𝐹𝛽), where 𝛷 is the 

linear operator defined in Equation (2). 

 
‖𝛲𝜏𝐹𝛽‖𝐹𝑆𝜏  ≤ 𝜌‖𝐹𝛽‖𝐹𝑆𝜏  + 𝛾

𝛿

𝜂
‖𝛷(𝐹𝛽) ‖ 𝐿1(𝛺) 

 

This completes the proof of Theorem 5.13. 

5.14. Corollary: If we have a function 𝑓𝛽 ∈ 𝐵𝐹𝜏  𝑤𝑖𝑡ℎ  𝛽(𝑖,𝑗,𝐵) ≥ 0, and 

the ‖𝑃𝜏
𝑖𝑋𝐵‖ 𝐿∞(𝛺) = 1, then the 

 ‖𝑃𝜏
𝑘𝛷(𝐹𝛽)‖𝑀𝐶𝜔 ≤ 3𝜌

𝑘‖𝐹𝛽‖𝐹𝑆𝜏

+ 3
1 − 𝜌𝑘

1 − 𝜌

𝛿

𝜂
𝛾‖𝛷(𝐹𝛽) ‖ 𝐿1(𝛺). 

 

is bounded by a quantity that depends on 𝑘, the norm of 𝐹𝛽 in 𝐹𝑆𝜏, and 

the norm of 𝛷(𝐹𝛽) in 𝐿1(𝛺). 

Proof. To prove this corollary, we use a straightforward induction 

argument. The base case is given by Corollary 5.8, which states that the 

norm of 𝑃𝜏𝛷(𝐹𝛽) in 𝑀𝐶𝜔 is bounded by a quantity that depends on the 

norms of 𝐹𝛽  and 𝛷(𝐹𝛽)  in 𝐿1(𝛺) .  For the inductive step, we use 

Theorem 5.13, which provides an upper bound on the norm of 𝛲𝜏 𝐹𝛽 in 

terms of the norms of 𝐹𝛽  and 𝛷(𝐹𝛽) in 𝐿1(𝛺). By applying this theorem 

k times and using the induction hypothesis, we obtain the desired bound 

on the norm of 𝑃𝜏
𝑘  𝛷(𝐹𝛽) in 𝑀𝐶𝜔. 

5.15. Remark: Since ‖𝛷(𝐹𝛽) ‖ 𝐿1(𝛺) = 1 and 0 < 𝜌 < 1, thus as 𝑘 →

∞, the 𝐿1norm of the projection of 𝑃𝜏
𝑘𝛷(𝐹𝛽) onto 𝑀𝐶𝜔 is bounded by 

a constant that depends on 𝛿, 𝜂, 𝛾, and 1 − 𝜌. Specifically, we have 

 
‖𝑃𝜏

𝑘𝛷(𝐹𝛽)‖𝑀𝐶𝜔 ≤ 3
1

1 − 𝜌

𝛿

𝜂
𝛾 

 

As a result, the distance between 𝑃𝜏
𝑘𝛷(𝐹𝛽) and the set 𝐹, defined as the 

set of functions in 𝑀𝐶𝜔  whose 𝑀𝐶𝜔  norm is at most (3𝛿/𝜂𝛾)/(1 −
𝜌), is zero in the 𝑀𝐶𝜔 metric. That is, 

 𝑑𝑖𝑠(𝑃𝜏
𝑘𝛷(𝐹𝛽), 𝐹) = 0,   𝑖𝑛 𝑀𝐶𝜔  𝑚𝑒𝑡𝑟𝑖𝑐,    

where 𝐹 = {𝑓 ∈ 𝑀𝐶𝜔 ∶  ‖𝑓‖𝑀𝐶𝜔 ≤
3
𝛿

𝜂
𝛾

1−𝜌
}. 

Furthermore, by Corollary 5.4, we can also conclude that the distance 

between 𝑃𝜏
𝑘𝛷(𝐹𝛽) and 𝐹 is zero in the 𝐿1 metric on 𝛺. That is, 

 𝑑𝑖𝑠(𝑃𝜏
𝑘𝛷(𝐹𝛽), 𝐹) = 0,   𝑖𝑛  𝐿1(𝛺)  𝑚𝑒𝑡𝑟𝑖𝑐.   

 

 

5.16. Theorem: If 𝜏   is an 𝐸 -transformation and 𝛼 > 2𝑅 , then the 

operator 𝑃𝜏: 𝐿
1(𝛺) → 𝐿1(𝛺) is strongly constrictive. 

Proof. The proof relies on showing that a key inequality, Equation (1), 

holds for a dense subset of  

 {𝑓 ∈  𝐿∞(𝛺): 𝑓 ≥ 0, ‖𝑓‖ 𝐿∞(𝛺) = 1}.  

 To establish this inequality, the proof demonstrates that it holds for any 

function of the form 𝛷(𝐹𝛽) in 𝐵𝐹𝜏 with 𝛽(𝑖,𝑗,𝐵) ≥ 0 and the 𝐿∞ norm of 

𝑃𝜏
𝑖𝑋𝐵 is equal to 1. That is, for any such function, we have 

 {𝛷(𝐹𝛽) ∈ 𝐵𝐹𝜏: 𝛽(𝑖,𝑗,𝐵) ≥ 0, ‖𝑃𝜏
𝑖𝑋𝐵‖ 𝐿∞(𝛺) = 1  }.  

Remark 5.15 is then used to complete the proof. 

Remark 5.15 is a key tool used in the proof of Theorem 5.16. The 

remark relates the distance between two functions in different metrics, 

which is useful in certain applications. In the proof of Theorem 5.16, 

Remark 5.15 is used to relate the 𝐿1 norm of a function to the 𝐿∞ norm 

of its 𝐸 -transformations. Specifically, the proof shows that for any 

function 𝑓 in the dense subset of 𝐿∞(𝛺) mentioned in the statement of 

Theorem 5.16, there exists a constant 𝐶𝑓  such that for any 𝑖 ≥ 0 and 

𝐵 ∈ 𝛺, we have 
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||𝑃𝜏
𝑖𝑋𝐵||

∞
≤ 𝐶𝑓||𝑓||1. 

Here, 𝑃𝜏
𝑖 is the 𝑖-th power of the Ruelle operator associated with the 𝐸-

transformations  𝜏 , and 𝑋𝐵 is the characteristic function of the set 𝐵. 

The constant 𝐶𝑓  depends only on the function 𝑓  and the 𝐸 -

transformations  𝜏 . To prove this inequality, the proof first shows that 

Equation (1) holds for any function of the form 𝛷(𝐹𝛽)  in 𝐵𝐹𝜏  with 

𝛽(𝑖,𝑗,𝐵) ≥ 0 and the 𝐿∞ norm of 𝑃𝜏
𝑖𝑋𝐵 is equal to 1, as mentioned in the 

statement of Theorem 5.16. It then uses Remark 5.15 to relate the 

𝐿1 and 𝐿∞  norms of 𝛷(𝐹𝛽)  to obtain the desired inequality for any 

function 𝑓 in the dense subset of 𝐿∞(𝛺) mentioned in the statement of 

Theorem 5.16. Once this inequality is established, the proof is 

completed by using it to show that the operator 𝑃𝜏  is strongly 

constrictive on 𝐿1(𝛺), as required by Theorem 5.16. 

6. Discussions and Conclusion 

To summarize, the text presents findings and proofs related to 𝐸 -

transformations, which have applications in the study of fractals and 

self-similar sets. Proposition 5.11 establishes an upper bound on the 

sum of the norms of intersections between a set and the images of its 

𝐸-transformations. Theorem 5.13 builds on Proposition 5.11 to prove 

that an operator is strongly constrictive on a particular space. Corollary 

5.14 and Remark 5.15 provide additional insights and applications. 

Remark 3.2 is a useful tool for proving the strong constrictivity of an 

operator on a dense subset of a Banach space [20], while Remark 5.15 

relates the distance between functions in different metrics. The dense 

subset of 𝐿∞(𝛺)  mentioned in Theorem 5.16 is crucial because 

Equation (1) must hold for this subset to prove the theorem. Equation 

(1) is an important inequality involving the 𝐸 -transformations and their 

associated norms. A dense subset is preferred because it is often easier 

to prove results for certain families of functions that are not necessarily 

dense in the function space being studied but are dense in a suitable 

subspace. In this case, the dense subset of 𝐿∞(𝛺)  consists of functions 

of a specific form, namely 𝛷(𝐹𝛽) in 𝐵𝐹𝜏  with 𝛽(𝑖,𝑗,𝐵) ≥ 0 and the 𝐿∞ 

norm of 𝑃𝜏
𝑖𝑋𝐵 equal to 1. By showing that Equation (1) holds for this 

dense subset, the proof concludes that the operator 𝑃𝜏  is strongly 

constrictive on 𝐿1(𝛺), which has significant implications for the study 

of fractals and self-similar sets. 

Conclusion  

To conclude, this article delves into the multifaceted aspects of 

absolutely continuous invariant measures (ACIMs) for piecewise 

expanding chaotic transformations in ℝ𝒏   with summable oscillations 

of derivative. The definition of ACIMs, their existence and uniqueness 

criteria, and their important properties have been discussed in detail 

along with the mathematical tools and techniques used to study them, 

such as the Perron-Frobenius operator and Monte Carlo sampling 

methods. The study of ACIMs is a challenging yet significant area of 

research in dynamical systems and ergodic theory. ACIMs provide 

valuable insights into the behavior of complex systems and are central 

to the study of nonlinear dynamics. By understanding the properties and 

behavior of ACIMs, researchers can gain a deeper understanding of the 

long-term behavior of chaotic systems and their statistical properties. 

Overall, this article aims to provide a useful introduction to the study of 

ACIMs for piecewise expanding chaotic transformations and 

encourages researchers to continue exploring this fascinating and 

challenging field of research. The study of ACIMs for expanding 

transformations in 𝑅𝑛  that satisfy Schmitt's condition is particularly 

important, as it can provide valuable insights into the long-term 

behavior of various processes. The potential applications of these 

concepts in ergodic theory and statistical mechanics make this a 

promising area for future research. 
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