
Journal of Pure & Applied Sciences 
www.Suj.sebhau.edu.ly ISSN 2521-9200 

  Received 20/03/2016     Revised 29/07/2017    Published online 01/08/2017 
 

JOPAS Vol16 No.1 2017                                                                                                                     31 

Modelling, Specification, and Evaluation Language (MOSEL-2) Overview 
*Wael S. Abughres1 , Mohamed A. Mgheder2, Ahmed B. Abdurrman3 

1 Department of Electrical & Electronic Engineering, Faculty of engineering, University of 

Tripoli, Libya 
2 Department of Computer Science, Faculty of Information Technology, University of Tripoli, 

Libya 
3 Department of Electrical & Electronic Engineering, Faculty of engineering, University of 

sebha, Libya 
*Corresponding Author: W.abughres @uot.edu.ly 

Abstract Modeling, Specification & Evaluation Language (MOSEL), tool used for the performance and 

reliability modeling of communication systems, computers, and manufacturing systems, once the system is 
specified using this language. The modeling language is part of the evaluation environment. Once the 

system is specified using the language, the evaluation environment takes place by executing the 
performance analyses of the model, and calculating the steady state probabilities . After this stage, results 
can be collected in the result file or in graphics mode using the Intermediate Graphical Language (IGL), 
where the aim of this paper is  to give an overview of mosel and to show a real example under windows 
platform. 

Keywords:  Modelling Evaluation, MOSEL-2 

(MOSEL-2)

123

1

2

3

W.abughres @uot.edu.ly

MOSEL

(IGL)MOSEL

  MOSEL-2 

1. Introduction 
The structure of this   paper   started with a 
brief definition of  mosel, then we installed the   

language,   after   compiling   it   under windows, 
after that, we gave  a real case of M/M/N/K, 
showing the delay and blocking probability as a 
performance measure. Currently, there already 
exist many different performance evaluation 
tools, and all have different    input    languages.    
The    input languages   for   these   tools   are   
not   only different, but they are also hard to use, 
since they all have a syntax which is oriented on the 
characteristics of the tool and not on the system 
which the user wants to describe. The basic idea of 
the new language MOSEL is to have only one 
language which is easy to use and reflects the real 
structure of the system, where the user wants to 
describe. MOSEL can be compared with a higher 
programming language which is problem and no 
longer machine orientated. MOSEL will be a 
common frontend for many performance 

evaluation tools. The user has only to become 

familiar with MOSEL and has not to learn all the 
different tool specific languages to use these tools. 

After the user has specified his/her system in 
MOSEL, the MOSEL- Compiler will produce the 
appropriate input description for the specific tools. 
By giving options the user may specify which tools 
he/she wants to use. Currently MOSEL can 
produce input descriptions for the tools: MOSES 
[1], which is a Markov analyzer, and the tool SPNP 
[2], [3], which is a Stochastic Petri Net Package. It 
is planned to use MOSEL as a common 
description language for other already 
implemented performance evaluation tools, like 
PEPSY [4] or SHARPE [5]. The MOSEL-Compiler 
is implemented in the programming language C 
by using the scanner and parser tools LEX and 
YACC [6]. MOSEL is a high level programming 
language used to model complex systems, like 
communication networks, production lines, 
computer systems, and many more. The models 

that are described in MOSEL will be evaluated by 

http://www.suj.sebhau.edu.ly/
mailto:W.abughres%20@uot.edu.ly
mailto:W.abughres%20@uot.edu.ly


Modelling, Specification, and Evaluation Language (MOSEL-2) Overview                                       Abughres  et al. 

JOPAS Vol16 No.1 2017                                                                                                                      41 

a modeling environment that is also  called  

“MOSEL”,  using  numeric analysis methods. 
The basic modeling primitives of a MOSEL 
model are nodes and rules. 
MOSEL model is determined by the values of all 
its nodes; the rules describe the possible 
transitions between these nodes. 

 

1.1 History of MOSEL 
The  model  description  language  MOSEL was 
developed by Helmut Herold at University  
Erlangen-Nuremberg,  Germany in 1994[7]. To 
evaluate the performance of systems, like 
computer systems, networks, production lines 
and Communication systems.  Buetel  revised  
the  MOSEL language and called the revised form 
MOSEL-2  appeared in 2003[8] which looks 

different from the previous one, and it is under 
Solaris & Linux, where the source code under 
Linux  can be downloaded  from [11]. 

 
MOSEL2 features: 

 
-Markov and DSPN based solution (immediate, 
exponential and deterministic transitions) 

 
- Simulation 

 
- Moved away from C 

- Support for SPNP and MOSES tools 
 

1.2 Installing MOSEL-2 in Windows 
 

1. Download and Compile the source code 
under windows[11] 

2. Download and Install the Tool Command   
Language   (TCL)   from [12] 

3.   Download and Install Stochastic Petri 
Net Package (SPNP) tool from [13]. 

4.   Set the variables, Path and Editing the 
batch file in [13] after installation. 

5.   Install       Intermediate       Graphics 
Language (IGL) from [11]. 

6.   Install TimeNET  from [14] 
7.   Then, run the command line Wish86 

igl.tcl 
8.   Install Java jdk 7 from [15] 
9.   Run the batch file Init_spnp.bat 
10. MOSEL2,    this    is    a    Windows 

compiled version which is easy to use in 
modelling. 

11. Install Mingw from [16] 

12. Run   \TimeNET\bin\startGUI.bat   if 
you want to use Petri Net tool TimeNet 
(Analysis & Simulation). 

 

2  The MOSEL-2 Model 
 

Description Language 
 
In MOSEL-2, indentation and line breaks have no 
special meaning. Any sequence of spaces, tabs 
and new-line characters is considered as white 
space and is ignored. There are three exceptions: 
 
(1) In strings, spaces and tabs are copied 

literally. 

 

(2) A “//” comment must be ended by a new- line 
character. 
(3) Two consecutive names have to be separated 

by white space. 
 
A comment in a MOSEL-2 description is 
ignored. There are two forms of comments, both 
known from C/C++, namely a one-line comment 
that starts with “//” and ends at the end of the 
current line, and a free form that starts   with   
“/*”,   may   contain   any  text including line 
breaks, and ends with  “*/”. MOSEL-2 does not 
distinguish integer values and floating point 
values; integer values are just a subset of the 
floating point values. 
A variable (identifier) may be used as the name of 

a node, a result, or a constant, an enumeration, a 
function, or a named condition. 
Each identifier can only denote one of those 
types. It must have a single definition in the 
source code. 
The following names are reserved words with 
special meanings; they may not be used as 
variables: 

 

Table1:Reserved words in MOSEL-2 
AFTER AND ASSERT AVG COND 

CONST CUM CURVE DIST ELIF 

ELSE ENUM EXTERN FIXED FLOOR 

FROM FUNC IF MEAN NODE 

NOT OR PARAMETER PICTURE PRD 

PRINT PRIO PROB PRS RATE 

RESUL 
T 

SIN SQRT STEP THEN 

TIME TO UTIL WEIGHT WITH 

XLABEL YLABEL    

MOSEL-2 is case sensitive, so capital letters are different 
from small letters, so “parameter”, “Parameter” and 

“PARAMETER” are all different names. 

 
 

Expressions 
 
 
A MOSEL-2 expression yields a floating point 

value. “IF” condition “THEN” expr “ELIF” condition 
“THEN” expr “ELSE” expr . 
A conditional expression starts with an “IF”, and 
yields the value of the first expr for which the 
associated condition holds. If no condition holds, 

it yields the value of the final expr. 
 
The arithmetic operators “+”, “-”, “*” and “/” are 
supported. Division by zero is forbidden and 
yields an error. The arithmetic operators are left-
associative. The operators “*” and “/” have higher 
priority, unless the evaluation order is changed 
by parentheses. 
The operator “^” is right-associative and used for 
exponentiation. The exponentiation base (the left 
operand of an exponentiation) must be positive. 
 
Parentheses can be used to express and/or 
change the evaluation order. 



Modelling, Specification, and Evaluation Language (MOSEL-2) Overview                                       Abughres  et al. 

JOPAS Vol16 No.1 2017                                                                                                                      42 

 

“SIN(expr)” yields the sine of expr, where 
expr is measured in radians. 
“SQRT(expr)”  yields  the  non-negative square 
root of expr, which must be non- negative. 
“FLOOR(expr)”  yields  the  largest  integer 
value that is not greater than expr. 
 
A   PROB   construct   yields   the   overall 
probability  of  all  states  where  condition 
holds.   A   MEAN   construct   yields   the 
expectation value of state-expr; i.e., the sum of 

state-expr evaluated for all states, each term 
weighed by the probability of its state. Conditions 
and expressions in a PROB or MEAN construct 
are evaluated for each state. Anode name in such 
a construct evaluates to the node’s value in that 

state[17]. 
The keywords PROB and MEAN may be prefixed 
by AVG if the analysis is transient, which 
computes the time-averaged probability or 
expectation value; i.e., the values are evaluated  
and  integrated  in the time span from t = 0 up to 
the evaluation time point and divided by the 
length of the time span. The keyword MEAN may 
be prefixed by CUM if the analysis is transient, 
computing the cumulated expectation value; i.e., 
the expectation value is evaluated and integrated 
in the time span from t = 0 up to the evaluation 
time point. 
 
 

2.1 MOSEL-2 specification can be divided into 

six main parts: 
 

1. Definition 
This is optional part, which consists of constant 
definition, parameter definition and enumeration   
definition.   In   a   "CONST" definition, the 
variable is given a floating point constant.  In a 
"PARAMETER" definition, the variable is given a 
set of values, and themodel is evaluated at each 
value. In "ENUM" definition, the variable is a given 
set of constants between two brackets "{}". 
 

2. Node 
The node definition part contains the definition of 
the nodes. Nodes are used to describe the model's 
state. Each node has a certain value ranges from 0 

to a maximum value called the capacity of the 
node. 
 

3. Function 
This is optional part. MOSEL-2 offers two types of 
functions: either the "FUNC", which yields to a 
numeric value, or the "COND", 
which is a placeholder of logical expression. 
 

4. Rule 
The rule part contains MOSEL-2 rules. Rules are 

used to describe how the system may change from 
one state to another. 
A rule is composed of the following parts: 
• A precondition, which describes the subspace of 
states in which the rule is enabled. 
• One or more actions, which describe the 
changes of the current state that take place when 

the rule fires. 

• A firing distribution. When the rule gets 
enabled, it may fire immediately, after a fixed time 
interval, with exponentially distributed 
probability, or with (discrete) uniform 
distribution. 
• A re-enabling policy. When a rule gets disabled, 
it may remember or forget the time 
that has elapsed while the rule was enabled. This 
has impact on the time until the remaining firing 
delay when the rule gets re- enabled. 
• A priority and a weight. If several rules are 
enabled and may fire at the same time, only one 
of the rules with maximum priority will do so. 
 

5. Result 
Result part is optional. This part contains the 

computation of the performance measures 
results.   There   are   two   types   of   result 
definitions: 
a) Proper results: 
Such a result definition defines result and 

assigns the value of expr to it. The value of result 
can be used in subsequent result definitions. If 
the keyword PRINT is used, the value of the 
result will be written into the result file and can 
be used in picture definitions that may follow. 
b) Durations: 
Such a result definition prints a duration; i.e. the 
expected time span until condition holds for the 
first time. The duration can be used in picture 
definitions. It must not be used in subsequent 
result definitions. 
 

6. Picture 
This is an optional part. The graphs of the 
computed performance measures are created 
in this part via Intermediate Graphical Language 
(IGL) which is a user-friendly tool associated with 

MOSEL-2 package to generate the graphical 
representation of the performance measures in a 
very nice way and compatible with any operating 
system. 
 

3  The MOSEL-2 Evaluation 
Environment 

 
MOSEL-2 model will be evaluated and analyzed by 
an external analysis tool. The model description 

will be translated into the format that is used by 
the respective tool. This tool is invoked 
automatically by the MOSEL-2 environment, its 
results are read in and written to the MOSEL-2 
result file or may be displayed as graphs. The 
graph descriptions are written to a separate File in 
the proprietary IGL format. The graphs can be 
displayed, printed or changed using the IGL 
interpreter, which is part of the MOSEL- 
2 program package. The following stochastic 
analysis tools are supported: 
-The stochastic Markov analysis tool MOSES,  
developed  at  Universit¨at Erlangen-N¨urnberg, 
Germany. 
- The Petri Net analysis tool SPNP [SPNP], 

developed at Duke University, USA. 
- The Petri Net Tool TimeNET, developed at TU 
Berlin since 1991, is a collection of tools that 



Modelling, Specification, and Evaluation Language (MOSEL-2) Overview                                       Abughres  et al. 

JOPAS Vol16 No.1 2017                                                                                                                      43 

support the creation, testing, and evaluation 

(analysis and simulation) of stochastic Petri nets. 
Other stochastic analysis or simulation tools can 
be integrated with the MOSEL environment due to 
its modular structure. 
The semantics of a MOSEL-2 description can 
be defined by describing how it can be converted 
into a stochastic process with finite state space 
which is reached in three steps: 
1.  The MOSEL-2  description  is translated into a 
mathematical model called the Explicit State Model 
(ESM). 
2. ESM is converted to a process with mixed 
continuous/discrete state space and continuous 
time base. The state space of the 
Markov process consists of the states of the ESM, 
but supplementary real numbers have been added 

to each state, which indicate the remaining firing 
times for each rule. Since the remaining firing 
times  are part  of the process’ state space, the 
probabilistic behavior can be predicted in the 
future from the current behavior and do not need 
to examine past states. 
3. The stochastic chain with finite state space can 
be derived by dropping the remaining firing times 

in the states. 
 

3.1 The MOSEL Modelling- Environment 
The process of performance and reliability analysis 
in the MOSEL modeling environment is divided 
into the following steps as shown in Figure 1:  
 

 
 
Fig. 1 The modelling and analysis process 
in the MOSEL-2 environment [10]. 
 
 
1. The modeller inspects the real-world system 
and generates a high-level system description 
using the MOSEL specification language. The 
result part ends up with the desired performance 
and reliability measures;   it   passes   the   
model  to   the environment which then performs 

all following steps without user interaction. 

 
2. The MOSEL environment automatically 
translates the MOSEL model into a tool- specific 
system description, for example a [C based 
Stochastic Petri net Language] (CSPL) file suitable 
to serve as input for SPNP. 
 
3. The appropriate tool (i.e., SPNP) is invoked by 
the MOSEL environment. 
 
4. Depending on the structure of the model, 
particularly with regard to the types of 
distributions used, the analysis continues along    
one    of    the    following    paths: 
 
4a) If a numerical solution of the subordinated 

stochastic process is feasible, the state space of 
the model is generated out of the static 
description according to the semantic    rules    
favored    by    the    tool. 
 
4b) If none of the tool's numerical solution 
methods is applicable, a structural analysis of the 
model is performed. All information needed for a 
subsequent Discrete Event Simulation (DES) is 
extracted and preprocessed during this stage. 

DES analysis is available in TimeNET and SPNP. 
 
5. The computation of the stationary or transient 
state distributions of the underlying stochastic 
process of the model is prepared. 
 
5a) For state-space based numerical analysis 
methods, all the information needed by the 
numerical solution algorithm is extracted from           
the           semantic           model. 
5b) If   the model is analyzed via discrete event 
simulation, the simulation engine is ended by the 
command-line options given by the modeller. 
 
6. The stochastic process is solved by the selected 
solution method. From the computed 
stationary or transient state probabilities the tool 
derives the result measures as specified in the 
tool-specific high-level description and stores them 
in a file with a tool-specific structure. 
 
7. The MOSEL-environment parses the tool- 

specific output and generates a result file 
containing the performance and reliability 
measures which the user specified in the MOSEL 
system description. If the modeller requested 
graphical representation of the results, an IGL-

file is generated by the MOSEL environment. 

 
4 A Case Study System 
 
In this paper, we would like to introduce the 
open queuing system M/M/N/K as our case 
study with a single station considering N servers 
with the following assumptions: 
 
1) We assume that the arrival stream of jobs 
forms a Poisson process with rate λ. 
 
2) Service times of jobs are independent and 

http://www4.informatik.uni-erlangen.de/Projects/MOSEL/Desc/Lang/
http://www4.informatik.uni-erlangen.de/Projects/MOSEL/Desc/Lang/


Modelling, Specification, and Evaluation Language (MOSEL-2) Overview                                       Abughres  et al. 

JOPAS Vol16 No.1 2017                                                                                                                      44 

identically distributed exponential random 

variables with service rate μ. 
 
3) Assuming maximum queue length is K. 
 
4) If there are K jobs in the system and a job 
arrives at the station, the new job is turned away. 
 
5) M/M/ stand for   the type of arrival and 
service process, where it is memory less, 
meaning for inter-arrival and service times are 
independent, exponentially distributed 
random variables. Using these assumptions in 
the code shown below: 

 
 
//M/M/N/K 

/*PARAMETER AND CONSTANTS 
************/ 

 
PARAMETER K:=1 .. 100;     //CONST K = 

100;  //Queue 
Size 

 
 
/*TRANSITIONS ***********************/ 

 
FROM EXTERN  TO n  RATE  λ; 
IF n > N FROM n TO EXTERN RATE  N*μ; 

//NORMAL 
DEPARTURE 

IF n<= N FROM n  TO EXTERN RATE  n * μ; 
 

/*RESULTS ****************************/ 
// TEXTUAL (.res) 

 
PRINT Buffer :=K; 
PRINT SERVERS 
:=N; 
PRINT prob_full:= (PROB(n = K)); 

 

//fraction of Packets turned away  /min 
PRINT rate_reject:= λ*prob_full; 

 

// RESULT rate_reject= λ*prob_full; 
PRINT mean_number_of_Packets := 

MEAN (n); PRINT RHO := λ/μ ; 
PRINT UT := UTIL (n); 

 

//average time a Packets has to spend for 
check-out Min 
// response time 
PRINT mean_number_of_Packets/(λ - 
rate_reject); 

 

// GRAPHICAL (.igl) 
 

PICTURE "average time a Packets has to 
spend for check- out    (Min)" 

PARAMETER K 
XLABEL "Queue Size" 
YLABEL "average time a Packets has to 
spend(Min)" CURVE Tq; 

 

PICTURE "fraction of Packets turned 

away  /min" PARAMETER K 
XLABEL "Queue Size" 
YLABEL "fraction of Packets 
turned away" CURVE prob_full; 

 
PICTURE 
"Utilization" 
PARAMETER K 
XLABEL "Queue 
Size" YLABEL 
"Utilization" 
CURVE UT; 

 
PICTURE 
"mean_number_of_Packets" 
PARAMETER K 

XLABEL "Queue Size" 
YLABEL 
"mean_number_of_Packets" 
CURVE 
mean_number_of_Packets; 

End 
 

4.1 Analyzing the open queuing system 
 

M/M/N/K using the MOSEL-2 

Environment. 
 
Suppose that we have saved our 
MOSEL-2 model in a file named 
MMNK.mos. We are going to invoke the 
MOSEL-2 Environment on the command 
line via: 
 
mosel2 -cs MMNK.mos 
 
The option -c indicates that we request that our 
MOSEL-2 specification should be translated into 
a set of CSPL files (C based Stochastic Petri net 
Language), which serve as input for the tool 
SPNP. We also use the s option to start the 
appropriate tool automatically.  The MOSEL-2  
environment will now perform the rest of the 
analysis and result post-processing steps 
automatically using the SPNP package as shown 
in Figure 
1. 
 

Upon completion of the analysis, the MOSEL-2 

environment creates two files named MMNK.res 
and MMNK.igl which contain the requested 
performance measures of the system in text and 
graphic form. The text file is very useful if we are 
interested in the particular values of the 
performance measures for a specific value of the 
variable system  parameter which  was  given in  
the model specification. The graphical 
demonstration of the results shows how the 
performance measures depend on a variable 
system parameter over an interval. The graphical 
result file will be processed and viewed with the 
IGL-utility, which is part of the MOSEL-2 
environment. 
 
This is a sample of Stationary analysis of 
"MMNK.mos" by 

CONST N=7; //  NUMBER OF SERVERS now      
CONST λ = 20.2; 
CONST μ = 2.4; 

NODE n[K]=0; 

//ARRIVAL RATE   /min 
//SERVICE RATE   /min envir      

 



Modelling, Specification, and Evaluation Language (MOSEL-2) Overview                                       Abughres  et al. 

JOPAS Vol16 No.1 2017                                                                                                                      45 

SPNP. 
 
Parameters: 

K = 1 
 
Results: 

Buffer = 1 
SERVERS = 7 prob_full 
= 0.89381 rate_reject = 
18.0549 
mean_number_of_Packets = 0.89381 
RHO = 8.41667 
UT = 0.89381 
Tq = 0.41667 

================================
=== 

 

Parameters: 
K = 2 

 
Results: 

Buffer = 2 
SERVERS = 7 prob_full 
= 0.78998 rate_reject = 
15.9576 
mean_number_of_Packets = 1.76768 
RHO = 8.41667 

UT = 0.9777 
Tq = 0.41667 

================================
=== 

 
Parameters: 

K = 3 
 
Results: 

Buffer = 3 
SERVERS = 7 
prob_full = 0.68909 rate_reject = 
13.9196 mean_number_of_Packets 
= 2.61685 
RHO = 8.41667 
UT = 0.99307 
Tq = 0.41667 

================================
=== 

 
Parameters: 

K = 4 

 
Results: 

Buffer = 4 
SERVERS = 7 
prob_full = 0.59183 rate_reject = 

11.9549 mean_number_of_Packets 
= 3.43544 
RHO = 8.41667 
UT = 0.99717 
Tq = 0.41667 

 
Parameters: 

K = 5 
 
Results: 

Buffer = 5 
SERVERS = 7 
prob_full = 0.49906 rate_reject = 

10.081 mean_number_of_Packets = 

4.21625 
RHO = 8.41667 
UT = 0.99858 
Tq = 0.41667 

 
The results could be displayed in graphics 
form as shown in Figure2 and 3. 

 
 
Fig. 2 Shows Tq or the Delay or the time that 
the packet spends in the queue 

 
 
Fig.3  Probability of packets  rejected  as  we  
increase  the queue size. 
 

5 Conclusion 
 
This paper is good start for people trying to use 
this tool. MOSEL is growing and getting more 
interesting features in modeling of 
communication Networks. The case study used 
is an M/M/N/K where we have showed the 
results in text and in Graphics mode. Several 
concepts of MOSEL can help the user to avoid 
tedious tasks while modeling complex systems. 
 

Referencs 
[1]- Bolch, G.; Greiner, S; Jung, H.; Zimmer, R: 

The Markov Analyzer MOSES, 
[2]- Ciardo, G; Muppala, J.K.: Manual for the 

SPNP Package Version 3.1,Duke  University  

Durham,  North  Carolina,1991 
[3]- Herold,   H.:   lex   und   yacc,   Addison- 

Wesley, Bonn 1995 
[4]- Kirschnick, M: PEPSY-QNS, 

Technical Report (TR-14-18-94), IMMD IV, 
Erlangen-Nürnberg, 1994 

[5]- Sahner, R A.; Trivedi, K S.: SHARPE: Symbolic  
Hierarchical  Automated Reliability 
andPerformance   Evaluator,   Duke   
University 
Durham, North Carolina, 1986 

[6]- Trivedi, K S.; Ciardo, G.: A Decomposition 
Approach for Stochastic Reward Net 



Modelling, Specification, and Evaluation Language (MOSEL-2) Overview                                       Abughres  et al. 

JOPAS Vol16 No.1 2017                                                                                                                      46 

Models,Duke  University  Durham,  North  

Carolina, 1991 
[7]- [7] Technical Report (TR-14-10-94), IMMD IV, 

Erlangen-Nürnberg, 1994 
[8]- Bj¨orn Beutel:Integration of the Petri Net 

Analysator TimeNET into the Model Analysis 
Environment MOSEL Diploma Thesis in 
Computer Science University of Erlangen-
N¨urnberg 

[9]-  Practical Performance Modelling: Application 
of the MOSELKhalid Begain, Gunter Bolch, 
Helmut Herold,Laguage,Khuwer Academic 
Publisher. 

[10]- Queueing Networks & Markov Chains,Gunter 
Bolch, Stefan Greiner, Hermann de Meer, 
Kishor S. Trivedi,Jhon Wiley & Sons, Inc., 
Publication,Second edition,2006 

[11]-  http://www4.informatik.uni- 
erlangen.de/DE/Projects/MOSEL/Download 

[12]- http://www.tcl.tk/software/tcltk/downloa 
d.html,1/1/2015 

[13]- http://people.ee.duke.edu/~kst/software_ 
packages.html,/6/2013 
 

[14]- https://www.tuilmenau.de/sse/timenet/in 
formation-for-users/download- 
area/,1/12/2014 

 
[15]- http://www.oracle.com/technetwork/jav 

a/javase/downloads/index.html,/12/2014 
[16]- http://sourceforge.net/projects/mingw/fi 

les/,/12/2014 
[17]- Tien V. Do, Patrick W¨uchner, Tam´as 

B´erczes and J´anos Sztrik, Hermann De 
Meer, A New Finite-Source Queueing Model 
For Mobile Cellular Networks Applying 
Spectrum Renting, Asia-Pacific Journal of 
Operational Research,2013. 

http://www4.informatik.uni-/
http://www.tcl.tk/software/tcltk/download.html,1/1/2015
http://www.tcl.tk/software/tcltk/download.html,1/1/2015
http://people.ee.duke.edu/~kst/software_packages.html
http://people.ee.duke.edu/~kst/software_packages.html
https://www.tuilmenau.de/sse/timenet/information-for-users/download-area/
https://www.tuilmenau.de/sse/timenet/information-for-users/download-area/
https://www.tuilmenau.de/sse/timenet/information-for-users/download-area/
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://sourceforge.net/projects/mingw/files/
http://sourceforge.net/projects/mingw/files/

