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Abstract This paper aims to generate some linear, second-order and homogeneous ordinary differential 
equations (ODEs) with variable and undetermined coefficients by linearly combining some well-known ODEs 
in mathematical physics community which are the Legendre and Frobenius (or Bessel as a special case) 
ODEs. Comparing the form of the generated ODEs with the original (mother) ODEs should allow us to 
facilitate choosing the appropriate method to solve such ODEs. Then solve the generated ODEs by the usual 
methods for solving Legendre and Frobenius ODEs which are the series or Frobenius method depending on 

the nature of the point that we need to solve in a neighbourhood of it. Such point should be no worse than a 
regular singular point. For demonstration purposes, we introduced some illustrated examples for a set of 
some generated linear, second-order ODEs which are solved by the aid of the mother ODEs. We claim that, 
this procedure grants us some easiness for solving such generated ODEs which are encountered in many 
physical and engineering applications. 
Keywords: Legendre equation, Frobenius equation, Bessel equation, Series method, Frobenius method, 
Second-order linear differential equations with undetermined coefficients. 
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Introduction 
Most of the mathematical models of different 
applications in life are governed by differential 
equations (DEs) that relate all the variables of the 
problem under consideration. To fully understand 
such a problem, the need emerges to solve such 
governing DE and understand the behaviour of the 
obtained solution such as convergence in the region 
of interest. However obtaining such solution in a 
closed form is not always an easy task, where 
sometimes one really needs to resort to some 

numerical techniques to seek an approximate 
solution. In physical and engineering applications, 
one usually encounters different forms of linear, 

second-order homogenous ODEs with variable 
coefficients which are close to some well-known 
ODEs. Thus, one needs to utilize this feature to 
guess the solution method to solve such equations. 
One of the most known powerful techniques to solve 
this kind of ODEs is the power-series technique [1, 
2, 5, 9].  To find the solution near a certain point or 
points by the power series method, we first need to 
determine the location and nature of the singular 
points of the relevant ODE. The power series 

method with undetermined coefficients provides 
solutions of the linear second-order, homogenous 
ODEs with variable coefficients about a point which 

http://www.suj.sebhau.edu.ly/
Sha.Mohammed1@sebhau.edu.ly
Sha.Mohammed1@sebhau.edu.ly
file:///C:/Users/DELL/Google%20Drive/jopas/07العدد%20الثاني%202019/Sha.Mohammed1@sebhau.edu.ly


Generating some linear second-order differential equations with undetermined …..                            Dawa et al. 

JOPAS Vol.18 No.  3 2019                                                                                                                                                   24 

is no worse than a regular singular point. Such a 

method is particularly efficient when the resulting 
recurrence relation for the undetermined coefficients 
contains no more than two different subscripts of 
these coefficients [1, 2]. One should expect that the 
obtained solution by the series method satisfies the 
given ODE, though it may not converge over the 
required region. This is encountered when solving 
the Legendre ODE, where one really needs to stick 
to an appropriate choice of its index k to avoid the 
divergence problem as it will be explained later on 
through this article [1]. The success of the power 
series method relies on the roots of the resulting 
indicial equation and the degree of singularity of the 
variable coefficients in the given DE. These issues 
may affect the convergence of the obtained solution, 
or at worst a second solution cannot be obtained.  
Fuchs’s theorem [1, 2] states that the power series 
methods always provide at least one power-series 

solution about a point which can be an ordinary 
point or at worst a regular singular point. Thus 
there is no guarantee that such method will provide 
a second solution which we expect for a second-
order ODE. For instance, the power-series method 
provides only one solutions for Bessel equation, 
thus a second linearly independent solution can be 
constructed for instance by means of the Wronskian 

double integral [1]. If we try to solve an ODE about 
an irregular singular point, the method may fail 
even in finding one solution. Fortunately most of the 
ODEs known in mathematical physics have no 
irregular singularities in the finite plane. For 
instance all the singular points of the Legendre [1, 
2, 3, 4, 5, 7], Chebychev [4, 7, 12], Hypergeometric 
ODEs [1, 2, 7, 12, 15] are regular in the finite or 
infinite plane [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]. Such 
ODEs are called Fuchsian equations. Whereas the 
Bessel, confluent hypergeometric [1, 7], Laguerre [1, 
12], Hermite [1, 12] ODEs have irregular singular 
point only at infinity [1, 4, 5, 11, 12, 13, 14, 15, 16, 
17]. 
Actually it should be noted that the number of 
singular points of a Fuchsian DE is finite and their 
coefficients are rational functions of the 
independent variable. A Fuchsian equation must 
have at least one singular point and at most a finite 
number of such points [2]. Motivated by the great 
importance of special functions in general and the 
Legendre and Frobenius ODEs in particular, here 
we shall generate some second-order, homogenous 
linear ODEs with undetermined coefficients by 
linearly combining the Legendre and Frobenius 

ODEs. This paper is constructed as follows: in 
section one; we will introduce some necessary 

definitions, such as the ordinary point and the 
singular point then classification of singularity. In 
section two, we will give a short overview on the 
Frobenius ODE and show how to solve such 
equation. In section three, we will give a short 
overview on the Legendre ODE and find its solution. 
Then in section four, we shortly introduce the 
Bessel ODE which is a special case of Frobenius 
DE. In section five, we will show how to construct 
some linear, second-order and homogenous ODEs 
with undetermined variable coefficients by linearly 
combining the Legendre, Bessel and Frobenius 

ODEs and then solve such generated ODEs.  A 

conclusion is drawn in section six.                                                                  

1. Preliminaries 
Here we shall introduce some necessary concepts, 
which we will need later on, such as definition of 
the ordinary and singular points of second-order 
linear ODE and how to solve it by Frobenius 
method.                                           

Ordinary and Singular Points of the Second-
Order Linear ODEs 
Definition 1 (Analytic Function): A function  

is called analytic function at a given point 
0x  if it 

can be expanded in Taylor series in a 

neighborhood of , that is,      

  

The convergence is for some radius of 

convergence . It should be noted that the 

analyticity of a function implies the existence of all 
its derivatives and also implies the continuity of 
this function.                                                 
   
Definition 2 (Ordinary Point): A linear, second-

order, homogeneous ODE may be put in the form

The point 
0x x  is called an ordinary point of the 

ODE (1) if both the functions  and  are 

analytic at . Another practical way to check if 

 is an ordinary point of DE (1) is that and 

 both remain finite at the point .                                                                 

The following theorem gives the existence of the 
solution of DE (1) near an ordinary point.                                                 

Theorem 1 [1, 2, 7]: If  is an ordinary point 

of the DE (1)  then there exists a unique solution of 

it in the neighbourhood of , which is analytic, 

that is , with initial conditions 

, , and the convergence  of the 

series is for . The general solution 

of the DE (1)   is   
  

where  are arbitrary constants and ,  

are linearly independent series solutions of DE (1) 

which are analytic at . Furthermore the radius of 

convergence of each the series solution   and 

 is at least as large as the minimum of the 

radius of convergence of the series for  and 

. 

Definition 3 (Singular Point): If in the DE (1) we 

find that at least one of the functions or  is 

not analytic at , then the point  is 

called a singular point of the DE (1). 
The singular points are classified as follows: 
Definition 4 (Regular Singular Point): A point 

in the finite plane is called a regular 

(nonessential) singular point of the DE (1) if 

 and  are both analytic 

functions at .  

Definition 5 (Irregular Singular Point): A point 

is called an irregular (essential)   singular 

point of the DE (1) if it is not a regular singularity 
of DE (1) that is, if at least one of these functions 
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 and is not analytic 

function at  . The irregular singular point 

 of the DE (1) can be also checked if at least 

one of these limits  or 

 does not exist.            

2. Frobenius Differential Equation [16] 
If the DE (1) has a regular singular point at 

then the method used to find a series 

solution of (1) is valid in the neighbourhood of 

and it is known as the Frobenius method. 

We assume    

The point  should not be chosen at an 

irregular singular point. It must be a regular 
singular point and it can be an ordinary point. Now 

since  is a regular singular point of DE (1) 

then  or  or both are not analytic at  

but  and   are 

analytic at  . Consequently we can multiply 

the DE (1) by the factor  to obtain the 

following ODE 
                                                                                      

 

where ,  

are analytic functions at the point , that is 

 

 
By choosing  in the DE (2) we obtain the 

following ODE 

 
This is referred to as Frobenius ODE. The following 
theorem assures the existence of a Frobenius 
series solution of DE (2) and hence DE (1). 

Theorem (Frobenius method):  
If  is a regular singular point of DE (1) then 

the functions  and  are 

analytic at  and have Taylor series, that is  

 where,  

 
where,   

Both of these series converge for where 

 is the minimum of the radius of convergence 

of both series. If  and   are the real roots of the 

following indicial equation  

 
such that  then DE (1) and hence DE (2) has 

a fist solution as: 

    1

1 0 0

0

, 0.
n r

n

n

y x a x x a






    

The second linearly independent solution is 
obtained according to the following: 

1.  If  is not an integer or zero, then 

 

    2

2 0 0

0

, 0.
n r

n

n

y x a x x a






                        

2. If , then the second solution of DE (1) may 

take the form                                                                                    

      2

2 1 0 0 1 0

1

ln 1 ( )( )
r n

n

n

y x y x x x x x b r x x




 
      

 


          

3. If , then the second solution of  

DE (1) may take the form                                                                                                                                         

      2

2 1 0 0 2 0

1

ln 1 ( )( )
r n

n

n

y x Ay x x x x x c r x x




 
      

 


.                 

The coefficients 
1 2 1 2( ), ( ), ( ), ( )n n n na r a r b r c r  and the 

constant A  can be determined by substituting the 

series solutions for y  in the DE (2). The constant 

A  may turn out to be zero. Each series in the 

solutions converges at least for  and 

define a function that is analytic at  [2]. 

3. Legendre ODE 
Consider the linear second-order ODE 

 
This ODE  is known as Legendre ODE and named 
after a French mathematician A. M. Legendre 
(1752-1833). Legendre DE has three regular 

singular points at . We should note that 

the coefficients functions (after dividing by the 

factor  can be written as, 

 

 
Both of these functions represented by a geometric 
series which are convergent in a region that is 
extended to the nearest singular point, that is in the 
region |x|<1. We shall solve Legendre ODE by 
assuming that there is a solution of the form 

  
Direct substitution of y into the Legendre DE yields  
 

     2 2

2

0 2

1 2 3r m r m

m m

m m

r m r m a x r m r m a x
 

   



 

          

                              

   2 2

2 2

2 2

2 2 1 0r m r m

m m

m m

r m a x n n a x
 

   

 

 

      
 

      2 1 2

0 1

2

1 1 1r r r m

m

m

r r a x r r a x x r m r m a x


  




        


  

      2 2 2

2 0 2

2 3 2 2 1 0m m m

m m m

m m m

r m r m a x r m a x n n a x
  

  

  

 
           
 
  

 

By equating the coefficient of  
2rx 

 to zero, one 

has  

        2

2

1 2 1 1 m

m m

m

r m r m a r m r m n n a x






             

                            
   0 11 1 0r r a r r a x        

Now we get the indicial equation    with 

roots  and the recurrence relation  

        

   

  
2

2 1
,

1
m m

n r m n r m
a a

r m r m


            


                         

http://www.answers.com/main/ntquery?method=4&dsid=2222&dekey=Differential+equation&gwp=8&curtab=2222_1
http://www.answers.com/main/ntquery?method=4&dsid=2222&dekey=Adrien-Marie+Legendre&gwp=8&curtab=2222_1
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Let r=0 in this relation to get 

  

 
2

2 1
, 2,3,...

1
m m

n m n m
a a m

m m


    
 

  

Note that we can solve Legendre ODE by general 
power series since x=0 is an ordinary point to get 
the same recurrence relation. Now from this relation 
we have 

 
2 0

1
,

1 2

n n
a a

 


  

  
3 1

1 2
,

3 2

n n
a a

  


  

     
4 0

2 1 3
,

1 2 3 4

n n n n
a a

  


    
Hence,  
 

        

 
2 0

1 2 2 2 1 2 1

2 !

k

k

n n n k n n k
a a

k

      


 
and  

        

 
2 1 1

1 1 2 1 2 2

2 1 !

k

k

n n k n n k
a a

k


     



 

Hence the general solution of Legendre DE is  

  0 1even oddy x a y a y 
 

where 
          

      

 
2

0

1 2 2 1 2 1
1

2 !

k

k

even

k

n n k n n k
y x

k





     
                    

        

 
2 1

0

1 1 2 1 2 2

2 1 !

k

k

odd

k

n n k n n k
y x x

k






     
 




  
Since we obtain a solution with two arbitrary 
constants, then there is no need to consider the 
case r = 1. We should mentions that both solutions  

  and  diverge at , but by an 
appropriate choice of the index n (integral values), 
one of the solutions turns to a polynomial. 
Actually, this choice has physical interpretation in 
quantum mechanics.                                        

 4. Bessel ODE 
Consider the following linear second-order ODE, 

 
This ODE  is known as Bessel DE due to a   

German mathematician F. Bessel 14811848

and has a regular singular point at x = 0. We 

should note that the Bessel ODE is a special case 
of Frobenius ODE. Therefore it can be solved in a 

similar way to solving Forbenius DE where, 

                                       
 
5. Discussion on Linearly Combining Legendre, 
Bessel and Frobenius ODEs 
Here in this section, we show how to linearly 
combine some well-known DEs in mathematical 
physics in order to construct some DEs. In this 
paper we use the the most prominent ones 
(Legendre and Frobenius) DEs and Bessel DE 
which is a special case of Frobenius DE. Then we 
will show how to solve the generated DEs with the 
aid of the mother ODEs. We start with showing 
some examples of how to generate some ODEs. For 

instance, by merging and subtracting the Legendre 

DE (4) and Frobenius DE (3), we respectively 
obtain the following ODEs, 

 
 

 
 
Also, by merging the Bessel DE (5) and Frobenius 
DE (3), we obtain the following DE, 

 
We note that using Frobenius DE in the 
combination process leads to some ODEs with 
variables coefficients which contain unknown 

analytic functions  and . Thus this 

approach generates quite general ODEs, because 

the unknown functions  and  are arbitrary 

analytic functions. 
In all the generated DEs (6), (7), (8), we should 

emphasize that the index k is a nonnegative 

constant, and the unknown functions    

are assumed to be analytic functions, that is they 
inherit the same features of the original mother 
DEs. Now in the following demonstrations 
examples, we will show how to solve the generated 
DEs (6), (7), (8), in the neighbourhood of the point 
x = 0, which can be an ordinary point or at worst a 
regular singular point of the relevant DE. At first 
glance, we note that the form of the DE (7) is 
relatively close to the Legendre ODE, whereas the 
form of the DE (8) is quite close to Frobenius DE. 

This should considerably facilitate choosing the 
appropriate solution method as it will be 
demonstrated in the following examples. 
Example 1: Solve the DE (6). 
Solution: Since this DE has an ordinary point at 

, we assume the solution as 

Direct substitution of  into the DE 

(6) yields

 

 
By equating all the coefficients of  to zero, one 

obtains the undetermined coefficients as 

 

 

 
So, one obtains the general solution of the DE (6) 
as, 

 

 
where  and  are arbitrary constants.

Example 2: Solve the ODE (7). 
Solution: Since the DE (7) has an ordinary point at 

, so we assume the solution as

 

Direct substitution of  into the DE 

(7) yields 

  

http://www.answers.com/main/ntquery?method=4&dsid=2222&dekey=Differential+equation&gwp=8&curtab=2222_1
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By equating all the coefficients of  to zero, one 

obtains the undetermined coefficients as 

 

 
So, one obtains the general solution of the ODE (7) 
as, 

 

 
Example 3: Solve the DE (8).

Solution: Since the DE (8) possesses a regular 

singular point at , so we assume that there is 

a solution of the form    

Also, we have

 

 

 

 
  Direct substitution of   and into the DE 

(8) yields  

   

  

   

 
 

 

 

  

2 1

0 1

2

0

1

0 1

2 1

0 1 2 2

1

2 2 3

0 1 2 3

1 2

0 1 2

1 1

2 2 1 ...

1 ...

1

... 2

... ...

1 ...

...

m m

m

n

m m

m

m n

n

m m m

a m m x a m mx

x a m m x

a m n m n

a mx a m x

x b b x b x a m x

a m n x

k c c x c x c x

a x a x a x a

 





 

 

     
  

      
  

      

   
 

       
 
     

      


    
0

m n

n x 


 



 

  which can be written as 

    

    

 

     

     

 

2

0 0 0

2

1 0 0 1

0 1 1

2

0 0

1 1 1 2 2 2

0

2 1 1

2 1 1 1
...

2 1 1

1 1 2

...

... 0

m

m

n

m n

n n

n n

a m m m b k c x

a m m m b k c
x

a c b m

a m n m n m n b k c

a c b m n a c b m n x

a c b m





 

       

          
   

  

            
 

                
 

   

 

By equating the coefficient of  to zero, we obtain 

the indicial equation. Then by equating the 

coefficient of  to zero, we obtain the recurrence 

equation which should give the nth term of the 

undetermined coefficient, that is 

 

 

  
6. Conclusion  

Here we showed that combining Frobenius ODE 

linearly with other ODEs of the same kind generates 
a set of DEs of the same kind. Then we solved these 
generated ODEs in the neighbourhood of the point x 
= 0, which can be an ordinary point or at worst a 
regular singular point, though the solution about a 
non-zero point  can be obtained in a similar way.  
By substituting the unknown analytic functions  
p(x) and q(x), one can easily obtain the general 
solution of the relevant DE as demonstrated by the 
examples presented above. It should be noted that 
comparing the form of the generated ODEs with the 
mother ODEs gives us a first glance of how to solve 
such DEs as shown by the examples demonstrated 
above. This considerably facilitates and saves great 
time in searching the appropriate method to solve 
such ODEs. As future work, this approach can be 
extended to other well-known ODEs, such as 
Hermite, Laguerre, Hypergeometric ODEs, etc.  
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