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 A B S T R A C T 

When fitting the Generalized Pareto distribution (GPD), selecting an appropriate threshold value is 

important for achieving an effective fit. The main objective of this study is to give five graphical 

diagnostics for selecting GPD thresholds. The other objective of this study is to examine different 

graphical methods based on the goodness-of-fit test. Maximum likelihood method was used to 

estimate the shape of parameter. Finally, use flood data to compare five graphical diagnostics of 

threshold selection for shape parameter estimate. The results show that, the four graphical diagnostics 

(threshold choice plot, mean excesses plot, dispersion index plot and quantail quantail plot) yield the 

same threshold range, with the exception of the Hill plot. On the other hand, threshold choice plot is 

simple to identify the range of thresholds that should be stable to fit. When compared to other 

graphical diagnostic, the GP distribution becomes valid because they demand too much subjectivity 

and make it difficult to define a range threshold from the plots. In other words, graphical 

diagnostics of the higher are an acceptable option for fitting the GPD model based on the goodness-

of-fit test. All statically analyses for the study are performed using R- statistical program. 
 

 الرسومات التشخيصية لاختيار العتبة لنمذجة توزيع باريتو العام

    حافظ ابوبكر الأسود

 ليبيا ،  قسم الاحصاء ، كلية العلوم  ،جامعة سبها 

 

 الكلمات المفتاحية:

 اختبار المعلومات للأكاكاكيو 

 الإمكان اختبار نسبة 

 الرسومات التشخيصية 

 تقدير معالم توزيع باريتو 

 توزيع باريتو

 طريقة الامكان الأعظم

 الملخص 

 . الهدفالمناسبة للنموذجعند نمذجة توزيع باريتو المعمم نحتاج إلى اختيار قيمة عتبة مناسبة لتحقيق الملاءمة  

. الهدف عتبة مناسبة لتوزيع باريتو العامرسومات تشخيصية لاختيار    خمسهو تقديم    هذه الدراسة  الرئيس ي في

. تم استخدام طريقة  جودة التوافق.على اختبار  بناء  المختلفة  الطرق البيانية  من هذه الدراسة هو اختبار    الآخر

الرسومات  لمقارنة طرق  الحقيقية  البيانات  التطبيق على  تم  أخيرًا،  باريتو.  توزيع  لتقدير معلمات  الامكان الأعظم 

( الأربعة  التشخيصية  الرسومات  أن  النتائج  أظهرت  الشكل.  معلمة  لتقدير  العتبة  اختيار البيانية لاختيار  رسمة 

( لها نفس نطاق العتبة بينما اختلفت التجزئات   رسمةو   رسمة دليل التشتتو   رسمة المتوسطات المتجاوزةو   العتبة

( هيلطريقة  )رسمة  لطريقة  البياني  الرسم  مع  باريتو  نموذج  العتبة(.  اختيار  أفضل رسمة  يعد  العتبة  ( لاختيار 

الاختبارين. من ناحية أخرى، من السهل الحصول على نطاق العتبة لمخطط    علىار العتبة بناء  في اختيطرق الرسم  

المناسب   بح عندها نموذج باريتو هو التوزيع( التي تكون مستقرة أو ثابتة فوق العتبة التي يصرسمة اختيار العتبة)

العتبة   مدي  لتحديد  الذاتية  الخبرة  من  الكثير  تتطلب  التي  الأخرى  التشخيصية  بالرسومات  مقارنته  عند  وذلك 

لهذه الرسومات. كما أظهرت النتائج أن نموذج باريتو مع الرسومات التشخيصية لاختيار العتبة العليا يعد اختيار 

بالاعتماد   المعلمات   علىمناسب  لتقدير  آر  برنامج  بواسطة  الورقة  في هذا  الحسابات  تم اجراء جميع  الاختبارين. 

 واجراء الرسومات التشخيصية والاختبارين.

 

http://www.sebhau.edu.ly/journal/jopas
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1. Introduction 

The probability of rare flood and drought events is an important in 

hydrology and other branches of high flow problem to estimate 

parameters of distribution, a review of flood frequency analysis is 

found in [1], see,[2] for floods, and [3,4] for droughts. For the 

original theoretical development Generalized Pareto Distribution 

(GPD), see [5,6] and for further developments and applications, 

see[7]. The method of Peaks Over Thresholds (POT) has been used 

in many fields, for example, applied to environmental data such as 

rainfall, sea levels and modeling high flows by GPD distribution, 

among others and a review is found in,[8,9]. The properties of the GP 

stated by [10,11] to make the distribution a logical candidate for the 

analysis of extreme events, and such practical problems are 

addressed in [12]. To fit the GPD, there is the problem of threshold 

choice. Several procedures for selection threshold value in the case 

of POT modeling are given in the literature (e.g., [13]) suggest the 

use of the Mean Excess Function (MEF). In, [14], outlined two 

diagnostics for the choice of threshold: Mean Excesses Plot (MEP) 

and Threshold Choice Plot (TCP).  The shape and scale parameters 

of the GPD can be estimated by several methods such as the ML 

method, see,[13] and methods for estimating the GPD parameters 

have been reviewed by [10], and established the asymptotic 

normality and consistency of the MLE estimators. Various 

approaches of numerical methods have been suggested and applied 

by authors, for example, Square Error Method (SEM), by [15] and 

automatic choice using shape parameter, by [16] and Automated 

Threshold Selection Method (ATSM), by [17]. On the other hand, 

graphical method, by [18]. Various literature discusses the problem 

of threshold selection, and the best method is still to be found. The 

outline of the present study report as follows: In section 2, the 

background theoretical of GPD is described. Fitting the GPD is 

introduced in Section 3. While Section 4, model adequacy is 

provided. In section 5 is concerned with diagnostics plot with the 

problem of choosing the best value of threshold, five graphical 

diagnostics is introduced. Section 6, describes application on flood 

data. Our conclusions and future work are given in section 7. 

2  Generalized Pareto Distribution ( ),( GPD ) 

The 2-parameter generalized Pareto (GP) distribution with scale and 

the shape parameter (denoted, ),( GP  ) is the distribution of the

  /)1( YeX −−=  where Y  is a random variable with the 

standard exponential distribution. ),( GPD has the distribution 

function (p.d.f.) is: 













=

−−

=
−

−

10,0,0,
1

0,0,0)1(,)1(
1

),;(

1
1



















xe

xx

xf
x

 

Where,  , are the scale and shape parameter respectively. For, 

0 , 0= and 0 , we have the usual GPD; a type II 

GPD; and exponential distribution respectively. The GPD can be 

extended by adding a location parameter  . The  ),;( xGPD is 

defined to be ),;( −xGPD .  And the Cumulative Distribution 

Function (cdf) is: 
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The p-quantile of the ),;( xGPD is: 
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3 Fitting the GPD 

After choice the value of threshold to estimate the GPD parameters 

by MLE. Considering that the data 
nnnn xxx ::2:1 ,...,, are known 

sorted random sample from ),;( xGPD  and the parameters for 

the distribution are unknown, then the likelihood function of GPD 

can be expressed as follows: 
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The method of MLE works by finding the value for the parameters 

that maximize the value of likelihood function. Equivalently, the log-

likelihood may be maximized on taking the logarithms of (4), 
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The log-likelihood is derived from (5) as: 
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The MLE solution is found via numerical routines or numerical 

optimization method (i.e., Newton-Raphson method) are used to find 

the MLE of   and  For computational, see for more details, 

[19,20]. 

4 Model adequacy 

We can use hypothesis testing to select the best fit model of the data 

over threshold. Therefore, we now implement two criteria to test if 

the GPD is a reasonable for our flood dataset or not.  

4.1 Deviance Test (DT) 

Deviance test is a statistical test provides one objective criterion for 

selecting among possible models. The null and the alternative 

hypotheses, written as: 

0:0: 10 =  HversusH  

The first test presented can be found in [14]. The deviance statistic to 

be used is given by:  
2

1100 )}()({2 kMLMLDT −=                                           8 

Where )( 00 ML  and )( 11 ML be the maximized values of the log-

likelihood for distribution under 0H . To accept exponential 

distribution as 0H If :
2

,kDT   . For details see [21].  Another 

test that can be performed comes from Akaike information criterion 

(AIC). 

4.2 Akaike information criterion (AIC test) 

In order to check a number of models, we perform tests 
with Akaike information criterion (AIC), see [22,23]. The AIC test 

is given by: 

inllAIC i 2)(2 +=                       9 

Where nll  is the negative log likelihood and i is parameter 

distribution with i  events. The goodness of fit is a first term of AIC 

and the second term is penalizing model complexity. The model with 

the smallest value for AIC is preferred.  The AIC , DT can be 

performed with package of POT and evd. in [30,31]. 

5 Graphical Diagnostics for Threshold Choice  

Some graphics diagnostics should be introduced to select the value of 

threshold. In this section, we will be introduced five diagnostics plot 

to select the suitability threshold value to fit GPD. In,[14], outlined 

the diagnostics for the choice of threshold. There are several popular 

methods for choosing the suitable threshold, some of these are, 

https://www.sciencedirect.com/topics/mathematics/null
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numerical procedure, plotting methods and combinations between 

them. Five diagnostic plot of threshold choice as follows: 

5.1 Threshold Choice Plot (TCP) 

Stability plot (SP) or Threshold Choice plot (TCP) is procedure for a 

range of thresholds selection to fit the GPD. If the GPD is a suitable 

fit for high a threshold 0 , then 0   will be also follow a 

GPD. The plotting ),( 1

 versus )ˆ,( 1   together with 

confidence interval for each of these plotting (see [14,30,34]), and to 

select 0  as the smallest value when the estimating remains stable 

region. The stability plot shows the points given by: 

}:),{( max11 X  and }:)ˆ,{( max11 X                 10 

Where 
maxX is the maximum of the observations X . 

5.2 Mean Excesses Plot (MEP) 

Another graphical method which is widely used to determine the 

threshold is the mean excess plot (or shortly MEP), is a graphical 

method for determining a d.f. F . The MEP was described by 

[15,28,34] and used the mean excesses of the GP to select the best 

threshold. The mean excesses plot is defined by: 
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If the GPD is a suitable fit, the plot of )(e  against  , called 

MEP should follow a straight line with intercept   −1/  and 

slope  −1/ over threshold   , it is mean that the data support 

the GPD with a long-tailed ( 0 ). Furthermore, , a horizontal 

MEP (medium tailed,   is near 0) mean that exponentially model 

while thin-tailed ( 0 ), see,[16]. for a discussion of the 

properties of this function. In practice, based on a sample size, n ,

nxxx ,...,, 21 , )(e  is estimated by its empirical mean. The 

sample ME function is given by: 
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Where I is a function of indicator }{ −ixI =1 if 
iX , and 

0 otherwise. To show the sample ME-plot, we plot the points as 

follows: 
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If the data follows at GPD greater than some high value of threshold, 

we will be expected the MEP to see linear in view of Eq-11. One 

quite hard with the MEP, is very much dispersion, especially at 

above thresholds, it will be hard to choose whether an observed 

departure from linearity. Another graphical plot should be used to 

select the value of threshold is the Hill plot (HP). 

5.3 Hill plot (HP) 

The most popular tail index estimator is the Hill plot (HP) by [25]. 

which, however, is restricted to the Pareto case 0 . The HP is 

another approach to estimate the positive shape (heavy-tailed,

 /1= ) distributions, the HP will be employed for the following 

reasons, easy implementation, asymptotic unbiasedness under large 
samples and the most efficient estimator of shape parameter  . Let 

nxxx  ...21 be the ordered statistics of random variables 

iid. The HP is defined by the set of points 

}11),,{( , −nkHk nk  where the HP estimator is provided 

by the formula:  
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For every choice of k , we obtain another estimator of  . The 

threshold   is choice from the plot of areas remain constant of the 

tail index (TI). However, this select is not always clear. We hope of 

finding a stationary area when estimates of TI do not change above a 

different value of threshold obtained. The results from the Hill 

estimator (HE) arebasedon the TI selection. The HP proved by [26], 

at another plot diagnostic to establish the TI, which HP for a range 

value of k  versus the TI , or k  against the corresponding threshold. 

Many authors were studied the statistical behavior and properties of 

the HE to extend the HE to the general case  . Recent 

generalizations of the HP for shape (  )are introduced by [ 

26,27]. As [29], extend the idea of Hill to derive a plug-in estimator 

by applying the hypothesis test on an accumulation of the log 

spacing's further considered a kernel-based goodness of fit statistic of 

the tail fit in the Pareto type tail case. Another approach which has 

been considered for the threshold selection is the dispersion index 

plot. 

5.4 Dispersion Index Plot (DIP) 

According to [30], is presented another plot to determine the 

threshold, namely the Dispersion Index Plot (DIP). The DIP is 

special useful when dealing with over high a threshold will be 

asymptotic by a generalize pareto distribution. Let X be a random 

variable as a Poisson distribution with parameter  That is: 

Nk
k

e
kXP

k

==
−

,)(


        16     

where   is the average of events. Moreover, a confidence interval 

can be computed by using a 2  test 
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Where  = )( IDIP  

The following is the last graphical plot based on the estimation of the 

model at a range of thresholds is call Quantail Quantail Plot (QQP). 

5.5 Quantail Quantail plot (QQ-Plot) 

the QQ-plot introduced by [30], as an alternative to the Hill plot. 

And, the HE is convergence to the slope of the line fitted to the upper 

TI of GPD, this estimator, will be defined by [15,32], can be 

represented by formula of  : 

( )

 



= =

=

+










+
−









+

−
+

=
k

i

k

i

k

i

nkni

qq

k

i

k

i
k

XX
k

i

1

2

1

2

1

:1:

1
ln

1
ln

lnln
1

ln

̂

  18                               

Some features were established by the authors, such as the 

asymptotic variance of the q-q estimator, weak consistency, and 

asymptotic normality. However, when the convergence is not 

completely perfect, the main advantage of using the q-q-estimator 

over the HE is that the residuals of the GPD plot provide information 

to figure out the bias in the estimates. The estimator is represented as 

being reasonable in the case of the bias of the standard estimator. 

6 Application on real data 

In this study, we use the ardieres data frame containing flood 

discharges over a period of 33 years of the Ardières river at 

Beaujeau. The source data is taken from the POT package in R by 

[30,33] and [35]. This data was used because it was used in some 

applications of extreme values, in addition to not obtaining real data 

for extreme value phenomena. First, we have to extract extreme 

events while preserving independent between events from the time 

series and select a suitable threshold such that asymptotic 

approximation in equation (1) is good enough.  

6.1 Descriptive Statistic 

Firstly, descriptive statistics summarizes the characteristics of a 

dataset to see the behavior of our data. Table-1, shows the results of 

some important descriptive statistic (min, max, mean, median and 

skewness). The results in Table-1 shows that the sample mean is 
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(4.19) and the median is (3.03) of the two statistics, the mean is 

greater than the median, this situation is also called positive 

skewness, The skewness of the data have a positive skewness (

078.4 =SK ), which suggests heavy tails. To make the 

comparison between distributions, first we performed tests to verify 

the symmetry (normality) or asymmetric and to ensure that on real 

data. For such verification we performed the Shapiro-Wilk test and 

ks.test to confirm the data does not follow a normal distribution. A 

positive value of skewness signifies a distribution with an 

asymmetric (not normal) tail extending out towards more positive 

and If your data are not symmetric, the mean and median are not 

equal (or similar). If the distribution of data is skewed to the right (or 

asymmetric), the median is often less than the mean, therefore, there 

is a strong reason to suggest the model of these data belong to heavy 

tail of GPD (long tail,𝛾 > 0). 

Table 1. Summary statistics for ardieres data 

Statistics Values 

Min 1.51 

Max 44.20 

Median 3.03 

Mean 4.19 

Skewness 4.78 

ks.test 0.24 (0.00**) 

shapiro.test 0.59 (0.00**) 

                  1% (P-value is in parentheses)  

6.2 Graphical Diagnostics (GD) 

To fit GPD of our data, it is first important to choose a threshold. 

Different graphical diagnostics have been suggested for choosing the 

threshold.  All the different graphical diagnostic presented in section 

5 have been used, and it is then possible to compare the different 

values of thresholds obtained. Fig-1, show five graphical diagnostics 

for selection the value of threshold, and help in choosing where to 

begin looking at thresholds. From Fig-1, TCP is on the top-left and 

right panel, medium left panel is MEP, while medium right panel is 

Hill plot, bottom-left panel is the DIP and bottom-right panel is QQ-

plot. It is not easy to show by eye, and the interpretation of these 

plots often requires a good deal of subjective judgment. 

 
Fig-1: Graphic diagnostic for the threshold choice to fit GPD and the 

vertical line indicates to the graphical threshold selection. 

 

In Fig-1, the results of graphical diagnostic are shown. According to 

Fig-1, TCP is shown on the top-left and right panel, we look to 

construct a horizontal line, that cuts through all the confidence bars 

and both modified scale and shape estimates seem to be constant or 

stability on the range ( 1310 == utou ). TCP for lower shape (

10=u ) and upper modified scale ( 13=u ) respectively for the 

data. Two thresholds ( 10=u & 13=u ) are shown by vertical 

dashed lines. The MEP in Fig-1 (Medium left panel), is linear on the 

range for thresholds between lower and upper straight lines as (

1310 == utou ) respectively. We look for approximate 

linearity whilst keeping in between the confidence bounds. Indeed, 

the MEP are vertical dashed lines mark these thresholds, since there 

is some indicate that the plot slightly about this threshold, and 

represented a threshold at about the 97th percentile of the data. From 

the Fig-1, we see that the MEP ultimately increases, so the TI of our 

data is positive. It seemingly indicates linearity from threshold 

10=u  to 13=u , but it is not easy to detect which point is an 

appropriate threshold. Based on linear property, all points between 

(10,13) may be good for threshold. From Fig-1, can be observed in 

the medium right panel is Hill plot. The vertical dashed lines, in 

combination with the connection HE, indicate that the HP is rather 

stable about the range threshold of (shape, 30.0.=  and 

16.0=  respectively). These two thresholds produce quite 

different tail extrapolations (shape, 30.0.=  and 16.0=  

respectively), but they are both in keeping with the overall 

recommendations for threshold selection using the HP. The HP, is 

inconsistencies are observed between the estimated shape parameter 

at this range and other thresholds of TCP and MEP. On the other 

hand, the DI plot is shown in Fig-1 (on bottom-left panel) does not 

quite stabilize in any particular region. FromFig-1, we realize that 

the DIP unstable in any especially area, making it extremely difficult 

to select a specific value for threshold value at this plot. A stable 

region in the DIP for threshold is (11,13) and the high dispersion 

present in the region of the high order statistics in the DIP. The Q-Q-

plots show in Fig-1 (on bottom-right panel) for empirical versus 

GPD model quantiles is seen. The qq-plots shows a rapid increase up 

to around the threshold 10=u  to 13=u  should be chosen, then 

levels off. A vertical line marks the location of our threshold. 

6.3 Fitting the GPD 

Based on Fig-1, five different thresholds are chosen for fitting the 

shape parameter estimation of GPD by using MLE, we get the 

estimates of shape parameters. Fitting distributions was made in 

different levels of threshold values of u  by MLE, and the goodness 

of fit tests are presented these results in the table-2 below.  

 Table 2. Estimated parameter of GPD by MLE for different 

graphical  
HP 
u=6 

HP 
u=3.6 

TCP,MEP 
DIP, QQP u=13 

TCP,MEP 
DIP,QQP 

u=10 

Type of 
Graphical methods 

49 133 13 10 Threshold 

0.14 0.40 0.03 0.07 Proportion Above 
0.86 0.60 0.97 0.93 Quantail 

0.16 0.30 0.57 0.50 Shape 

251.81 
(0.00*) 

572.9 
(0.00*) 

58.82 
(0.01*) 

112.29 
(0.00*) 

D-test 

3 4 1 2 Order 

255.81 
(0.00*) 

576.9 
(0.00*) 

62.82 
(0.01*) 

116.26 
(0.00*) 

AIC-test 

3 4 1 2 Order 

*(is P-value) 

 

Table-2, summarizes some estimation results of the shape parameter 
 via the MLE estimator at each four choices of threshold are 

summarized in the Table-2, and the results are stable for TCP, MEP 

and qq-plot except for HP. for comparison between diagnostic plots, 

to achieve a good model fit, traditionally, the threshold was chosen a 

suitable value of threshold before fitting GPD. The shape parameters 

estimated for both ( 1310 ==  to  at threshold ( 1310 == utou ) 

are very close, there is not a great difference between them and the 

shape parameter was always positive.  

6.4 Goodness-of-Fit Criteria (DT & AIC) 

According to goodness-of-fit test via DT and AIC. Both DT and AIC 

information criteria test are used to obtain whether or not the 

observed differences are consistent to find the most an appropriate 

threshold choice to fit the data by GPD. Note that the values of AIC 

for TCP, MEP are less than the values for the HP, QQP in all 

diagnostic plots. Therefore, TCP best fitted in all cases where the 

stability of TCP was higher. The estimated shape parameters are 

significantly different from threshold. In this case, the data for all the 

considered thresholds pass both goodness of fit tests and the tests are 

significant. Another way of checking the adequacy of GPD fit 

estimates via diagnosis plot.  
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6.4 Graphical Tools for Data Analysis 

After choosing our threshold, we create graphical diagnostic plots 

where we desire linearity amongst the fulfillment of other criteria to 

check the threshold's suitability. In Fig 2-5. some graphical method 

to check the suitable threshold of the GPD distribution are shown. 

Fig-2 and 3, show the fitted model at threshold 10 and 13, while Fig 

4 and 5 at threshold 3.6 and 6. 

 
Fig-2: Graphical tools of threshold selection via MRLP=10,DIP=10 

and TCP=10. 

 
Fig-3: Graphical tools of threshold selection via MEP=13, DIP=13 

and TCP=13 

 
Fig-4: Graphical tools of threshold selection via Hill=3.6. 

 
Fig-5: Graphical diagnostic plots of threshold selection via Hill=6. 

 

Depended on Fig-2, Both the probability plot (top left) and the q-q 

plot (top right) show the reasonability of the GPD fit. The RL curve 

(bottom left) asymptotes as a consequence of the positive shape. 

Finally, the correspond density estimate (bottom right) seems 

consistent with the histogram of the data. Consequently, all four 

diagnostics plots reduce to GPD model. Fig-2, shows diagnostic 

plots at GP distribution is best fit. On other hand, all diagnostics plot 

in Fig 2-5, seem to indicate a reasonable fit of the GPD to our data.  

7 Conclusion 

The problem of threshold selection estimating of long-tailed model is 

very important in many practical applied. In this study, we have 

presented a five graphical threshold selection method. Various 

diagnostics plots to evaluate the GPD fit are commonly used for 

selecting threshold, such five-plot including, Stability plot (SP) or 

Threshold Choice plot (TCP), Mean Excesses Plot (MEP), Hill plot 

(HP), Dispersion Index Plot (DIP) and Q-Q plot (QQP) respectively. 

These graphical methods are a diagnostic plot drawn before fitting 
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any model (GPD) to choose an appropriate value of threshold. In 

addition, we can use diagnostic plots, P-P plots, q-q plots and RL 

plot to select the best fit of GPD. All diagnostics seem to indicate a 

reasonable fit of the GPD to our data. Visually we can see a slight 

difference in the estimation of the threshold four of these graphical 

diagnostics (TCP, MEP, DI and QQP) share with same selecting 

threshold range (10,13. On the other hand, Hill graphical diagnostics 

differences among these graphical diagnostics. All depend on visual 

inspection to identify the threshold. The level over which linearity is 

evident might be used as a threshold level for various levels. If the 

model provides significantly different outcomes for different values. 

An important step in any strategy is selecting a threshold depending 

on the ME plot so that the plot is nearly linear above it. Threshold 

selection can be difficult, and parameter estimations might be 

affected by the threshold selection, particularly when real data is 

analyzed. It’s hard to determine the best threshold through using this 

method. The position of a stable zone in the HP and the significant 

dispersion present in the region of the upper-order statistics in the DI 

are quite difficult. The problems can occur when transfers from the 

GPD occur. The q-q-plot is an alternative to the HP. Although the 

HP seems to be less smother than the QQ-plot, problems can still 

occur when departures from the pareto distribution occur. There are 

some issues that would be taken into consideration, the first problem 

is how to deal with choosing the threshold value or the number of 

upper-order statistics required for the GPD by using an automated 

threshold selection instead of graphical diagnostics that require prior 

experience (or subjective) of their interpretation of plots. The second 

problem is how to find some modifications of these proposed in the 

literature based on smoothing and robustifying procedures and other 

diagnostic tests in order to select the best threshold of fit GPD model. 

Finally, all results of graphical diagnostics belonging to GPD under 

linear can be done nonlinear, so it would be recommended to have 

other practical applications to GPD under power. 
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