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ABSTRACT

When fitting the Generalized Pareto distribution (GPD), selecting an appropriate threshold value is
important for achieving an effective fit. The main objective of this study is to give five graphical
diagnostics for selecting GPD thresholds. The other objective of this study is to examine different
graphical methods based on the goodness-of-fit test. Maximum likelihood method was used to
estimate the shape of parameter. Finally, use flood data to compare five graphical diagnostics of
threshold selection for shape parameter estimate. The results show that, the four graphical diagnostics
(threshold choice plot, mean excesses plot, dispersion index plot and quantail quantail plot) yield the
same threshold range, with the exception of the Hill plot. On the other hand, threshold choice plot is
simple to identify the range of thresholds that should be stable to fit. When compared to other
graphical diagnostic, the GP distribution becomes valid because they demand too much subjectivity
and make it difficult to define a range threshold from the plots. In other words, graphical
diagnostics of the higher are an acceptable option for fitting the GPD model based on the goodness-
of-fit test. All statically analyses for the study are performed using R- statistical program.
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1. Introduction

The probability of rare flood and drought events is an important in
hydrology and other branches of high flow problem to estimate
parameters of distribution, a review of flood frequency analysis is
found in [1], see,[2] for floods, and [3,4] for droughts. For the
original theoretical development Generalized Pareto Distribution
(GPD), see [5,6] and for further developments and applications,
see[7]. The method of Peaks Over Thresholds (POT) has been used
in many fields, for example, applied to environmental data such as
rainfall, sea levels and modeling high flows by GPD distribution,
among others and a review is found in,[8,9]. The properties of the GP
stated by [10,11] to make the distribution a logical candidate for the
analysis of extreme events, and such practical problems are
addressed in [12]. To fit the GPD, there is the problem of threshold
choice. Several procedures for selection threshold value in the case
of POT modeling are given in the literature (e.g., [13]) suggest the
use of the Mean Excess Function (MEF). In, [14], outlined two
diagnostics for the choice of threshold: Mean Excesses Plot (MEP)
and Threshold Choice Plot (TCP). The shape and scale parameters
of the GPD can be estimated by several methods such as the ML
method, see,[13] and methods for estimating the GPD parameters
have been reviewed by [10], and established the asymptotic
normality and consistency of the MLE estimators. Various
approaches of numerical methods have been suggested and applied
by authors, for example, Square Error Method (SEM), by [15] and
automatic choice using shape parameter, by [16] and Automated
Threshold Selection Method (ATSM), by [17]. On the other hand,
graphical method, by [18]. Various literature discusses the problem
of threshold selection, and the best method is still to be found. The
outline of the present study report as follows: In section 2, the
background theoretical of GPD is described. Fitting the GPD is
introduced in Section 3. While Section 4, model adequacy is
provided. In section 5 is concerned with diagnostics plot with the
problem of choosing the best value of threshold, five graphical
diagnostics is introduced. Section 6, describes application on flood
data. Our conclusions and future work are given in section 7.

2 Generalized Pareto Distribution (GPD(y, 0))

The 2-parameter generalized Pareto (GP) distribution with scale and
the shape parameter (denoted, GP(O‘, }/) ) is the distribution of the
X =c(l-e7)/y where Y is a random variable with the

standard exponential distribution. GPD (&, ) has the distribution
function (p.d.f.) is:
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Where, o,y are the scale and shape parameter respectively. For,

y>0, 7y=0and ¥ <0, we have the usual GPD; a type II
GPD; and exponential distribution respectively. The GPD can be
extended by adding a location parameter 4 . The GPD(X;o,y)is
defined to be GPD (X — u; o, 7). And the Cumulative Distribution
Function (cdf) is:
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The p-quantile of the GPD(X;y, o) is:
. :{0[1-(1- p)1/y,if y#0
" |-ologl-p), ify=0 3

3 Fitting the GPD

After choice the value of threshold to estimate the GPD parameters
by MLE. Considering that the data X,.,, X Xpp @re known
sorted random sample from GPD(X; ;/,0') and the parameters for
the distribution are unknown, then the likelihood function of GPD
can be expressed as follows:
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The method of MLE works by finding the value for the parameters
that maximize the value of likelihood function. Equivalently, the log-
likelihood may be maximized on taking the logarithms of (4),

I(c,7;x) =-nlogo + (1—1/7)anlog(1—&) 5
i=1 o

The log-likelihood is derived from (5) as:
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The MLE solution is found via numerical routines or numerical
optimization method (i.e., Newton-Raphson method) are used to find
the MLE of ) and O For computational, see for more details,

[19,20].

4 Model adequacy
We can use hypothesis testing to select the best fit model of the data
over threshold. Therefore, we now implement two criteria to test if
the GPD is a reasonable for our flood dataset or not.
4.1 Deviance Test (DT)
Deviance test is a statistical test provides one objective criterion for
selecting among possible models. The null and the alternative
hypotheses, written as:

H,:»=0 versus H, : » >0
The first test presented can be found in [14]. The deviance statistic to
be used is given by:

DT =2{L,(My) - L (M)}~ 1 8
Where | (m,) and [ (v,) be the maximized values of the log-

likelihood for distribution under H0 . To accept exponential

distribution as H 1f : DT < ,(jyk . For details see [21]. Another

test that can be performed comes from Akaike information criterion
(AIC).
4.2 Akaike information criterion (AIC test)
In order to check a number of models, we perform tests
with Akaike information criterion (AIC), see [22,23]. The AIC test
is given by:

AIC =2nll(¢#) + 2i 9

Where Nl is the negative log likelihood and ¢ is parameter

distribution with | events. The goodness of fit is a first term of AIC
and the second term is penalizing model complexity. The model with
the smallest value for AIC is preferred. The AIC , DT can be
performed with package of POT and evd. in [30,31].

5 Graphical Diagnostics for Threshold Choice

Some graphics diagnostics should be introduced to select the value of
threshold. In this section, we will be introduced five diagnostics plot
to select the suitability threshold value to fit GPD. In,[14], outlined
the diagnostics for the choice of threshold. There are several popular
methods for choosing the suitable threshold, some of these are,
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numerical procedure, plotting methods and combinations between
them. Five diagnostic plot of threshold choice as follows:

5.1 Threshold Choice Plot (TCP)

Stability plot (SP) or Threshold Choice plot (TCP) is procedure for a
range of thresholds selection to fit the GPD. If the GPD is a suitable

fit for high a threshold £{y, then & > U, will be also follow a

GPD. The plotting (4,0") versus (14, f) together with
confidence interval for each of these plotting (see [14,30,34]), and to
select L, as the smallest value when the estimating remains stable
region. The stability plot shows the points given by:

(0"t 1 < X, YN0 (2, €) T 11 < X} 10

Where X . is the maximum of the observations x .

5.2 Mean Excesses Plot (MEP)

Another graphical method which is widely used to determine the
threshold is the mean excess plot (or shortly MEP), is a graphical
method for determining a d.f. F = The MEP was described by
[15,28,34] and used the mean excesses of the GP to select the best
threshold. The mean excesses plot is defined by:

(1) = B¢ — ! X = p) = 1

for & <1.
11

If the GPD is a suitable fit, the plot of €(z) against £, called
MEP should follow a straight line with intercept o, /1—7 and

slope  /1—y over threshold £ , it is mean that the data support
the GPD with a long-tailed (¥ > 0). Furthermore, , a horizontal
MEP (medium tailed, y is near 0) mean that exponentially model
while thin-tailed (;/-<O ), see,[16]. for a discussion of the
properties of this function. In practice, based on a sample size, N,
X(1 Xy peeey X, €(22) is estimated by its empirical mean. The
sample ME function is given by:

(i) = X% =) [ 310 - 4 .

Where | is a function of indicator H{x; — p}=1if gz < X, and

0 otherwise. To show the sample ME-plot, we plot the points as
follows:

(Xn—k:n’én(x 13
Where x __  denotes the (k -+1)" largest observation and where

é\n (X n—k:n ) may be

A 1 &
€. (X n—k:n) = Iz Xn—j+]_'n — Xn_kin
i—1

), 1<k =<n-1)

n-k:n
rewritten as:

14

If the data follows at GPD greater than some high value of threshold,
we will be expected the MEP to see linear in view of Eg-11. One
quite hard with the MEP, is very much dispersion, especially at
above thresholds, it will be hard to choose whether an observed
departure from linearity. Another graphical plot should be used to
select the value of threshold is the Hill plot (HP).

5.3 Hill plot (HP)

The most popular tail index estimator is the Hill plot (HP) by [25].

which, however, is restricted to the Pareto case y > O. The HP is

another approach to estimate the positive shape (heavy-tailed,
a=1/ ¥ ) distributions, the HP will be employed for the following

reasons, easy implementation, asymptotic unbiasedness under large
samples and the most efficient estimator of shape parameter y . Let
X; £ X, <... < X, be the ordered statistics of random variables
iid. The HP is defined by the set of points
{(k,H, ;)1 <k < n—1} where the HP estimator is provided
by the formula:

K
H k,n — lz log Xn—i+1,n —log Xn—k,n
k= , 15

For every choice of k , We obtain another estimator of » . The
threshold £ is choice from the plot of areas remain constant of the

tail index (TI). However, this select is not always clear. We hope of
finding a stationary area when estimates of Tl do not change above a
different value of threshold obtained. The results from the Hill
estimator (HE) arebasedon the Tl selection. The HP proved by [26],
at another plot diagnostic to establish the TI, which HP for a range

value of K versus the Tl ,or k against the corresponding threshold.
Many authors were studied the statistical behavior and properties of
the HE to extend the HE to the general case y € R . Recent

generalizations of the HP for shape (¥ € ‘R )are introduced by [

26,27]. As [29], extend the idea of Hill to derive a plug-in estimator
by applying the hypothesis test on an accumulation of the log
spacing's further considered a kernel-based goodness of fit statistic of
the tail fit in the Pareto type tail case. Another approach which has
been considered for the threshold selection is the dispersion index
plot.
5.4 Dispersion Index Plot (DIP)
According to [30], is presented another plot to determine the
threshold, namely the Dispersion Index Plot (DIP). The DIP is
special useful when dealing with over high a threshold will be
asymptotic by a generalize pareto distribution. Let X be a random
variable as a Poisson distribution with parameter 1 That is:
etk
—— ., ke N

Kk 16
where 2 is the average of events. Moreover, a confidence interval

can be computed by usinga 3 test

| = Z(ifa)IZ,M—l lef(l—a)/z,Mfl
“ M-1 "~ ™M-1

P(X = k) =

17
Where P(Dl el )=«

The following is the last graphical plot based on the estimation of the
model at a range of thresholds is call Quantail Quantail Plot (QQP).
5.5 Quantail Quantail plot (QQ-Plot)

the QQ-plot introduced by [30], as an alternative to the Hill plot.
And, the HE is convergence to the slope of the line fitted to the upper
Tl of GPD, this estimator, will be defined by [15,32], can be
represented by formula of ) :

K i
N ;Ink_'_l(lnxi:nilnxk«#lzn)
Yaa = « i 2 p i 2
Kk In — In
(i) (Zres) 18

Some features were established by the authors, such as the
asymptotic variance of the g-q estimator, weak consistency, and
asymptotic normality. However, when the convergence is not
completely perfect, the main advantage of using the g-g-estimator
over the HE is that the residuals of the GPD plot provide information
to figure out the bias in the estimates. The estimator is represented as
being reasonable in the case of the bias of the standard estimator.

6 Application on real data

In this study, we use the ardieres data frame containing flood
discharges over a period of 33 years of the Ardieres river at
Beaujeau. The source data is taken from the POT package in R by
[30,33] and [35]. This data was used because it was used in some
applications of extreme values, in addition to not obtaining real data
for extreme value phenomena. First, we have to extract extreme
events while preserving independent between events from the time
series and select a suitable threshold such that asymptotic
approximation in equation (1) is good enough.

6.1 Descriptive Statistic

Firstly, descriptive statistics summarizes the characteristics of a
dataset to see the behavior of our data. Table-1, shows the results of
some important descriptive statistic (min, max, mean, median and
skewness). The results in Table-1 shows that the sample mean is
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(4.19) and the median is (3.03) of the two statistics, the mean is
greater than the median, this situation is also called positive
skewness, The skewness of the data have a positive skewness (
SK =4.78>0 ), which suggests heavy tails. To make the
comparison between distributions, first we performed tests to verify
the symmetry (normality) or asymmetric and to ensure that on real
data. For such verification we performed the Shapiro-Wilk test and
ks.test to confirm the data does not follow a normal distribution. A
positive value of skewness signifies a distribution with an
asymmetric (not normal) tail extending out towards more positive
and If your data are not symmetric, the mean and median are not
equal (or similar). If the distribution of data is skewed to the right (or
asymmetric), the median is often less than the mean, therefore, there
is a strong reason to suggest the model of these data belong to heavy
tail of GPD (long tail,y > 0).

Table 1. Summary statistics for ardieres data

Statistics Values
Min 151
Max 44.20

Median 3.03

Mean 4.19
Skewness 4.78

ks.test 0.24 (0.00**)
shapiro.test 0.59 (0.00**)

1% (P-value is in parentheses)

6.2 Graphical Diagnostics (GD)

To fit GPD of our data, it is first important to choose a threshold.
Different graphical diagnostics have been suggested for choosing the
threshold. All the different graphical diagnostic presented in section
5 have been used, and it is then possible to compare the different
values of thresholds obtained. Fig-1, show five graphical diagnostics
for selection the value of threshold, and help in choosing where to
begin looking at thresholds. From Fig-1, TCP is on the top-left and
right panel, medium left panel is MEP, while medium right panel is
Hill plot, bottom-left panel is the DIP and bottom-right panel is QQ-
plot. It is not easy to show by eye, and the interpretation of these
plots often requires a good deal of subjective judgment.

mmmmm comsagatpgi Y ccesoussovansuttif HL
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100 -40 20
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Threshold

Mean Excess Plot 10.80 500 375 275 214 170
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the MEP are vertical dashed lines mark these thresholds, since there
is some indicate that the plot slightly about this threshold, and
represented a threshold at about the 97th percentile of the data. From
the Fig-1, we see that the MEP ultimately increases, so the Tl of our
data is positive. It seemingly indicates linearity from threshold
u =210 to u =213, but it is not easy to detect which point is an
appropriate threshold. Based on linear property, all points between
(10,13) may be good for threshold. From Fig-1, can be observed in
the medium right panel is Hill plot. The vertical dashed lines, in
combination with the connection HE, indicate that the HP is rather
stable about the range threshold of (shape, y =.0.30 and

» = 0.16 respectively). These two thresholds produce quite
different tail extrapolations (shape, » =.0.30 and y = 0.16

respectively), but they are both in keeping with the overall
recommendations for threshold selection using the HP. The HP, is
inconsistencies are observed between the estimated shape parameter
at this range and other thresholds of TCP and MEP. On the other
hand, the DI plot is shown in Fig-1 (on bottom-left panel) does not
quite stabilize in any particular region. FromFig-1, we realize that
the DIP unstable in any especially area, making it extremely difficult
to select a specific value for threshold value at this plot. A stable
region in the DIP for threshold is (11,13) and the high dispersion
present in the region of the high order statistics in the DIP. The Q-Q-
plots show in Fig-1 (on bottom-right panel) for empirical versus
GPD model quantiles is seen. The qg-plots shows a rapid increase up
to around the threshold y =10 to u =13 should be chosen, then
levels off. A vertical line marks the location of our threshold.

6.3 Fitting the GPD

Based on Fig-1, five different thresholds are chosen for fitting the
shape parameter estimation of GPD by using MLE, we get the
estimates of shape parameters. Fitting distributions was made in
different levels of threshold values of U by MLE, and the goodness
of fit tests are presented these results in the table-2 below.

Table 2. Estimated parameter of GPD by MLE for different

graphical
Type of TCP,MEP TCP,MEP HP HP
Graphical methods DIP,QQP DIP, QQP u=13 u=3.6 u=6
u=10
Threshold 10 13 133 49
Proportion Above 0.07 0.03 0.40 0.14
Quantail 0.93 0.97 0.60 0.86
Shape 0.50 0.57 0.30 0.16
D-test 112.29 58.82 572.9 251.81
(0.00*) (0.01%) (0.00%)  (0.00%)
Order 2 1 4 3
AlC-test 116.26 62.82 576.9 255.81
(0.00*) (0.01%) (0.00%)  (0.00%)
Order 2 1 4 3

L]
alpha (C1, p =0.95)

Mean Excess:
510

T T T
10 15 20 15 50 85 125 170 215 260 305

Threshold: u Order Statistics

Dispersion Index Plot
T T T

10 20 30 40
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= N
o

ot -

Vel ?

T T T =
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06 12 18
0248
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Exponertial Quartiles

o
=

Threshold

Fig-1: Graphic diagnostic for the threshold choice to fit GPD and the
vertical line indicates to the graphical threshold selection.

Ordered Data

In Fig-1, the results of graphical diagnostic are shown. According to
Fig-1, TCP is shown on the top-left and right panel, we look to
construct a horizontal line, that cuts through all the confidence bars
and both modified scale and shape estimates seem to be constant or
stability on the range (u =10 to u =13). TCP for lower shape (
u =10) and upper modified scale (u =13) respectively for the
data. Two thresholds (u =10 & u =13) are shown by vertical
dashed lines. The MEP in Fig-1 (Medium left panel), is linear on the
range for thresholds between lower and upper straight lines as (
u=10tou =13 ) respectively. We look for approximate

linearity whilst keeping in between the confidence bounds. Indeed,

*(is P-value)

Table-2, summarizes some estimation results of the shape parameter
¥ via the MLE estimator at each four choices of threshold are

summarized in the Table-2, and the results are stable for TCP, MEP
and qqg-plot except for HP. for comparison between diagnostic plots,
to achieve a good model fit, traditionally, the threshold was chosen a
suitable value of threshold before fitting GPD. The shape parameters
estimated for both (, =10 to y =13 at threshold (y =10 to u=13)

are very close, there is not a great difference between them and the
shape parameter was always positive.

6.4 Goodness-of-Fit Criteria (DT & AIC)

According to goodness-of-fit test via DT and AIC. Both DT and AIC
information criteria test are used to obtain whether or not the
observed differences are consistent to find the most an appropriate
threshold choice to fit the data by GPD. Note that the values of AIC
for TCP, MEP are less than the values for the HP, QQP in all
diagnostic plots. Therefore, TCP best fitted in all cases where the
stability of TCP was higher. The estimated shape parameters are
significantly different from threshold. In this case, the data for all the
considered thresholds pass both goodness of fit tests and the tests are
significant. Another way of checking the adequacy of GPD fit
estimates via diagnosis plot.
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6.4 Graphical Tools for Data Analysis Probability Plot Quantile Plot
After choosing our threshold, we create graphical diagnostic plots
where we desire linearity amongst the fulfillment of other criteria to o | 2 °
check the threshold's suitability. In Fig 2-5. some graphical method s 7 - 5
to check the suitable threshold of the GPD distribution are shown. ] - 2 ™7
Fig-2 and 3, show the fitted model at threshold 10 and 13, while Fig = 3 A £ 8H o
4 and 5 at threshold 3.6 and 6. - o |
= B e m— T T T T T T
Probability Plot Quantile Plot 00 02 04 06 08 10 5 10 15 20 25 30
_ - Empirical Model
g -
_ w B Return Level Plot Density Plot
o L o |
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Return Level Plot Density Plot Fig-4: Graphical tools of threshold selection via Hill=3.6.
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Retum period (years X
P (yeers) Empirical Model
Fig-2: Graphical tools of threshold selection via MRLP=10,DIP=10
and TCP=10.
Return Level Plot Density Plot
Probability Plot Quantile Plot
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Fig-3: Graphical tools of threshold selection via MEP=13, DIP=13
and TCP=13

Return period (years) X
Fig-5: Graphical diagnostic plots of threshold selection via Hill=6.

Depended on Fig-2, Both the probability plot (top left) and the g-q
plot (top right) show the reasonability of the GPD fit. The RL curve
(bottom left) asymptotes as a consequence of the positive shape.
Finally, the correspond density estimate (bottom right) seems
consistent with the histogram of the data. Consequently, all four
diagnostics plots reduce to GPD model. Fig-2, shows diagnostic
plots at GP distribution is best fit. On other hand, all diagnostics plot
in Fig 2-5, seem to indicate a reasonable fit of the GPD to our data.

7 Conclusion

The problem of threshold selection estimating of long-tailed model is
very important in many practical applied. In this study, we have
presented a five graphical threshold selection method. Various
diagnostics plots to evaluate the GPD fit are commonly used for
selecting threshold, such five-plot including, Stability plot (SP) or
Threshold Choice plot (TCP), Mean Excesses Plot (MEP), Hill plot
(HP), Dispersion Index Plot (DIP) and Q-Q plot (QQP) respectively.
These graphical methods are a diagnostic plot drawn before fitting
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any model (GPD) to choose an appropriate value of threshold. In
addition, we can use diagnostic plots, P-P plots, g-q plots and RL
plot to select the best fit of GPD. All diagnostics seem to indicate a
reasonable fit of the GPD to our data. Visually we can see a slight
difference in the estimation of the threshold four of these graphical
diagnostics (TCP, MEP, DI and QQP) share with same selecting
threshold range (10,13. On the other hand, Hill graphical diagnostics
differences among these graphical diagnostics. All depend on visual
inspection to identify the threshold. The level over which linearity is
evident might be used as a threshold level for various levels. If the
model provides significantly different outcomes for different values.
An important step in any strategy is selecting a threshold depending
on the ME plot so that the plot is nearly linear above it. Threshold
selection can be difficult, and parameter estimations might be
affected by the threshold selection, particularly when real data is
analyzed. It’s hard to determine the best threshold through using this
method. The position of a stable zone in the HP and the significant
dispersion present in the region of the upper-order statistics in the DI
are quite difficult. The problems can occur when transfers from the
GPD occur. The g-g-plot is an alternative to the HP. Although the
HP seems to be less smother than the QQ-plot, problems can still
occur when departures from the pareto distribution occur. There are
some issues that would be taken into consideration, the first problem
is how to deal with choosing the threshold value or the number of
upper-order statistics required for the GPD by using an automated
threshold selection instead of graphical diagnostics that require prior
experience (or subjective) of their interpretation of plots. The second
problem is how to find some modifications of these proposed in the
literature based on smoothing and robustifying procedures and other
diagnostic tests in order to select the best threshold of fit GPD model.
Finally, all results of graphical diagnostics belonging to GPD under
linear can be done nonlinear, so it would be recommended to have
other practical applications to GPD under power.
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