

مجلة العلوم البحثة والتطبيقية

Journal of Pure & Applied Sciences

www.Suj.sebhau.edu.ly ISSN 2521-9200 Received 15/03/2019 Revised 07/10/2019 Published online 15/10/2019

On faintly g- cleavability (Splittability)

Ghazeel Almahdi Jalalah

Department of Mathematics, Faculty of Education, Sirte University, Libya

Corresponding author: gjellala@yahoo.com

Abstract Some properties and basic definitions of a new class of functions called faintly g-continuous functions are introduced [7]. In this paper we studied the concept of cleavability over some special topological spaces as θ - T_k , g- T_k spaces(k=1,2), GO- compact space, θ - compact space, GO- connected space and θ - connected space.

Keywords: faintly *g*- point wise cleavability, faintly *g*- cleavability, faintly *g*-absolutely cleavability.

ا**لملخص** بعض الخواص والتعريفات الاساسية لفصل جديد من الدوال يسمى :faintly g -continuous functions. و قد تم تقديمه و

دراسته [7] و في هذا البحث قمنا بدارسة مفهوم الانشطار باستخدام هذه الدوال على بعض الفضاءات التبولوجية الخاصة التالية:

 θ - T_k , g- T_k spaces (k=1,2), GO- compact space, θ - compact space, GO- connected space and θ - connected space.

الكلمات المفتاحية: انشطار - g faintly النقطى ، انشطار - faintly ، انشطار - g faintly المطلق .

1- Introduction and Preliminaries:

Different types of cleavability (originally named splitability) of topological spaces where introduced by Arhangel'skii [1]. as following :

A topological space X is said to be cleavable over a

class of topological spaces \mathcal{P} if for $A \subset X$ there

exists a continuous mapping $f: X \to Y \in \mathcal{P}$ such that

 $f^{-1}f(A) = A, f(X)=Y.$

Throughout this paper (X, τ) and (Y,σ) represent topological spaces on which no separation axioms are assumed unless otherwise mentioned. The complement of g-closed set is called g-open. The family of all g-open sets of (X, τ) is denoted by GO(X). A point $x \in X$ is called a θ -cluster point of A if Cl(A) \cap A $\neq \emptyset$ for every open set A of X containing x. The set of all θ -cluster points of A is called the θ -closure of A and is denoted by Cl_{θ} (A). If A = Cl_{θ} (A), then A is said to be θ -closed The complement of θ -closed set is said to be θ -open.

Definition 1.1

A topological space (X, τ) is said to be:

(i) $g -T_1$ [5] (resp. $\theta -T_1$) if for each pair of distinct points x and y of X, there exists g-open (resp. θ - open) sets U and V containing x and y, respectively such that $y \notin U$ and $x \notin V$.

(ii) $g -T_2$ [4] (resp. $\theta -T_2$ [7]) if for each pair of distinct points x and y in X, there exists disjoint g

-open (resp. θ -open) sets U and V in X such that $x \in U$ and $y \in V$.

Definition 1.2

A topological space (X, τ) is said to be GOcompact[7] (resp. θ – compact [2]) if each cover of X by **g** -open (resp θ -open) has a finite subcover.

Definition 1.3[3]

A topological space (X, $\boldsymbol{\tau}$) is said to be GO-connected

if X cannot be written as a disjoint union of two nonempty g-open sets.

Definition 1.4[6]

A function $f : (X, \tau) \to (Y, \sigma)$ is said to be: faintly g - continuous if $f^{-1}(V)$ is g -open in X for every θ -open set V of Y.

Theorem 1.1[6]

For a function $f: (X, \tau) \to (Y, \sigma)$, the following statements are equivalent:

(1) f is faintly g-continuous;

(2) $f^{-1}(F)$ is g -closed in X for every θ -closed subset F of Y;

(3) $f: (X, \tau) \to (Y, \sigma)$ is *g*-continuous.

Theorem 1.2[6]

Every g-continuous function is faintly *g*-continuous.

2- faintly g – cleavability Definition 2.1

A topological space X is said to be faintly gcleavable over a class of spaces \mathcal{P} if for any subset A of X, there exists a faintly g-continuous mapping $f: X \to Y \in \mathcal{P}$, such that $f^{-1}f(A) = A$ and

f(X)=Y.

Definition 2.2

A topological spaces X is said to be a pointwise faintly g -cleavable over a class of spaces \mathcal{P} . if for every point

 $x \in X$ there exists a faintly g continuous mapping $f: X \to Y \in \mathcal{P}$, such that $f^{-1} f(x) = \{x\}$.

Definition 2-3

The faintly g- cont. func. $f: X \to Y \in \mathbb{P}$ Is to be faintly g- open (closed) point wise cleavability if f is an injective and open(closed) respectively.

Definition 2.4

A topological space **X** is said to be absolutely faintly g- cleavable over a class of spaces \mathcal{P} , if for any subset **A** of **X**, there exists an injective faintly g-continuous mapping $f: X \to Y \in \mathcal{P}$, such that $f^{-1}f(A)=A$. and if \mathcal{P} is the class of all spaces, we shall say that **X** is absolutely faintly g - cleavable over \mathcal{P} . If f is an open

(closed)faintly g continuous mapping , we shall say that X is open (closed) absolutely faintly g cleavable over \mathcal{P} respectively.

Proposition 2.1

Let X be an open faintly g - point wise cleavable over a class of θ - T_1 spaces \mathcal{P} , then X is g - T_1 -space.

Proof:

Let $x \in X$, then there exists a θ -T₁-space Y and a faintly g - continuous mapping $f:X \to Y$ $\in \mathcal{P}$ such that $f^{-1}f(x) = \{x\}, f^{-1}f(x) = \{x\}$. This implies mapping $f:X \to Y \in \mathcal{P}$ such that $f^{-1}f(x) = \{x\}, f^{-1}f(x) = \{x\}$. This implies that for every $y \in X$ with $x \neq y$, we. have $f(x) \neq f(y)$. Since Y is θ - T_1 space, so there exist

two θ - open sets U and V such that $f(x) \in U$, $f(y) \notin U$ and $f(y) \in V$, $f(x) \notin V$. then $f^{-1}f(x) \in f^{-1}(U)$,

 $f^{-1}f(x) \notin f^{-1}(V)$. $f^{-1}f(y) \notin f^{-1}(U)$ and

 $f^{-1}f(y) \in f^{-1}f(V)$, This implies that $x \in f^{-1}(U)$,

y ∉ $f^{-1}(U)$ and y ∈ $f^{-1}(V)$, $x ∈ f^{1-}(V)$ By a faintly g - continuity of f, $f^{-1}(U)$, $f^{-1}(V)$ are g- open sub sets in X. Hence X is g- T_1 -space.

Proposition 2.2.

Let X be an open faintly g - pointwise cleavable over a class of θ - T_2 spaces \mathcal{P} , then X is g - T_2 space.

Proof:

Let $x \in X$, then there exists a θ - T_2 space Y and an open faintly g -continuous mapping $f: X \rightarrow Y \in \mathcal{P}$ such that

 $f^{-1}f(x) = \{x\}$. This implies that for every $y \in Y$ with $x \neq y$, we have $f(x) \neq f(y)$. Since Y is a θ - T_2 space, so there exist two disjoint θ -open sets Uand V such that $f(x) \in U$, $f(y) \in V$ then $f^{-1}f(x) \in$ $f^{-1}(U)$, $f^{-1}f(y) \in f^{-1}(V)$, this implies that $x \in f^{-1}(U)$, $y \in f^{-1}(V)$, since f is a faintly g-continuous, so $f^{-1}(U)$, $f^{-1}(V)$ are g- open sets of X and

$$\boldsymbol{f}^{-1}(\boldsymbol{U}) \bigcap \boldsymbol{f}^{-1}(\boldsymbol{V}) = \boldsymbol{f}^{-1}(\boldsymbol{U} \bigcap \boldsymbol{V}) = \boldsymbol{f}^{-1}(\boldsymbol{\varnothing}) = \boldsymbol{\varnothing}$$

then X is $g - T_2$ -space.

Proposition 2.3.

Let **X** be a GO- compact space is an open faintly **g**- absolutely cleavable space over a class of spaces \mathcal{P} , then **Y** is $\boldsymbol{\theta}$ - compact space.

Proof:

Suppose $\{V_i\}_{i\in I}$ be any θ -open cover of Y, since X is an open faintly g- cleavable, so there exists an open faintly g- continuous mapping $f:X \to Y \in \mathcal{P}$, such that $f^{-1}f\{f^{-1} \{V_i\}_{i\in I}\} = f^{-1}\{V_i\}_{i\in I}$ since f is an open faintly g- continuous, then $f^{-1}\{V_i\}_{i\in I}$ is a g-open cover of X but X is g- compact, so there exists a finite sub cover{ $\{f^{-1}(V_1), ..., f^{-1}(V_n)\}$ of X, such that

$$\mathbf{x} \subset \bigcup_{i=1}^{n} \{\mathbf{f}^{-1}(\mathbf{V}_{i})\}$$
, since $\mathbf{f}\mathbf{f}^{-1}(\mathbf{V}_{i}) = \mathbf{V}_{i}$,

So $\{V_1, ..., V_n\}$ is a finite sub cover of **Y**. Therefore **Y** is a **\theta** compact space.

Proposition 2.4.

Let X be a a GO- connected space is an open faintly g- cleavable space over a class of spaces \mathcal{P} , then Y is a connected space.

Proof:

Suppose V is not connected space , then $V = V_1 \bigcup V_2$, where V_1 , V_2 are disjoint non empty

open sets of Y , then there exists an open faintly g - continuous mapping $f\colon X\to Y\in\mathcal{P}$ such that $f^{-1}\{f^{-1}(V_1)\}=f^{-1}(V_1)$

 $f^{-1}f\{f^{-1}(V_2)\} = f^{-1}(V_2) \text{ , since } Y = V_1 \bigcup V_2 \text{ ,}$ then $f^{-1}(Y) = f^{-1}(V_1 \bigcup V_2) \Longrightarrow X = f^{-1}(V_1) \bigcup f^{-1}(V_2)$

,and $f^{-1}(V_1)$, $f^{-1}(V_2)$ are disjoint nonempty

subsets of X. Since V_i is open and closed, V_i is **\theta**-open sets for each i = 1, 2, since **f** is a faintly **g** - continuous, then

 $f^{-1}(V_i) \in GO(X)$. There for X is not GO-connected. . This is a contradiction and hence **Y** is connected space

conclusion

In this paper we have studied the following three cases :

1) If \mathcal{P} is a class of θ - T_k spaces with, certain properties and if \mathbf{X} is a faintly g - pointwise cleavable over \mathcal{P} , then \mathbf{X} is $g - T_k$ -space (k=1, 2), i.e. ($X \notin \mathcal{P}$)

2) If \mathcal{P} is a class of a GO- compact space with certain properties and if **X** is a faintly g-absolutely cleavable over \mathcal{P} , then **Y** is θ - compact space. i.e ($Y \notin \mathcal{P}$)

3) If \mathcal{P} is a class of a GO- connected space with certain properties and if **X** is a faintly g- cleavable over \mathcal{P} , then **Y** is θ - connected space. i.e ($Y \notin \mathcal{P}$)

References

- [1]- Arhangel'skii,A.V and Cammaroto,F ,On different types of cleavability of topological spaces , pointwise, closed ,open and pseudo open , Journal of Australian Math,Soc(1992).
- [2]- K. Balachandran, P. Sundaram and H. Maki, On Generalized continuous functions in topological spaces, Mem. Fac. Sci. Kochi Univ., 12(1991), 5-13.
- [3]- C. Boonpok, Preservation theorems concerning g-Hausdorff and rg- Hausdorff spaces, Naresuam Univ. J., 11(3)(2003), 75-77.
- [4]- M. Caldas, On g-closed sets and g-continuous functions, Kyungpook Math. J., 3(2)(1993), 205-209.
- [5]- M. Caldas and S. Jafari, On g-US spaces, Stus. Cerc. Mat., 14(2004), 13-20.
- [6]- N. Karthikeyan , N. Rajesh, On faintly gcontinuous functions, International Journal of Pure and Applied Mathematics. Chennai, 600119, Tamilnadu, India ,Volume 92 No. 5 2014, 777-784
- [7]- S. Sinharoy and S. Bandyopadhyay, On θcompletely regular and locally-H-closed spaces, Bull. Cal. Math. Soc., 87(1995), 19-26.