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Differential equations form the foundation of scientific theories that address numerous real-world
physical challenges. Numerical methods enable the resolution of complex problems through
relatively simple operations. A significant advantage of numerical methods, compared to analytical
methods, is their ease of implementation on modern computers, allowing for quicker solutions.
Galerkin's method belongs to a broader category of numerical techniques. Additionally, wavelet
analysis represents a promising domain within applied and computational research. This paper
establishes a wavelet-based Galerkin method for numerically solving differential equations, utilizing
Fibonacci wavelets as trial functions. The proposed method yields results comparable to existing
techniques and provides solutions that closely approximate exact answers for certain problems,
thereby demonstrating its effectiveness and accuracy.
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1. Introduction:

Numerous challenges involving various linear and nonlinear
problems exist within the fields of science and engineering.
Specifically, second-order differential equations, which are subject
to a variety of boundary conditions, can be addressed through either
analytical or numerical methods. In the fields of engineering science
and applied mathematics, numerical simulation has emerged as a
vital instrument for modeling physical phenomena, especially in
instances where analytical solutions are either unavailable or
exceedingly difficult to derive.

The literature on differential equation resolution reveals that many
researchers have sought to achieve higher accuracy in a timely
manner by employing numerical methods. It is important to note that

analytical solutions to such boundary value problems are rarely
attainable. A range of methods for the numerical solution of
differential equations is documented in existing literature [1-4].
Additionally, some numerical methods for solving different types of
such problems using Fibonacci wavelets are available in the literature
[5-71.

Wavelets have emerged as independent concepts across various
disciplines, including mathematics, quantum physics, electrical
engineering, and seismic geology. A key principle in approximation
theory is the representation of a smooth function as a series expansion
utilizing orthogonal polynomials. Currently, the exploration of
wavelet function bases is regarded as a promising alternative to
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traditional piecewise polynomial trial functions in the finite element
analysis of differential equations. The Galerkin method is highly
esteemed in applied mathematics for its efficiency and practicality
[8-9]. The Galerkin method utilizing wavelets offers significant
advantages over traditional finite difference and finite element
methods, resulting in extensive applications across various fields of
science and engineering. To some degree, the wavelet approach
serves as a formidable alternative to the finite element method.
Furthermore, the wavelet technique presents an effective alternative
for the numerical solution of differential equations.

This research introduces the wavelet-based Galerkin method for
numerically solving differential equations utilizing Fibonacci
wavelets (FWGM). The methodology entails expressing the solution
in terms of Fibonacci wavelets, which are defined by unknown
coefficients. By exploiting the characteristics of Fibonacci wavelets
alongside the Galerkin method, we can ascertain these unknown
coefficients, thereby achieving the numerical solution of the
differential equations.

The organization of the paper is delineated as follows: Section 2
discusses Fibonacci wavelets and their application in function
approximation. Section 3 examines the wavelet-based Galerkin
method using Fibonacci wavelets. Section 4 offers a numerical
example. Finally, Section 5 provides a discussion of the conclusions
drawn from the research undertaken.

2. Fibonacci wavelets and Function Approximation:
2.1. Fibonacci Polynomials: The general definition of Fibonacci
polynomials [10 - 11] is as follows:

1, m=20
Fp(X) = {x m=1 (2.1)

xlfm_l(x) + Fy_ 2(x),m > 1

Additionally, these polynomials can be expressed in the form of

powers as shown:
O(m_‘ ']xm "W ms o0 @2
1

Also, if Fp(x) , m = 0,1,...M — 1 are Fibonacci
polynomials, then

[ (3)F0 (1) x =

TYNIE;

'Em x) = i

(23)

R N ) TS

2.2. Fibonacci Wavelets: Fibonacci wavelets [10-11] are defined in
the following manner:

s |3
s |3

—

% Ifm(Zk_lx - ﬁ) ﬁ e 3 + 1
) = X )
Ynm() = M’m k-1 oK1 (2.4)
0, otherwise,
L 1 . .
Inwhich F (X) = —— Fp (x) with
\l“m

Wiy (x) = }{Ifm (x)}zdx

0
where Wy, , for m=0,1,2,...,M —1are obtained by Eq. (2.3), and
M denotes the order of the Fibonacci polynomials and

,n:1,2,...,2k_1,k e N.

For instance, for k = 1 and M = 3, the Fibonacci wavelet bases
as given below:

1//1,0()() =1,

‘//1,1()() = Vlgx )

) 1F1 2
o = L2+ )
12 o\ 7
and so on.

2.3. Function Approximation:

Let's assume y(X) e L2 [O , 1) can be expressed using Fibonacci

wavelets in the following manner:
e [e’e)

y(x) = nélméocnﬁm"’nym(x) (25)
By cutting off the infinite series mentioned above, we
k-1
2 M -1
y(x) = Z z Cnvml//n,m(x) (2.6)

n=1 m=0

3. Method of Solution:
Consider the differential equation of the form,

'+ ay + gy = f(x) (3.1)
With boundary conditions y(O) = a, y(l) = b 3.2)

Here, « & [ are constants, while f (x) is a continuous function.
Write the Eq. (3.1) as

RX) =y + ay + By - f(x) (3.3)
where R (x) is the residual of the Eq. (3.1) and it is zero the exact
solution is known and the boundary conditions are met.
The trial series solution of Eg. (3.1), y(x) defined as [0, 1)

satisfies the specified boundary conditions and can be extended to a
modified Fibonacci wavelet with unknown parameters as follows:

k-1m -1
Cn,m‘/’n,m(x) (34)

X) = > >
y() n=1 m=0
where ¢, n,'s are unknown coefficients and are to be

determined.

The accuracy of the solution is improved by opting for higher degree
Fibonacci wavelet polynomials. To obtain the values of the second
derivative of Eq. (3.4), one must differentiate it twice w.r.t. x and

substitute these values y(x), y'(x) , y"(x) in Eq. (3.3). The
unknown parameters c, ,;,'s can be determined by choosing

weight functions as the assumed basis elements and conducting
integration on the boundary values, along with the residual, to ensure
that it equals zero [12].

ie. iwl,m(X)R(X)dx ~o.m=0,1,2, ..

This enables us to formulate a system of linear algebraic equations.
By solving this system, we can identify the unknown parameters.
Following this, we can substitute these parameters into the trial
solution, referred to as Eq. (3.4), which allows us to derive the
numerical solution for Eq. (3.1).

In order to assess the precision of the FWGM concerning the test
problems, we make use of error known as the maximum absolute
error. The formula for calculating the maximum absolute error is as
follows:

Emax = max| Yy (X)g = Y(X)p |,
where y(x)e and y(x), are exact and numerical solutions
respectively.

4. Numerical lllustration:
Problem 4.1 First, consider the differential equation [10],
y + y =-x, 0 <x <1 4.1)

With boundary conditions: y(O) =0, y(l) = 0 (4.2)
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Eq. (4.1) should be implemented according to the method described

in section 3:

Using Eq. (4.1), the residual is given as:

R(x) =y

Then, the weight function W(X) =

+ X (4.3)

x(1 - x) should be

+ 0y

selected for Fibonacci wavelet bases in order to meet the specified

boundary conditions Eq. (4.2),

i.e. w(x) =

wl,O(X) = V’l,O(X)X x(lfx) =

UJ]_,]_(X) =

1
U o () =y () x x(1-x) = A

The trail solution of Eq. (4.1) for
by

'/’1,1(X) x x(l — x) =

w(x) x (//(X)

x(lfx)

(\/gx)x(l—x)

15 2

—(1 + x7)x(1-x

( )x(1- %)
k = 1landm = 2 isgiven

y() = ¢ gy o(x) + epqugg(x) + oo o(x)

Now, Eq. (4.4) becomes

(4.4)

y(x) = cl‘o{x(l— X))+ 11 {(\/Ex)x(l— x)} +

1E(qu
1.2 2\7

Differentiating Eq. (4.5) w.r.t.

(4.5)
x2) x(1- x)}

x twice and put the values of

Yy, y" inEq. (4.3) then we obtain the residual of Eq. (4.1). If the
weight functions equivalent the basis functions in the trail solution,

we can then proceed to consider
residual method:

the following using the weighted
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Fig. 1: Comparison of the numerical solution with the exact
solution for problem 4.1.

Problem 4.2 Next, another differential equation [13],

<x<1 4.8)

4.9)

y' — 7r2y = —272‘25in(7Z'X), 0

With boundary conditions: y(O) =0, y(l) =0

In accordance with section 3 and the previous problem, we find the
values of ¢; j = 6.7181 ¢; ; = 2.0894 and ¢; , = —4.9480 .

Substituting these values into Eq. (4.5), we obtain the numerical
solution. Table 2 compares the numerical solution to the absolute
errors and the figure 2 represents the numerical solution to the exact

sin(;r x) .

Table 2: Comparison of numerical solution and absolute error with
the exact solution of problem 4.2
Numerical solution Exact solution Absolute error

solution of Eq. (4.8) as y(x) =

1 -
(j)‘”l,j(x)R(X)dX = o0,] =20,12 (4.6)
For j = 0,1, 2 inEq.(46),
1
ie. éwl,O(X)R(X)dX = o0 @7

1
éwl,l(X)R(X)dX = o
(})M’Z(X)R(X)dx - o0

Based on Eq. (4.7), a set of algebraic equations involving unknown

coefficients such as ¢; 5 , ¢y 1 and ¢; , . Solving this system,

obtained the values for cly0 = 0.2062 |, C1,1 = 0.1089 and

¢ o = —0.0240 .

Once these values are found, they can be

substituted into Eq.
A comparison of the numerical

(45) to get

the numerical solution.
solution and absolute errors

is presented in Table 1, and the numerical solution and the exact

solution of Eq. (4.1) y(x) =

sin(x)

sin(1)

— X inFigure 1.

Table 1: Comparison of numerical solution and absolute error with
the exact solution of problem 4.1

Numerical solution

Exact solution

Absolute error

X " Ref[13] FWGM Ref[13] FWGM
01 00186708 00186588 00186420 2885 1.70e-5
02 00361655 00361048 00360977  6.78e-5  7.10e-6
03 00512714 00511642 00511948  7.66e-5 3.10e-5
04 00628316 00627351 00627829  4.87e-5  4.80e-5
05 00697452 0.0697491  0.0697470  184e-6  2.10e-6
06 00709672 00709857 00710184 5125  3.30e-5
07 00655087 0.0655327  0.0655851  7.64e-5  5.20e-5
08 00524367 00525260  0.0525025  6.58e-5  2.40e-5
09 00308742 0.0309247 00309019  2.77e-5  2.30e-5

Ref[13] FWGM Ref[13] FWGM
0.1 0.310207 0.3079992 0.309016 1.19e-3  1.02e-03
0.2 0.589551 0.5880739 0.588772 7.7%-4  7.00e-04
0.3 0.809478 0.8094184 0.809016 4.62e-4  4.00e-04
0.4 0.949592 0.9515192 0.951056 1.46e-3  4.60e-04
0.5 0.997656 1.0001543 1.000000 2.34e-3  1.50e-04
0.6 0.949592 0.9513935 0.951056 1.46e-3  3.40e-04
0.7 0.809478 0.8092985 0.809016 4.62e-4  2.80e-04
0.8 0.589551 0.5878225 0.587785 1.77e-3  3.80e-05
0.9 0.310207 0.3084107 0.309016 1.02e-3  6.10e-04
1.2 T T T T T T T T T
Exact solution
+ Ref(13]
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Fig. 2: Comparison between the numerical solution and the exact
solution for problem 4.2.
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Problem 4.3 Further, the differential equation [13]

V' oy = _(eX 1, 1), 0<x<1 (410)

With boundary conditions: y(O) =0, y(l) =0 (4.11)

In accordance with section 3 and the previous problem, we find the

values of g = 0.5265, ¢ 1 = 0.1495 and ¢ o= 0.1437 .

Substituting these values into Eq. (4.5), we obtain the numerical
solution. Table 3 compares the numerical solution to the absolute
errors and the figure 3 represents the numerical solution to the exact

x(l -t T 1).

Table 3: Comparison of numerical solution and absolute error with
the exact solution of problem 4.3.
Numerical solution  Exact solution Absolute error

solution of Eq. (4.10) as y(x) =

X Ref[13] FWGM Ref[13] FWGM
0.1 0.059251 0.059376 0.059343 9.20e-5 3.30e-05
0.2 0.109902 0.110058 0.110134 3.32e-4 7.60e-05
0.3 0.150735 0.150954 0.151024 2.89%-4 7.00e-05
0.4 0.180249 0.180500 0.180475 2.26e-4 2.50e-05
0.5 0.196660 0.196861 0.196735 7.50e-5 1.26e-04
0.6 0.197904 0.197978 0.197808 9.60e-5 1.70e-04
0.7 0.181631 0.181540 0.181427 2.04e-4 1.13e-04
0.8 0.145212 0.144983 0.145015 7.00e-4 3.20e-05
0.9 0.085733 0.059376 0.085646 4.18e-5 3.30e-05

0 2 = . T T g X
Exact solution s N\
018 F| T Ref(13 A K
FWGM
0.16 / \\
/ W
014 7
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0.12 / \ i
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/ f
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0.02 —/ \1
0 / !
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X
Fig. 3: Comparison between the numerical solution and the exact
solution for problem 4.3.
Problem 4.4 Finally, the differential equation [14]

2 2 a4
y' =y~ = 2z°cos(2zx) - sin" (27x), @12)
0 <x<1
With boundary conditions: y(O) =0, y(l) =0 (4.13)

In accordance with section 3 and the previous problem, we obtain the
numerical solution and are presented with the exact solution of

Eq. (4.12) as y(x) = sin2 (nx) in table 4 and figure 4.

Table 4: Comparison of numerical solution and absolute error with
the exact solution of problem 4.4.

1 ———————

Exact solution
FWGM 1

L ¥ N
09 i \ | #

08 / \

077

06f

0 01 02 03 04 05 06 07 08 09 1
X

Fig. 4: Comparison between the numerical solution and the exact

solution for problem 4.4.

5. Main Results:

The numerical solutions obtained from the proposed method, as
demonstrated by the data, tables, and figures, indicate that this
method yields results surpassing those of the existing method (Ref
[13]) and shows a closer alignment with the exact solution.
Additionally, the absolute error associated with this approach is
significantly lower compared to the existing method (Ref [13]).

6. Conclusions:

This paper presents a wavelet-based Galerkin method for obtaining
the numerical solutions of differential equations using Fibonacci
wavelets (FWGM). This development significantly advances recent
research in numerical analysis, providing substantial benefits to
beginner researchers. The proposed method has been applied to
several examples, producing commendable results in comparison to
other well-established numerical techniques.

In conclusion, the proposed method has demonstrated exceptional
effectiveness in the numerical solution of differential equations.
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