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 A B S T R A C T 

Differential equations form the foundation of scientific theories that address numerous real-world 

physical challenges. Numerical methods enable the resolution of complex problems through 

relatively simple operations. A significant advantage of numerical methods, compared to analytical 

methods, is their ease of implementation on modern computers, allowing for quicker solutions. 

Galerkin's method belongs to a broader category of numerical techniques. Additionally, wavelet 

analysis represents a promising domain within applied and computational research. This paper 

establishes a wavelet-based Galerkin method for numerically solving differential equations, utilizing 

Fibonacci wavelets as trial functions. The proposed method yields results comparable to existing 

techniques and provides solutions that closely approximate exact answers for certain problems, 

thereby demonstrating its effectiveness and accuracy. 

 الحل العددي للمعادلات التفاضلية باستخدام طريقة غاليركين المعتمدة على المويجات مع مويجات فيبوناتش ي 

 إل. إم. أنغادي 

 . ، الهند582207 –قسم الرياضيات، كلية شري سيدشوار الحكومية للصف الأول ومركز الدراسات، نارغوند 
 

 :الكلمات المفتاحية

لمعادلات التفاضليةا  

 طريقة غاليركين

 مويجات فيبوناتش ي 

 دالة البقايا الموزونة 

 الملخص 

التي   العلمية  للنظريات  الأساس  التفاضلية  المعادلات  العالم  تشكل  في  الفيزيائية  التحديات  من  العديد  تعالج 

الحقيقي. تتيح الطرق العددية حل المشكلات المعقدة من خلال عمليات بسيطة نسبيًا. تتمثل ميزة رئيسية للطرق  

العددية، مقارنة بالطرق التحليلية، في سهولة تنفيذها على الحواسيب الحديثة، مما يتيح إيجاد الحلول بشكل  

  أسرع. تنت
ً

مي طريقة غاليركين إلى فئة أوسع من التقنيات العددية. بالإضافة إلى ذلك، تمثل تحليل المويجات مجالا

واعدًا في البحوث التطبيقية والحاسوبية. يقدم هذا البحث طريقة غاليركين تعتمد على المويجات لحل المعادلات 

، باستخدام مويجات فيبوناتش ي كدوال تجريبية
ً
. تُظهر الطريقة المقترحة نتائج مماثلة للتقنيات التفاضلية عدديا

 تقارب الحلول الدقيقة لبعض المشكلات، مما يؤكد فعاليتها ودقتها
ً

 .الحالية وتوفر حلولا

 

1. Introduction: 

Numerous challenges involving various linear and nonlinear 

problems exist within the fields of science and engineering. 

Specifically, second-order differential equations, which are subject 

to a variety of boundary conditions, can be addressed through either 

analytical or numerical methods. In the fields of engineering science 

and applied mathematics, numerical simulation has emerged as a 

vital instrument for modeling physical phenomena, especially in 

instances where analytical solutions are either unavailable or 

exceedingly difficult to derive. 

The literature on differential equation resolution reveals that many 

researchers have sought to achieve higher accuracy in a timely 

manner by employing numerical methods. It is important to note that 

analytical solutions to such boundary value problems are rarely 

attainable. A range of methods for the numerical solution of 

differential equations is documented in existing literature [1–4]. 

Additionally, some numerical methods for solving different types of 

such problems using Fibonacci wavelets are available in the literature 

[5–7]. 

Wavelets have emerged as independent concepts across various 

disciplines, including mathematics, quantum physics, electrical 

engineering, and seismic geology. A key principle in approximation 

theory is the representation of a smooth function as a series expansion 

utilizing orthogonal polynomials. Currently, the exploration of 

wavelet function bases is regarded as a promising alternative to 
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traditional piecewise polynomial trial functions in the finite element 

analysis of differential equations. The Galerkin method is highly 

esteemed in applied mathematics for its efficiency and practicality 

[8–9]. The Galerkin method utilizing wavelets offers significant 

advantages over traditional finite difference and finite element 

methods, resulting in extensive applications across various fields of 

science and engineering. To some degree, the wavelet approach 

serves as a formidable alternative to the finite element method. 

Furthermore, the wavelet technique presents an effective alternative 

for the numerical solution of differential equations. 

This research introduces the wavelet-based Galerkin method for 

numerically solving differential equations utilizing Fibonacci 

wavelets (FWGM). The methodology entails expressing the solution 

in terms of Fibonacci wavelets, which are defined by unknown 

coefficients. By exploiting the characteristics of Fibonacci wavelets 

alongside the Galerkin method, we can ascertain these unknown 

coefficients, thereby achieving the numerical solution of the 

differential equations. 

The organization of the paper is delineated as follows: Section 2 

discusses Fibonacci wavelets and their application in function 

approximation. Section 3 examines the wavelet-based Galerkin 

method using Fibonacci wavelets. Section 4 offers a numerical 

example. Finally, Section 5 provides a discussion of the conclusions 

drawn from the research undertaken. 

2. Fibonacci wavelets and Function Approximation: 

2.1. Fibonacci Polynomials: The general definition of Fibonacci 

polynomials [10 - 11] is as follows: 
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Additionally, these polynomials can be expressed in the form of 

powers as shown: 
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Also, if ( ) , 0 , 1, .... 1F x m Mm = −  are Fibonacci 

polynomials, then 
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2.2. Fibonacci Wavelets: Fibonacci wavelets [10-11] are defined in 

the following manner:
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In which   ( ) ( )
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where Wm , for = 0,1, 2, ..., 1m M − are obtained by Eq. (2.3), and 

m  denotes the order of the Fibonacci polynomials and 

1
, = 1, 2, ..., 2 ,

k
n k N

−
 .  

For instance, for 1k =   and 3M = , the Fibonacci wavelet bases 

as given below:  

( ) 11,0 x =    ,     

( ) 31,1 x x =    ,  

 ( )
1 15 2

( ) 11,2
2 7

x x = +    

and so on. 

2.3. Function Approximation: 

Let's assume  )2
( ) 0 , 1y x L can be expressed using Fibonacci 

wavelets in the following manner: 
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                (2.5) 

By cutting off the infinite series mentioned above, we  
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3. Method of Solution:  

Consider the differential equation of the form, 

( )y y y f x  + + =                             (3.1) 

With boundary conditions   ( ) ( )0 , 1y a y b= =
        

(3.2) 

Here,   &   are constants, while ( )f x  is a continuous function. 

Write the Eq. (3.1) as  

( )( )R x y y y f x  = + + −                 (3.3) 

where ( )R x   is the residual of the Eq. (3.1) and it is zero the exact 

solution is known and the boundary conditions are met. 

The trial series solution of  Eq. (3.1), ( )y x defined as  )0, 1

satisfies the specified boundary conditions and can be extended to a 

modified Fibonacci wavelet with unknown parameters as follows:  

( )
1 12

( ) , ,
1 0

k M
y x c xn m n m

n m


− −
 =
= =

      (3.4) 

where  ',c sn m  are unknown coefficients and are to be 

determined. 

The accuracy of the solution is improved by opting for higher degree 

Fibonacci wavelet polynomials. To obtain the values of the second 

derivative of Eq. (3.4), one must differentiate it twice w.r.t. x  and 

substitute these values ( ) ( ) ( ), ,y x y x y x   in Eq. (3.3). The 

unknown parameters ',c sn m  can be determined by choosing 

weight functions as the assumed basis elements and conducting 

integration on the boundary values, along with the residual, to ensure 

that it equals zero [12]. 

 i.e.              ( ) ( )
1

01,
0

x R x d xm = , 0 , 1 , 2 , ........m =
 

This enables us to formulate a system of linear algebraic equations. 

By solving this system, we can identify the unknown parameters. 

Following this, we can substitute these parameters into the trial 

solution, referred to as Eq. (3.4), which allows us to derive the 

numerical solution for Eq. (3.1).
 

In order to assess the precision of the FWGM concerning the test 

problems, we make use of error known as the maximum absolute 

error. The formula for calculating the maximum absolute error is as 

follows: 

max ( ) ( )maxE y x y xe n= − , 

where ( )y x e  and ( )y x n  are exact and numerical solutions 

respectively. 

4. Numerical Illustration: 

Problem 4.1 First, consider the differential equation [10],          

, 0 1y y x x + = −                                (4.1) 

With boundary conditions:  ( ) ( )0 0 , 1 0y y= =          (4.2) 
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Eq. (4.1) should be implemented according to the method described 

in section 3: 

Using Eq. (4.1), the residual is given as:   

( )R x y y x= + +                         (4.3) 

Then, the weight function ( ) ( )1w x x x= −  should be 

selected for Fibonacci wavelet bases in order to meet the specified 

boundary conditions Eq. (4.2), 

i.e. ( ) ( ) ( )x w x x= ψ  

( ) ( )( ) ( ) 1 11,01,0
x x x x x x=  − = −ψ  

( ) ( ) ( )( ) ( ) 1 3 11,1 1,1x x x x x x x=  − = −ψ       

( ) ( ) ( )
1 15 2

( ) ( ) 1 1 11,2 1,2
2 7

x x x x x x x=  − = + −ψ

The trail solution of Eq. (4.1) for   1k =  and 2m =  is given 

by 

( ) ( ) ( )( ) 1 ,0 1,0 1,1 1,1 1,2 1, 2y x c x c x c x= + +ψ ψ ψ

(4.4) 

Now, Eq. (4.4) becomes           
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Differentiating Eq. (4.5) w.r.t. x  twice and put the values of  

,y y   in Eq. (4.3) then we obtain the residual of Eq. (4.1).  If the 

weight functions equivalent the basis functions in the trail solution, 

we can then proceed to consider the following using the weighted 

residual method: 

            ( ) ( )
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Based on Eq. (4.7), a set of algebraic equations involving unknown 

coefficients such as 1,0c , 1,1c and 1,2c . Solving this system, 

obtained the values for 0.20621,0c = , 0.10891,1c =  and 

0.02401,2c = − .  Once these values are found, they can be 

substituted into Eq. (4.5) to get the numerical solution. 

A comparison of the numerical solution and absolute errors 

is presented in Table 1, and the numerical solution and the exact 

solution of   Eq. (4.1)  
sin( )

( )
sin(1)

x
y x x= −  in Figure 1. 

Table 1:  Comparison of numerical solution and absolute error with 

the exact solution of  problem 4.1 

x 
Numerical solution Exact solution Absolute error 

Ref [13] FWGM  Ref [13] FWGM 

0.1 0.0186708 0.0186588 0.0186420 2.88e-5 1.70e-5 
0.2 0.0361655 0.0361048 0.0360977 6.78e-5 7.10e-6 

0.3 0.0512714 0.0511642 0.0511948 7.66e-5 3.10e-5 

0.4 0.0628316 0.0627351 0.0627829 4.87e-5 4.80e-5 
0.5 0.0697452 0.0697491 0.0697470 1.84e-6 2.10e-6 

0.6 0.0709672 0.0709857 0.0710184 5.12e-5 3.30e-5 

0.7 0.0655087 0.0655327 0.0655851 7.64e-5 5.20e-5 
0.8 0.0524367 0.0525260 0.0525025 6.58e-5 2.40e-5 

0.9 0.0308742 0.0309247 0.0309019 2.77e-5 2.30e-5 

 
Fig. 1: Comparison of the numerical solution with the exact 

solution for problem 4.1. 

Problem 4.2 Next, another differential equation [13],  

2 2
2 sin( ), 0 1y y x x   − = −             (4.8) 

With boundary conditions:  ( ) ( )0 0, 1 0y y= =                  (4.9) 

In accordance with section 3 and the previous problem, we find the 

values of 6.71811,0c = 2.08941,1c =  and 4.94801,2c = − .  

Substituting these values into Eq. (4.5), we obtain the numerical 

solution. Table 2 compares the numerical solution to the absolute 

errors and the figure 2 represents the numerical solution to the exact 

solution of Eq. (4.8) as ( )( ) siny x x=  . 

Table 2: Comparison of numerical solution and absolute error with 

the exact solution of problem  4.2 

x 
Numerical solution Exact solution Absolute error 

Ref [13] FWGM  Ref [13] FWGM 

0.1 0.310207 0.3079992 0.309016 1.19e-3 1.02e-03 

0.2 0.589551 0.5880739 0.588772 7.79e-4 7.00e-04 

0.3 0.809478 0.8094184 0.809016 4.62e-4 4.00e-04 
0.4 0.949592 0.9515192 0.951056 1.46e-3 4.60e-04 

0.5 0.997656 1.0001543 1.000000 2.34e-3 1.50e-04 

0.6 0.949592 0.9513935 0.951056 1.46e-3 3.40e-04 
0.7 0.809478 0.8092985 0.809016 4.62e-4 2.80e-04 

0.8 0.589551 0.5878225 0.587785 1.77e-3 3.80e-05 

0.9 0.310207 0.3084107 0.309016 1.02e-3 6.10e-04 

 
Fig. 2: Comparison between the numerical solution and the exact 

solution for problem 4.2. 
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Problem 4.3 Further, the differential equation [13] 

( )1
1 , 0 1

x
y y e x

−
 − = − +  

 

     (4.10) 

With boundary conditions:  ( ) ( )0 0, 1 0y y= =                 (4.11) 

In accordance with section 3 and the previous problem, we find the 

values of 0.52651,0c = , 0.14951,1c =  and 0.14371,2c = .   

Substituting these values into Eq. (4.5), we obtain the numerical 

solution. Table 3 compares the numerical solution to the absolute 

errors and the figure 3 represents the numerical solution to the exact 

solution of Eq. (4.10) as ( )1
( ) 1

x
y x x e

−
= − . 

Table 3: Comparison of numerical solution and absolute error with 

the exact solution of  problem 4.3. 

x 
Numerical solution Exact solution Absolute error 

Ref[13] FWGM  Ref[13] FWGM 

0.1 0.059251 0.059376 0.059343 9.20e-5 3.30e-05 

0.2 0.109902 0.110058 0.110134 3.32e-4 7.60e-05 

0.3 0.150735 0.150954 0.151024 2.89e-4 7.00e-05 

0.4 0.180249 0.180500 0.180475 2.26e-4 2.50e-05 
0.5 0.196660 0.196861 0.196735 7.50e-5 1.26e-04 

0.6 0.197904 0.197978 0.197808 9.60e-5 1.70e-04 

0.7 0.181631 0.181540 0.181427 2.04e-4 1.13e-04 
0.8 0.145212 0.144983 0.145015 7.00e-4 3.20e-05 

0.9 0.085733 0.059376 0.085646 4.18e-5 3.30e-05 

 
Fig. 3: Comparison between the numerical solution and the exact 

solution for problem 4.3. 

Problem 4.4 Finally, the differential equation [14] 

( ) ( )2 2 4
2 cos 2 sin 2 ,

0 1

y y x x

x

   − = −

 
 

     (4.12) 

With boundary conditions:  ( ) ( )0 0, 1 0y y= =                 (4.13) 

In accordance with section 3 and the previous problem, we obtain the 

numerical solution and are presented with the exact solution of                       

Eq. (4.12) as ( )2
sin( ) xy x =  in table 4 and figure 4. 

Table 4: Comparison of numerical solution and absolute error with 

the exact solution of problem 4.4. 
x FWGM Exact solution Absolute error 

0.1 0.096728 0.095492 1.24E-03 
0.2 0.359769 0.345492 1.43E-02 

0.3 0.659432 0.6545082 4.92E-03 

0.4 0.909876 0.9045082 5.37E-03 
0.5 0.998784 1 1.22E-03 

0.6 0.910518 0.9045082 6.01E-03 

0.7 0.657385 0.6545082 2.88E-03 
0.8 0.348918 0.345492 3.43E-03 

0.9 0.099824 0.095492 4.33E-03 

 
Fig. 4: Comparison between the numerical solution and the exact 

solution for problem 4.4. 

5.  Main Results: 
The numerical solutions obtained from the proposed method, as 

demonstrated by the data, tables, and figures, indicate that this 

method yields results surpassing those of the existing method (Ref 

[13]) and shows a closer alignment with the exact solution. 

Additionally, the absolute error associated with this approach is 

significantly lower compared to the existing method (Ref [13]). 

 

6.  Conclusions:  

This paper presents a wavelet-based Galerkin method for obtaining 

the numerical solutions of differential equations using Fibonacci 

wavelets (FWGM). This development significantly advances recent 

research in numerical analysis, providing substantial benefits to 

beginner researchers. The proposed method has been applied to 

several examples, producing commendable results in comparison to 

other well-established numerical techniques.  

In conclusion, the proposed method has demonstrated exceptional 

effectiveness in the numerical solution of differential equations. 
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