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Due to the increasing demand for effective and objective analysis to address complex challenges 
such as brain medical image reconstruction, segmentation, and classification, medical image 
analysis for brain tumor research has gained significant attention. The ability of Generative 
Adversarial Networks (GANs) to increase the probability density over data distributions by 
estimating density ratios, along with their capacity to uncover high-dimensional latent 
distributions, has led to substantial performance improvements in visual feature extraction. 
Furthermore, the adversarial loss incurred by the discriminator offers a subtle method of 
incorporating unlabeled samples into training, thereby improving accuracy at higher orders. 
These characteristics of GANs have proven valuable in various applications, including 
enhancing medical images and translating images across different modalities. Additionally, the 
ability of GANs to generate images with remarkable realism offers hope that, through these 
generative models, the ongoing challenge of limited labelled data in the medical field may be 
overcome. The aim of this review is to provide a comprehensive overview, starting with a 
concise summary of the range of available GAN architectures and datasets. This study then 
highlights the research conducted in processing and interpreting GAN-based brain images. 
Finally, the limitations of GAN-based methods for brain image analysis are discussed, 
identifying unresolved research issues and suggesting avenues for further exploration in this 
emerging field. 

   والتوجهات المستقبليةالشبكات التوليدية التنافسية في تحليل تصوير الدماغ: استعراض شامل لعقد من التقدم  

 هالة الشاعري 

 كلية تقنية المعلومات، جامعة طرابلس، طرابلس، ليبيا
 

 الكلمات المفتاحية:   

 . الشبكات التنافسية التوليدية

 .تحليل الصور الطبية 

 . تحليل صور الدماغ

 .تطبيقات الشبكات التنافسية التوليدية 

 . الرؤية الحاسوبية 

 الملخص 

وتصنيفها، فقد اكتسب تحليل الصور الطبية لأبحاث أورام الدماغ اهتمامًا كبيرًا باستمرار. إن قدرة الشبكات وتقسيمها  

( على زيادة كثافة الاحتمال على توزيع إنتاج البيانات باستخدام تقدير نسبة الكثافة وقدرتها GANsالتوليدية التنافسية )

على الكشف عن التوزيع الكامن عالي الأبعاد للبيانات، مما يؤدي إلى تحسينات كبيرة في الأداء في استخراج السمات المرئية.  

ميز توفر وسيلة خفية لدمج العينات غير المميزة في التحضير وفرض  بالإضافة إلى ذلك، فإن الخسارة السلبية التي يتكبدها الم

دقة أعلى مرتبة. وقد أثبتت خصائص الشبكات التوليدية التنافسية أنها قيمة في مجموعة متنوعة من الظروف، بما في ذلك  

ليدية التنافسية على تحسين الصور الطبية وترجمة الصور من نمط إلى آخر. وعلاوة على ذلك، فإن قدرة الشبكات التو 

بناء الصور بواقعية توفر أيضًا الأمل في أنه باستخدام هذه النماذج التوليدية، يمكن التغلب على الافتقار المستمر للبيانات  

المصنفة في المجال الطبي. الهدف من هذه المقالة الاستعراضية هو تقديم نظرة عامة شاملة من خلال تقديم ملخص موجز  

. ولتسليط الضوء على الأبحاث التي تم إجراؤها، تقدم هذه الدراسة    GANتعددة من بنيات  للمجموعة الم
ً
المتاحة أولا

القائمة على   الدماغ  معالجة وتفسير صور  في مجال  العلمية  للمساهمات  مناقشة قصور  GANملخصًا  تمت  وأخيرًا،   .

صور الدماغ من أجل تحديد قضايا البحث غير المحلولة والاقتراحات لمزيد من الدراسة    لتحليل   GANالطرق القائمة على  

 في هذا المجال الناش ئ. 

http://www.sebhau.edu.ly/journal/jopas
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1. Introduction   

Medical imaging plays a crucial role in enhancing public health for all 

demographic groups, utilizing a variety of imaging modalities and 

procedures to capture images of the human body, including the brain, 

heart, and soft tissues, for diagnostic and therapeutic purposes. 

Numerous imaging techniques, such as computed tomography (CT), 

positron emission tomography (PET), magnetic resonance imaging 

(MRI), X-rays, and ultrasound, each use different image capturing 

methods, which significantly influence patient diagnosis and 

treatment. However, the fundamental principles behind these 

modalities differ, especially in terms of image capture, data 

processing, and complexity [1]. The complexity and dimensionality of 

CT, PET, and MRI images are tailored to incorporate modality-

specific information, which improves the accuracy of image diagnosis. 

Brain tumors arise when abnormal cell growth occurs inside or around 

the brain, disturbing normal brain function and impacting a patient’s 

health [2]. Recently, researchers, radiologists, and clinicians have 

focused on brain imaging analysis, diagnosis, and therapy using 

approved medical imaging techniques [3]. Brain tumors, being fatal, 

account for a significant proportion of mortality in low-income 

countries, making brain image processing vital. The latest 

advancements in soft tissue and non-invasive imaging techniques have 

resulted in vast amounts of high-resolution data. Radiologists use these 

high-resolution soft tissue images to diagnose various diseases, 

including viral infections, traumatic brain injury, aneurysms, and brain 

cancer. Additionally, soft tissue scans provide abundant data that help 

differentiate between diseased and healthy tissue. Unfortunately, no 

single imaging method can serve as a universal diagnostic tool, 

requiring a combination of imaging techniques to detect specific brain 

disorders [4]. Each type of soft tissue exhibits a distinct signature, 

which is formed by integrating image sets from different modalities 

[5], leading to a large number of features that drive deep learning 

applications. 

In many of these supervised applications, convolutional neural 

networks (CNNs) are trained to provide accurate predictions based on 

input images. CNNs are highly effective in distinguishing between 

images or image voxels belonging to different classes, making them 

invaluable for segmentation, classification, and predicting patient 

survival times for brain cancer. 

For a long time, medical image analysis focused primarily on 

supervised learning. However, this paradigm shifted with the advent 

of Generative Adversarial Networks (GANs) [6], which introduced a 

new wave of interest in generative modeling and understanding data 

distributions. The central idea behind generative models is to learn the 

underlying structure of data and the processes that generate it. This 

enables researchers to better understand the data and generate new data 

by sampling from the model. GANs have been particularly 

groundbreaking due to their ability to combine supervised learning 

with image generation. Their success largely stems from their capacity 

to fine-tune the probability density of data generation, using 

techniques such as density ratio estimation [7]. Furthermore, GANs 

excel at uncovering hidden, complex patterns in data, leading to 

significant advances in feature extraction and analysis. 

This study aims to provide a comprehensive and up-to-date overview 

of GAN-based techniques used in brain image processing, focusing on 

tasks such as image synthesis, segmentation, and reconstruction. We 

reviewed various databases, including PubMed, arXiv, and 

proceedings from esteemed conferences like the International 

Conference on Medical Image Computing and Computer-Assisted 

Intervention (MICCAI), SPIE Medical Imaging, the IEEE 

International Symposium on Biomedical Imaging (ISBI), and the 

International Conference on Medical Imaging with Deep Learning 

(MIDL), to ensure a thorough review of GANs in medical imaging. 

Additionally, we examined key references and citations to uncover 

further relevant research. Given that GANs are a relatively new field 

and many studies are still in the publication pipeline, we also included 

preprints to capture the latest advancements and trends in this rapidly 

evolving area. 

Although several previous reviews have explored GANs in medical 

image analysis, most of them focus on general surveys introducing the 

progress of GANs, their architectural variants, and various medical 

imaging applications [8][9][10][11][12], or delve into specific 

applications such as image synthesis, classification, and segmentation 

[13][14][15][16][17]. Additionally, some surveys only cover one type 

of imaging technology [18][19]. 

To the best of our knowledge, this paper is the first comprehensive 

survey on the application of GAN-based methods in brain image 

analysis. Motivated by the rapid development of GANs in this field, 

this review covers the latest advancements across all areas of brain 

imaging, including synthesis, segmentation, reconstruction, detection, 

denoising, registration, and classification. By including a broad array 

of recent studies, we present a wide variety of GAN-based methods 

used for brain tumor analysis, highlighting key contributions, 

methodologies, techniques, frameworks, architectures, and 

evaluations in brain tumor analysis. 

The structure of the remainder of the paper is as follows. Section 2 

provides a brief overview of GAN basics and structural variants, 

followed by a discussion on available brain imaging datasets. Section 

3 presents a comprehensive analysis of medical image processing 

tasks using GANs, organized around core tasks such as detection, 

registration, classification, segmentation, reconstruction, image 

synthesis, and more. Finally, Section 4 concludes the review, 

discussing potential applications and suggesting future research 

directions. 

2. Background 

In order to provide an inclusive perspective into the use of brain 

medical image analysis and applications, this background section will 

provide the basic GANs architecture concepts behind these 

applications as well as accessible datasets for medical brain images. 

2.1 Variance of GANs architectures 

Generally, there are three categories of generative models: Generative 

Adversarial Networks (GANs) [6], Variational Autoencoder (VAE) 

[20], and AutoRegressive Networks [21]. With no clear aim function 

and difficult training, GANs may create remarkably realistic images. 

However, their extremely limited diversity may cause mode collapse 

when the generator is unable to learn. The other most popular deep 

generative models, Variational Autoencoders (VAEs), have an 

objective function to optimize, which may result in fuzzier samples 

because of noise and insufficient sample reconstruction [22]. 

In 2014, Ian Goodfellow and colleagues published an article [6] titled 

"Generative Adversarial Networks," which was the first demonstration 

of the generative adversarial network architecture technique. In the 

study, a generator model with fully linked layers (MLPs) and ReLU 

activations is described. This model uses a latent space as input points 

and generates an image. In addition, a discriminator model that uses 

fully connected layers (MLPs) with maxout activations to distinguish 

between actual and fake images is used. Using typical image datasets 

like MNIST and CIFAR-10, this model was implemented. 

In the literature, there are many forms of GANs architecture variants 

are introduced. Architecture variant of GANs have recently seen 

substantial advances in numerous applications such as image-to-image 

translation, image resolution enhancements, image reconstruction. 

Many medical imaging researchers have therefore started using GANs 

in many fields, such as image resolution enhancement, identification 

of anomalies and estimate of CT images from the corresponding MR 

images. To acquire images with the desired characteristics, fully 

convolutional layers and conditional image constraints were later used 

instead of the GAN, which was first deployed with fully connected 

layers and no data generation limits. They typically use conditional 

GANs to generate desired images since GANs allow for the 

application of conditioning on class labels and images, making 

learning robust latent spaces hard.  

To meet the desired performance, several different versions of the 

GAN model were suggested. The main purpose of this paper, however, 

is to only address base GAN models for the application of brain 

medical imaging, which are generally: GAN, cGAN, DCGAN, 

LAPGAN, pix2pix, CycleGAN, WGAN, WGAN-GP, VAEGAN 

(BiGAN), StyleGAN and StyleGAN2. Table (1) summarizes the basic 

GAN models employed in brain medical imaging applications 

according to the literature. 

2.2 Available Datasets. 

Large and balanced dataset generation might be seen as a major barrier 

to the creation of high-quality AI systems for image processing in 
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radiology. This is due to the expensive cost of creating these datasets 

as well as the restricted availability of pre-existing datasets. The 

sharing of such information is expected to be hindered by privacy 

concerns about patient data interchange and the competitive advantage 

of medical AI companies from their own private databases. In recent 

years, a number of significant ongoing initiatives worldwide have 

made a substantial number of early releases from public databases 

available to academics in an effort to solve these problems. Table (2) 

compiled the brain imaging datasets that are publicly available for 

brain tumor analysis training and evaluation. 

2.3 GANs Potential over ML Approaches 

Generative Adversarial Networks (GANs) have carved a niche in brain 

image analysis by overcoming limitations inherent to traditional 

machine learning (ML) approaches, particularly in scenarios requiring 

data generation, cross-modal synthesis, and anomaly detection. 

Classical ML methods, such as Support Vector Machines (SVMs) and 

Random Forests, rely heavily on handcrafted features and static 

datasets, which struggle to capture the complex, high-dimensional 

patterns in brain imaging data. These methods are inherently limited 

by their inability to generate new data, forcing reliance on small, often 

imbalanced datasets. For instance, conventional data augmentation 

(e.g., rotation, flipping) only creates superficial variations, failing to 

address the need for anatomically diverse synthetic samples. In 

contrast, GANs learn underlying data distributions, enabling synthesis 

of realistic brain images that enhance model robustness. Frid-Adar et 

al. [23] demonstrated this in medical imaging by augmenting scarce 

lesion datasets with GAN-generated samples, improving classification 

accuracy, a strategy directly applicable to brain pathology detection 

where data scarcity is acute. 

Non-generative deep learning approaches, such as standard CNNs and 

autoencoders, also face critical limitations in tasks like cross-modal 

image synthesis (e.g., MRI-to-CT translation). Traditional CNNs, 

optimized for pixel-wise losses (e.g., mean squared error), often 

produce blurry or anatomically implausible outputs due to their 

inability to model global structural coherence. Autoencoders, while 

capable of dimensionality reduction, lack the adversarial feedback 

loop of GANs, resulting in less realistic reconstructions. For example, 

Nie et al. [24] showed that GANs outperform autoencoders in 

synthesizing high-fidelity brain MRIs, as adversarial training enforces 

realism by penalizing "unnatural" features. Similarly, CycleGAN [25] 

addressed unpaired image translation—common in clinical settings 

where paired datasets are rare, while classical methods like sparse 

coding or patch-based regression fail to generalize across such 

heterogeneous data. These limitations underscore GANs’ superiority 

in preserving fine-grained anatomical details critical for applications 

like radiotherapy planning. 

In anomaly detection, traditional ML approaches like One-Class 

SVMs or isolation forests require explicit assumptions about data 

distributions, which are often violated in neuroimaging due to the high 

variability of brain anatomy. Supervised CNNs, meanwhile, demand 

large labeled datasets of pathologies—a practical barrier given the 

rarity of conditions like rare brain tumors. GANs circumvent these 

issues by learning the distribution of healthy brain scans and flagging 

deviations without requiring labeled anomalies. AnoGAN [26], for 

instance, identifies subtle pathologies in retinal OCT images by 

reconstructing inputs and quantifying residuals, a framework 

adaptable to brain MRI. Similarly, U-Net, a gold standard for 

segmentation, relies on pixel-wise losses (e.g., Dice loss) that may 

overlook structural context, leading to fragmented or over-smoothed 

tumor boundaries. Adversarial frameworks like SegAN [27] mitigate 

this by incorporating a discriminator to penalize anatomically 

implausible segmentations, enhancing precision in tasks like 

glioblastoma delineation. 

However, GANs are not without trade-offs. Their computational 

complexity and training instability—issues less prevalent in simpler 

ML models like SVMs—can hinder deployment in resource-

constrained clinical environments. Additionally, GANs’ "black-box" 

nature complicates interpretability compared to decision-tree-based 

methods, raising concerns in clinical validation. Yet, their ability to 

synthesize data, refine image quality, and detect anomalies without 

heavy reliance on labeled data positions GANs as uniquely 

transformative. While traditional ML remains valuable for 

interpretable, low-dimensional tasks, GANs address foundational gaps 

in neuroimaging, pushing boundaries in personalized medicine and 

multimodal diagnostics. Ongoing advancements in stable training 

(e.g., Wasserstein GANs) and hybrid models (e.g., GANs combined 

with transformers) aim to further solidify their role in brain image 

analysis.  

3. GANs Medical Application for Brain Imaging Analysis  

For clinical diagnosis and medical treatment, medical imaging is 

necessary because it offers valuable information into certain diseases 

whose structures can be concealed by the skin or bones. A variety of 

different medical imaging modalities, such as Magnetic Resonance 

Imaging (MRI), Computed Tomography (CT), X-Ray, ultrasound and 

Positron Emission Tomography (PET), have been applied to GAN-

based approaches. This diversity of image modalities has led to a 

variety of adversarial image applications used to detect, classify and 

predict a brain disease and disorder.  As a result, GANs and adversarial 

techniques have been used in recent years to address a wide range of 

medical image processing problems. The most common uses of the 

adversarial technique in medical image processing have focused on 

segmentation, image synthesis, and quality improvement as illustrated 

in Figure 1. This section discusses only the GANs applications that are 

related to brain image analysis of these applications. 

 
Figure 1: GANs Medical Application for Brain Imaging Analysis 

3.1 Brain Image Generation and Synthesis 

GANs have been used to generate samples from a latent distribution 

of medical images. These samples may be used to synthesis data for 

training human experts or to expand training sets for discriminatory 

models. While there may be some tolerance for faults in generated 

samples in some areas, such natural images, this might be a 

challenging task since errors could have serious detrimental 

consequences on medical imaging. Improvements in medical image 

analysis [28], including brain imaging classification and segmentation, 

have recently been shown by deep neural networks, especially 

convolutional neural networks (CNNs). CNN training, however, 

requires comprehensive medical datasets that is time consuming to 

acquire [29].  Furthermore, one of the key barriers to the inadequate 

number of positive cases of each pathology is patient privacy concerns 

related to disclosing or releasing their medical images to the public 

research domain. The absence of experts who can annotate medical 

images is another obstacle to the use of supervised learning methods. 

However, as Table. 2 summarizes, a number of cooperative efforts are 

being carried out by various healthcare institutions to provide 

extensive open access data sets.  

In response to these challenges, data augmentation techniques are 

common for better performance by reconstructing original images. 

Scaling, rotation, flipping, translation, and elastic deformation are 

common methods of augmenting the training sample [30]. These 

advancements do not, however, take into consideration variances in 

the size, shape, location, and appearance of individual pathologies, as  
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Table 1: Basic GAN models employed in brain medical imaging applications 
GAN Architectures Authors Basic Concept Loss Function Mathematical Formula Pros / Cons 

GAN ( 
Vanilla GAN)  

Goodfellow 
et al., 2014 

[1] 

Generative (G): a fully connected layers (MLPs) 
with ReLU activations and discriminative (D): fully 

connected layers (MLPs) with maxout activations. 

min max V (D, G) = 

                        Ex∼pdata(x)[log(D(x))] + Ez∼pz (z) [1 − 

log(D(G(z)))] 
 

Hard to train. 
Convergence is heavily dependent on hyper-parameter. 

Vanishing or exploding gradients issues. 

Prone to mode collapse. 

cGAN  Mirza and 

Osindero, 
2014 [2] 

The generator is given random noise z along with 

some preexisting information c. The discriminator is 
then supplied the relevant true or false data together 

with the prior knowledge c. 

min max V (D, G) = 

                        Ex∼pdata(x)[log(D(x|c))] +Ez∼pz 

(z)[1−log(D(G(z|c)))]  

Improves the generation of detailed features.  

Helps training stability. 

DCGAN Radford et 
al., 2015 [3] 

The generator (G) and discriminator (D) both follow 
a deep convolutional network architecture. 

Constraints CNN architectures: 
Removing fully-connected hidden layers.   

Replacing the pooling layers with strided convolutions on the 
discriminator.  

Replacing pooling layers with fractional strided convolutions on 

the generator. 
Using batchnormalization on both the generator and the 

discriminator.  

Using ReLU activations in every layer of the generator except the 
last layer.  

LeakyReLU activations in all layers of the discriminator. 

Helps training stability. 
Mode collapse was not entirely resolved. 

LAPGAN Denton et al., 
2015 [4] 

layers of conditional GAN model with Laplacian 
pyramid representation. 

Each of layers adds higher frequency into a 

generated image. 

ℎ𝑘  =  𝐿𝑘  𝐼   =  𝐺𝑘  𝐼  − 𝑈  𝐺𝑘+1  𝐼    = 𝐼𝑘  − 𝑈 𝐼𝑘+1 

𝐼 𝑘  = 𝑈  𝐼 𝑘=1   + ℎ 𝑘  = 𝑈  𝐼 𝑘=1   + 𝐺𝑘     𝑍𝑘 , 𝑈 𝐼 𝑘=1 

To obtain a maximum resolution image, a sequential 
sampling procedure is used.  

Take advantage of the cGAN model by applying to both 

the generator and the discriminator a low-pass image 𝐼 𝑘. 

CycleGAN Zhu et al., 

2017 [5] 

It combines two GANs to determine a mapping from 

domain X to domain Y and vice versa. Generators G: 
X → Y, trained by discriminator DY, and F: Y → X, 

taught by discriminator DX, make up these. 

 

L(G, F, DX, DY ) = LGAN (G, DY , X, Y ) + LGAN (F, DX, Y, X) + 

λLcyc(G, F ) 

Lcyc(G, F ) = Ex∼Pdata(x)[ F (G(x)) − x 1] + Ey∼Pdata(y)[ G(F (y)) 

− y 1] 

Unpaired data is used to do higher-resolution image-to-

image translation.  
Could not construct geometric reverse transformation. 

pix2pix Isola et al., 

2017 [6] 

is a cGAN design using an encoder-decoder 

structure instead of a generator.  

The class information combines the L1 regularizer 
loss and the cGAN loss, as does the comparable 

image from the second domain.  

𝐿𝐶𝐺𝐴𝑁  𝐺, 𝐷  =  𝐸𝑥,𝑦  𝑙𝑜𝑔𝐷  𝑥, 𝑦    + 𝐸𝑥,𝑧   𝑙𝑜𝑔   1 − 𝐷  𝑥, 𝐺 𝑥, 𝑧 

𝐿𝐿1  𝐺   =  𝐸𝑥,𝑦~𝑃𝑑𝑎𝑡𝑎   𝑥,𝑦  ,𝑧~𝑃(𝑧) |  𝑦 − 𝐺  𝑥, 𝑧   |1 

𝐺∗, 𝐷∗ = arg min𝐺 max𝐷 𝐿𝐶𝐺𝐴𝑁   𝐺, 𝐷   + 𝜆 𝐿𝐿1 𝐺 

Earned approval for image synthesis across the domain 

users. Surpasses CycleGAN for high quality medical image 

synthesis. 

WGAN Arjovsky et 

al., 2017 [7] 

prevents gradients from disappearing by using a 

more effective divergence measure, such as the 

Earth Mover (ME) or Wasserstein-1 distance. 

W (Pr, Pθ) = sup Ex∼Pr [f (x)] − Ex∼Pθ [f (x)] 

lf lL≤1 

max Ex∼Pr [fw(x)] − Ez∼p(z)[fw(gθ(z)] 

 

∇θW (Pr, Pθ) = −Ez∼p(z)[∇θf (gθ(z))] 

 

 

 

Able to minimize the vanishing gradient and mode collapse 

problem. 

Improve the stability of learning.  
Proven to be much more robust. 

Easy to implement. 

Slow optimization. 
The constant c for weight clipping may cause a vanishing 

gradient problem. 

WGAN-GP Gulrajani et 

al., 2017 [8] 

Utilizing a gradient penalty to enforce the 1-Lipshitz 

constraint on the discriminator. 
G = −Ez∼P(z) [D(G(z))] 

 D = Ex∼Pdata (x),z∼Pz (z) h [D(x˜) − D(x) + λ (‖∇xˆD(xˆ) ‖₂₋₁) 

²] 

where e ∼ U[0, 1], x˜ = G(z), xˆ = ex + (1 − e)x˜  

Converges more quickly than WGAN. 

Learn complicated functions. 

Reduces the vanishing gradient. 
Cannot use batch normalization because gradient. 

Penalization is done for each sample in the batch. 

PGGAN Karras et al., 
2017 [9] 

Starting with low-quality images, this GAN training 
process gradually raises the resolution by adding 

layers to the networks for the discriminator and 

generator. 

WGAN-GP loss was used alternately on a per-minibatch basis 
between optimizing the generator and the discriminator. 

A fourth term with an extremely small weight, to prevent the 

discriminator output from shifting far away from zero, was 
inserted into the discriminator loss. 

High image quality. 
Training is stable in large resolutions. 

Semantic sensibility 

Understanding dataset dependent constraints. 
 

VAEGAN (BiGAN) Donahue et The discriminator (D), generator (G), and encoder Min Max   V(D, E, G) = Capable of projecting data back into latent space (learning 
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al., 2017 [10] (E) make up the architecture in general. 

Actual sample data is encoded into E(x) by E and 

decoded into G(z) by G. 
Finding the difference between each pair's (E(x); x) 

and (G(z); z) is the aim of D. 

G never sees E(x), and E never sees G(z), indicating 
that E and G do not directly interact. 

G,E  D,E,G 

Where V (D, E, G) := Ex∼pX  [  Ez∼pE (·|x) [log D(x, z)] ]   + 

                                          log D( x ,E(x)) 

 Ez∼pZ [  Ex∼pG(·|z) [log (1 − D(x, z))]]  

                     log(1−D ( G(z),z)) 

 
 

the inverse mapping). 

StyleGAN Karras et al., 

2019 [11] 

It makes several important suggestions for 

improving the generator model, such as using a 
mapping network to link latent space points to 

intermediate latent space, using intermediate latent 

space to control the generator model's style at each 
point, and adding noise as a source of variance at 

each point. 

A progressive growing GAN architecture with five modifications: 

Tuning addition and bilinear up sampling.  
Mapping Network Extension and AdaIN (styles).  

Removing the generator's latent vector input.  

Adding noise to each block.  
Adding mixed Regularization. 

Introduces control at various levels over the style of 

generated images. 
When used to generate synthetic human faces, remarkable 

results are obtained. 

It makes it possible for the intermediate latent space W to 
be much less entangled than the latent space Z input. 

The applied bias and noise allowing their relative effect to 

be inversely proportional to the present style's magnitudes. 
StyleGAN2 Karras et al., 

2020 [12] 

With many shifts, it expands on StyleGAN. Next, the 

normalization of adaptive instances is redesigned 

and replaced by a method of normalization called 
weight demodulation. Furthermore, new forms of 

regularization such as lazy regularization and path 

length regularization are introduced, and an 
expanded training method is implemented upon 

progressively growing. 

Modifications to StyleGAN:  

Eliminate some initial, pointless processes 

Adjust the bias and noise to operate outside of a style's active 
region. 

Only change the standard deviation for each feature map.  

In place of instance normalization, use a "demodulation" operation 
on the weights assigned to each convolution layer. 

Because W is the pertinent latent space from the 

perspective of the synthesis network, this approach 

concentrates all study on it. 
Putting these operations (noise and bias) outside the style 

block, where they work on data that has been normalized. 

enhancement of perceived image quality and current 
distribution quality measures. 

 

Table 2: Available brain image datasets 

Dataset Name Modalities Description Related Active Links 

BraTS 

 

Multimodal Brain 

Tumor Segmentation 

Challenge (BraTS2012 

to BraTS2023)  

Magnetic resonance imaging (MRI) utilizes 

multi-institutional pre-operative MRI scans. 

A large dataset of MR scans of brain tumors in which the 

required tumor structures were defined. Focuses on: 

the segmentation of brain tumors which are fundamentally 

heterogeneous, namely gliomas. Also, the prediction of overall 

survival and the experimentally evaluate the uncertainty in the 

segmentation of tumors. 

https://www.med.upenn.edu/cbica/bra

ts/ 

 

BrainWeb BrainWeb is a Simulated 

Brain Database (SBD). 

Magnetic resonance imaging (MRI) It comprises a collection of realistic volumes of MRI data 

produced by an MRI simulator, a normal brain database and MS 

lesion brain database. To evaluate the performance of various 

image analysis methods in a setting where the truth is known. 

https://brainweb.bic.mni.mcgill.ca/bra

inweb/ 

 

ISLES2015 

& 

ISLES2016) 

Ischemic Stroke Lesion 

segmentation. 

Multi-spectral MRI images. A public dataset of diverse ischemic stroke cases for 

Segmentation. Provides stroke lesion/clinical outcome 

prediction from acute MRI scans. 

http://www.isles-

challenge.org/ISLES2015/ 

http://www.isles-

challenge.org/ISLES2016/ 

ISLES2017 Ischemic Stroke Lesion 

segmentation. 

Multi-spectral MRI images. Stroke lesions segmentation dataset includes acute stroke 

imaging scans and manually outlined lesions on follow-up scans. 

http://www.isles-

challenge.org/ISLES2017/ 

 

ISLES2018 Ischemic Stroke Lesion 

segmentation. 

CT perfusion data. Stroke lesions segmentation provides Segmentation of stroke 

lesions based on acute CT perfusion data that includes new 

dataset of stroke patients and matching expert segmentations. 

http://www.isles-challenge.org/ 

 

IBSR The Internet Brain 

Segmentation 

Repository. 

Magnetic resonance imaging (MRI) Evaluation and development of brain segmentation methods. It 

provides manually-guided expert segmentation results along 

with magnetic resonance brain image data. 

https://www.nitrc.org/projects/ibsr/ 

 

ABIDE I & 

ABIDE II 

Autism Brain Imaging 

Data Exchange. 

Functional magnetic resonance imaging (R-

fMRI) 

Promote discovery science on the brain connectome in ASD. It 

is a multi-international site, sharing previously collected resting 

http://fcon_1000.projects.nitrc.org/in

di/abide/abide_I.html 

https://www.med.upenn.edu/cbica/brats/
https://www.med.upenn.edu/cbica/brats/
https://brainweb.bic.mni.mcgill.ca/brainweb/
https://brainweb.bic.mni.mcgill.ca/brainweb/
http://www.isles-challenge.org/ISLES2015/
http://www.isles-challenge.org/ISLES2015/
http://www.isles-challenge.org/ISLES2016/
http://www.isles-challenge.org/ISLES2016/
http://www.isles-challenge.org/ISLES2017/
http://www.isles-challenge.org/ISLES2017/
http://www.isles-challenge.org/
https://www.nitrc.org/projects/ibsr/
http://fcon_1000.projects.nitrc.org/indi/abide/abide_I.html
http://fcon_1000.projects.nitrc.org/indi/abide/abide_I.html
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state functional magnetic resonance imaging (R-fMRI), 

anatomical and phenotypic characterization, particularly in 

regard to measures of core ASD and associated symptoms. 

http://fcon_1000.projects.nitrc.org/in

di/abide/abide_II.html 

 

OASIS Open Access Series of 

Imaging Studies. 

OASIS-1: Cross-sectional MRI Data in Young, 

Middle Aged, Nondemented and Demented 

Older Adults. 

OASIS-2: Longitudinal MRI Data in 

Nondemented and Demented Older Adults. 

OASIS-3: Longitudinal Neuroimaging, Clinical, 

and Cognitive Dataset for Normal Aging and 

Alzheimer’s Disease (MRI & PET). 

The goal of OASIS is to make neuroimaging databases publicly 

accessible to the scientific community. This multi-modal dataset 

created by the Knight ADRC and its related studies is compiled 

and freely distributed.  

https://www.oasis-brains.org/ 

 

HCP The Lifespan Human 

Connectome Project 

Development. 

Namely structural MRI, resting state fMRI, task 

fMRI, and diffusion MRI. 

The goal of the Human Connectome Project is to provide an 

unparalleled compilation of neural data, an interface to access 

this data graphically and the ability to reach unprecedented 

conclusions about the living human brain. 

http://www.humanconnectomeproject.

org/ 

 

ADNI Alzheimer’s Disease 

Neuroimaging Initiative. 

Dataset (ADNI1, ADNI-GO, ADNI2 and ADNI3) 

includes MRI and PET images, genetics, 

cognitive tests, CSF and blood biomarkers as 

predictors of Alzheimer’s disease. 

The goal of ANDI is to discover, improve, standardize, and verify 

the biomarkers and clinical trial interventions used in AD 

clinical studies. 

http://adni.loni.usc.edu/ 

 

iSeg-2017 

and  

iSeg-2019 

Challenge data 6-month 

Infant brain MRI 

Segmentation. 

Magnetic resonance imaging (MRI) for data 6-

month Infant brain. 

These challenges aim to promote automatic segmentation 

algorithms on 6-month infant brain MRI from multiple sites. 

http://iseg2017.web.unc.edu/ 

http://iseg2019.web.unc.edu/ 

 

IXI Information eXtraction 

from Images dataset. 

Magnetic resonance imaging (MRI) from 

normal, healthy subjects. 

To facilitate the computational study of brain development. https://brain-development.org/ixi-

dataset/ 

MIDAS Designed Database of 

MR Brain Images of 

Healthy Volunteers. 

Magnetic resonance imaging (MRI) from 

normal, healthy subjects. 

Analyze illness through empirical review of the awareness of the 

variety of shapes identified by magnetic resonance (MR) images 

of the brain of healthy anatomical structures. 

http://insight-

journal.org/midas/community/view/21 

 

BALSA The Brain Analysis 

Library of Spatial maps 

and Atlases database. 

Magnetic resonance imaging (MRI). BALSA is a structured archive of reference data precisely 

mapped to surfaces and volumes of the brain atlas, including 

different forms of spatial maps extracted anatomically and 

functionally, as well as brain connectivity. 

https://balsa.wustl.edu/study/show/W

G33 

 

TCIA The Cancer Imaging 

Archive. 

Magnetic resonance imaging (MRI). Glioblastoma that has been recently identified and treated with 

surgery and standard concurrent chemotherapy and radiation 

treatment (CRT) with adjuvant chemotherapy is included in 

TCIA. 

https://wiki.cancerimagingarchive.net

/display/Public/Brain-Tumor-

Progression 

 

PBTA Pediatric Brain Tumor 

Atlas.  

Magnetic resonance imaging (MRI) Full genomic data (WGS), RNAseq, proteomics, longitudinal 

clinical data, imaging data (including MRIs and radiology 

records), histology slides, pathology reports, and matching 

tumor/normal are all included in PBTA. 

https://cbttc.org/pediatric-brain-

tumor-atlas/ 

 

PING Pediatric Imaging, 

Neurocognition, and 

Genetics  

Magnetic resonance imaging (MRI). The aim is to create a broad MRI and genetics data resource that 

can be shared freely with the science community. The data 

resource provides information on the development of children's 

mental and emotional functions. 

https://www.nitrc.org/projects/ping/ 

 

CoRR The consortium for 

Reliability and 

Reproducibility. 

Magnetic resonance imaging (MRI). resting 

state fMRI (R-fMRI) and diffusion imaging data. 

Aims to promote the evaluation of reliability and reproducibility 

of the test-retest for functional and structural connectomics. By 

concentrating on fundamental phenotypic tests, which are 

generally common in the field of neuroimaging, as well as 

important for interpretation and sample characterization. 

http://fcon_1000.projects.nitrc.org/in

di/CoRR/html/index.html 

 

http://fcon_1000.projects.nitrc.org/indi/abide/abide_II.html
http://fcon_1000.projects.nitrc.org/indi/abide/abide_II.html
https://www.oasis-brains.org/
http://www.humanconnectomeproject.org/
http://www.humanconnectomeproject.org/
http://adni.loni.usc.edu/
http://iseg2017.web.unc.edu/
http://iseg2019.web.unc.edu/
https://brain-development.org/ixi-dataset/
https://brain-development.org/ixi-dataset/
http://insight-journal.org/midas/community/view/21
http://insight-journal.org/midas/community/view/21
https://balsa.wustl.edu/study/show/WG33
https://balsa.wustl.edu/study/show/WG33
https://wiki.cancerimagingarchive.net/display/Public/Brain-Tumor-Progression
https://wiki.cancerimagingarchive.net/display/Public/Brain-Tumor-Progression
https://wiki.cancerimagingarchive.net/display/Public/Brain-Tumor-Progression
https://cbttc.org/pediatric-brain-tumor-atlas/
https://cbttc.org/pediatric-brain-tumor-atlas/
https://www.nitrc.org/projects/ping/
http://fcon_1000.projects.nitrc.org/indi/CoRR/html/index.html
http://fcon_1000.projects.nitrc.org/indi/CoRR/html/index.html
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well as changes resulting from different imaging techniques or 

sequences. In this regard, GANs-based data augmentation has 

shown impressive performance in broad computer vision tasks. The 

capacity of GAN to fit the generated distribution of noise variables 

with a  

sharp value function to the real one is attributed to its excellent 

generalization capabilities. Specifically, Shrivastava et al. 

(SimGAN) beat the state-of-the-art with a relative 21 percent gain 

in eye-gaze prediction [31].   Typically, the most direct application 

of GANs is data generation, as a kind of generative model. This is 

to benefit from the distribution of actual samples and to generate 

samples compliant with distribution. The majority of current GAN 

research focuses on improving the effectiveness and utility of 

imagine synthesis and generating capabilities. As a result, GANs are 

increasingly widely employed and have been used to augment 

training medical images in a number of studies with promising 

outcomes. For medical image synthesis, applied GAN research may 

be broadly categorized into two groups: unconditional image 

synthesis and conditional image synthesis. Here, we concentrate on 

GAN-based synthesis techniques, which are divided into two 

categories: conditional (cross modality) as an example shown in 

Fig. 2, Conditional synthesis of a reconstructed two-dimensional 

super resolution MR image by using different GAN-based 

algorithms [32], and unconditional medical image synthesis, as Fig. 

3 shows visual results by CycleGAN and switchable CycleGAN on 

the ABCD Study Dataset, T1w to T2w image synthesis [33]. 

3.1.1 Unconditional Brain Image Synthesis 

Unconditional synthesis involves the generation of random noise 

images with no other conditional information. A vast amount of 

work has recently surfaced in the field of unsupervised medical 

image generation using GANs, enabling the resolution of issues like 

class imbalance and data scarcity [34], encouraging data simulation 

[35], and contributing to a better understanding of the existence of 

data distributions and their latent structure. The medical imaging 

sector uses DCGAN, WGAN, and PGGAN extensively because of 

their exceptional training stability. Table 3 lists all of the 

unconditional brain image synthesis research that are currently 

accessible. Preliminary studies have shown that the DCGAN can be 

used for realistic synthesizing. Using DCGAN, Bermudez et al. [45] 

were able to generate high-fidelity images that closely mimic 

acquired images. 

The promising results obtained are presumably due to a sufficiently 

homogeneous training set to solve a basic problem in terms of 

acquisition parameters and demographics. Previous quality control 

research by Kazuhiro et al. [46] indicates that DCGAN may help 

satisfy the requirement to provide large data sets with high-quality 

MR images, such that even seasoned neuroradiologists can be 

misled. Islam J and Zhang Y. [47] suggested a model based on the 

DCGAN model that can be extended using PET images in disease 

diagnosis systems and can help complement the training dataset. 

The suggested model's qualitative and quantitative assessment 

shows that the synthesized images are similar to actual brain PET 

images of multiple phases of Alzheimer's disease. Lee et al. [48] 

used CycleGAN to suggest a more stable model to synthesize brain 

tumor-segmented MR images due to its significant success in 

medical imaging. 

 
Figure2: Visual results of reconstructed two-dimensional super 

resolution MR image by using different GAN-based algorithms 

[32] 

 
Figure3. Visual results by CycleGAN and switchable CycleGAN 

on the ABCD Study Dataset, T1w to T2w image synthesis. 

Different rows display two individual brain MRI images [33]. 

In their research, the proposed generative networks demonstrated 

the capacity to synthesize not only brain tumor-segmented images, 

but also other medical images, such as lung and heart segmentation. 

Finally, Chang et al. [49] demonstrated that GANs are capable of 

producing pediatrics wbMRIs required to allow automatic anomaly 

detection. In this study, samples generated using the StyleGAN2 

architecture, in particular, had high visual quality, which the 

radiologist considered to be true. In order to identify tumor lesions, 

the role of anomaly detection using GAN trained on normal images 

was shown, that could minimize the need for limited examples of 

wbMRI tumors. 

3.1.2 Cross modality / Conditional Brain Image Synthesis 

In clinical practice, data from many medical imaging modalities is 

often combined. However, information obtained in one imaging 

modality may already be available in another, depending on the 

application. Accurate image conversion from one imaging modality 

to another may reduce the number of acquisitions required, which 

would reduce expenses and patient discomfort. As a result, 

conditional synthesis and cross modality (such as creating CT-like 

images from MR images) are thought to be highly beneficial. Table 

4. summarized available cross modality / conditional brain image 

synthesis studies. 

An early study by Nie et al. [24], which was motivated by the 

possibility of cell damage and cancer due to radiation exposure 

induced by CT imaging, used a cascades 3D FCNN to synthesize 

CT images from MR acquisitions. In addition to the adversarial 

training, the model is trained with a pixel-wise reconstruction loss 

and an image gradient loss to increase the realism of the synthetic 

CT images. The definition of using a generator cascade derives from 

an Auto-Context Model (ACM). In ACMs, a network contributes its 

output to a successful network as additional input to provide 

contextual information and facilitate adjustments. 

In cross modality synthesis, however, many studies have used the 

CycleGAN-based approach because it uses unpaired data to achieve 

higher-resolution image-to-image translation. Jin et al. [63] 

proposed a dual CycleGAN-based solution called MR-GAN, which 

uses paired and unpaired data together to address the problem of 

unpaired training context-misalignment and to remove rigid 

registration operations and blurred effects of paired training. The 

results suggest that structures inside the complex 2D brain slices can 

be effectively measured by the synthetic method and MR-GAN can 

also be used in CT-based radiotherapy planning by further removing 

image registration uncertainties while integrating MRI with CT and 

reducing clinical workload. Moreover, Welander et al. [69] 

evaluates two unsupervised GAN models (CycleGAN and UNIT) 

by comparing synthetic MR images generated to ground truth 

images for image-to-image conversion of T1 and T2-weighted MR 

images. The results indicated that the GAN models that have been 

applied can synthesize visually realistic MR images. and   that, 

relative to ground-truth results, models generating more visually 

accurate synthetic representations do not inherently have better 

quantitative error measurements. 

Another well-accepted model architecture used for conditional 
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image synthesis is the cGAN-based method, a two-stage deep 

learning framework is proposed by Pan et al. [68] to use all available 

MRI and PET for the diagnosis of Alzheimer's disease. 

The missing PET images are assigned, in the first stage, by 3D-

cGAN by learning bi-directional mappings between MRI and PET. 

While in the second stage, they create a landmark multi-modal 

multi-instance learning method for the diagnosis of Alzheimer's 

disease, based on the full MRI and PET, by automatically learning 

MRI and PET features in a data-driven way. The results demonstrate 

that their proposed two-stage deep learning framework beats 

traditional multi-modal approaches for classification of Alzheimer's 

disease and the synthetic PET images generated by their method are 

acceptable. By using a GAN model with a ResNet architecture as 

the generator, Emami et al. [62] present a cGAN-based approach to 

generating synCTs from T1-weighted post-Gadolinium MRI 

datasets. Their strategy presented strong potential to facilitate near-

real-time MR-only brain treatment planning. Additionally, a new 

end-to-end framework for medical image translation activities, 

introduced by Armanious et al. [65], is MedGAN. It integrates the 

conditional adversarial framework with a modern mix of non-

adversarial losses and a CasNET generator architecture to increase 

the accuracy of global outcomes and high frequency details. With 

no task-specific changes, MedGAN was introduced to three difficult 

medical imaging tasks: PET-CT translation, MR motion correction 

and PET denoising. MedGAN has quantitatively and qualitatively 

outperformed most related translation methods through the various 

proposed activities. Furthermore, Yu et al. [70] is exploring how to 

synthesize T1 FLAIR images to facilitate single modality brain 

tumor segmentation based on T1. Via the suggested 3D cGAN and 

the local adaptive fusion scheme, their structure produces the 

synthesized FLAIR images. The synthesized FLAIR images 

effectively improve the segmentation of entire tumors and tumor 

from the T1 modality with the two-way 3D CNN segmentation 

model. 

3.2 Brain Image Segmentation 

For many applications, such as detection and classification, 

segmentation of objects and organs in medical images is an 

important prerequisite. A significant role for cancer diagnosis, 

treatment, and assessment of treatment results is the segmentation 

of the tumor area. Using MRI, CT, PET, and multimodal 

segmentation techniques, such as PET/CT and PET/MRI, a large 

range of semi-automatic and automatic segmentation methods and 

techniques are used for tumor segmentation. In medical image 

processing, the tedious and time-consuming nature of manual 

segmentation made automated methods the most active area in 

Deep-Learning research. 

Numerous GAN-based brain segmentation techniques have been 

suggested, including semi-automatic techniques and fully automatic 

techniques. The primary goal of image segmentation is to divide an 

image into homogeneous regions that are mutually exclusive and 

exhaustive with respect to a predefined criterion. In brain tumors, 

segmentation includes the isolation of various. tumor tissues such as 

solid or active tumor, edema, and necrosis, from the normal brain 

tissues such as gray matter (GM), white matter (WM) and 

cerebrospinal fluid (CSF).  

Segmentation of brain tumors requires an objective measure that can 

be used to define the homogeneity of each tissue. There are two 

approaches to accomplish an analytical measure, namely 

unsupervised and supervised segmentation processes Fig. 4 

illustrate the visual segmented patch resulted from 3DAdGanSeg 

model for different types of brain tissue. In brain tumor 

segmentation studies that involve image textures [127], local 

histograms [128], and structure tensor eigenvalues [129], MRIs 

have different features that are adopted. MRI comprises multi-

sequence approaches that include T1-weighted (TI) 

Table 3: Unconditional brain image synthesis studies 
Paper Authors GAN-based Methods Modality Dataset/s 

Calimeri et al. (2017) [13] LAPGAN 3D-T1-weighted MRI Self-acquired 
Bowles et al. (2018) [14] PGGAN CT(CSF) + MRI(FLAIR) 2 unknown Datasets 

Han et al. (2018) [15] WGAN T1, T1c, T2-weighted and FLAIR MRI BRATS2016 

Beers et al. (2018) [16] PGGAN T1, T1 post-gadolinium, T2, and T2 FLAIR weighted MRI BRATS2017 
Bermudez et al. (2018) [17] DCGAN T1-weighted MRI BLSA 

Kazuhiro et al. (2018) [18] DCGAN T1-weighted MRI Self-acquired 

Mondal et al. (2018) [19] GAN (3D U-Net) T1, T1IR, FLAIR + T1, T2 -weighted MRBrains-2013 + iSeg2017 
Lee et al. (2020) [20] cycleGAN MRI Self-acquired 

Chang et al. (2020) [21] StyleGAN2 wbMRIs Self-acquired 

Islam J, and Zhang Y (2020) [22] DCGAN PET  ADNI 
Wang S et al. (2022) [23] UTC-GAN CT ISLES 2018 

Sun L et al. (2022) [24] HA-GAN CT, MRI COPDGen + GSP 

Mourad D etal.(2024) [25] CDGAN MRI OpenNeuro websire 
Xin B et al. (2024) [26] DA-GAN  T1, T2 BraTS2018 

Table 4: Cross modality / Conditional brain image synthesis 
Paper Authors GAN-based Methods Modality Dataset/s 

Nie et al. (2017) [27] (3D) FCN + ACM(GAN) MRI To CT ADNI 

Wolterink et al. (2017) [28] synthesisGAN (CNNs) MRI To CT / CT To MRI Self-acquired 

Nie et al. (2018) [29] (3D) FCN + ACM(GAN) MRI To CT/ 3T MRI to 7T MRI  ADNI 
Emami et al. (2018) [30]  cGAN (GAN + ResNet) MRI To CT IRB approved study dataset 

Jin et al. (2018) [31] MR-GAN (cycleGAN) CT To MRI Self-acquired 

Yang et al. (2018) [32] cycleGAN CT To MRI Self-acquired 

Armanious et al. (2018) [33] 
cGAN (U-block (U-nets) + CasNet 

(cascades residual blocks)  
PET To CT Self-acquired 

Wei et al. (2018) [34] cGANs MR To PET Self-acquired 
Yang et al. (2018) [35] cGAN T1 To/From T2 MRI  BRATS2015 

Pan et al. (2018) [36] 3D CycleGAN MR To PET ADNI 

Welander et al. (2018) [37] cycleGAN + UNIT T1 To/From T2 MRI HCP 
Yu et al. (2018) [38] (3D) cGAN T1 To FLAIR MR  BRATS2015 

Chen et al. (2018) [39] PTGAN (U-Net + CNN) T2-weighted To PD-weighted  IXI 

Olut et al. (2018) [40] sGAN (PatchGAN) T1, T2 To MRA IXI 
Ge et al. (2019) [41] pairwise GAN (U-Net + Markovian) Enhanced-T1-MRI and T2-MRI TCGA 

Dar et al. (2019) [42] cycleGAN (pGAN + cGAN) T1 To/From T2 MRI MIDAS + IXI + BRATS2015 

Kwon et al. (2019) [43] 3D GAN (VAE + α-GAN + WGAN-GP) T1, T2, FLAIR and T1-weighted ADNI + BRATS2018 + ATLAS 

Han et al. (2019) [44] CPGGAN T1-weighted (T1c) brain axial MRI 

Self-acquired (National Center for 

Global Health and Medicine, Tokyo, 

Japan) 
Ali et al. (2019) [45] CAE + DCGAN T1ce, T2 and FLAIR BRATS2017 

Yu et al. (2019) [46] Ea-GANs (U-Net + CNN) T1 To T2 and FLAIR  BRATS2015 + IXI 

Huang et al. (2019) [47] CoCa-GAN T1 MRI BRATS2015 
Armanious et al. (2019) [48] MedGAN (cGAN) Fluorine-18-FDG PET To CT Self-acquired 
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Anders Eklund (2019) [49] 3D PGAN T1-weighted To T1-weighted MRI  HCP 

Yurt et al. (2019) [50] mustGAN T1, T2, PD-weighted and FLAIR images IXI + ISLES 

Carver et al. (2019) [51] U-Net T1, T2, and FLAIR MRI BRATS2018 

Lei et al. (2020) [52] unified GAN T1-weighted, T1c Flair and T2-weighted MRI   

Kearney et al (2020) [53] A-CycleGAN + VAE MR To CT  

Xin et al. (2020) [54] TC-MGAN T2 To T1, T1ce and FLAIR BRATS2018 
Emami et al. (2020) [55] attention-GAN (encoder decoder + 3 CNN) T1-weighted to CT/synCT Self-acquired 

Hagiwara et al. (2020) [56] 
GAN (pixel-wise translation network + 

multiresolution classification) 
MRI To FLAIR Self-acquired 

Dikici et al. (2020) [57] cGANe (DCGAN + FD) T1-weighted to 3D MRI Self-acquired 

Koike et al. (2020) [58] cGAN (U-Net + PatchGAN) MRI To sCT / T1w, T2w and FLAIR TCIA 

Hamghalam et al. (2020) [59] GAN (Enh-Seg-GAN) FLAIR to FLAIR, T1c, and T2 BRATS2013 

Dar et al. (2020) [60]  sGAN + jGAN + rGAN + sr-sGAN 
T1-weighted, T2-weighted, PDweighted and 

FLAIR 
MIDAS + IXI + BRATS2015  

Li et al. (2020) [61] cycleGAN MRI To CT  

Bourbonne V et al. (2021) [62] cGAN based on the pix2pix architecture planning CT and MRI-T1 Self-acquired 

Gao X et al. (2021) [63] TPA-GAN + PT-DCN MRI to PET  ADNI-1 & ADNI-2 

Liu X et al. (2021) [64] cGAN (GAN + ResNet) MRI to CT Generated synCT images 
Abu-Srhan A et al. (2021)   [65] uagGAN Bidirectional MR-CT Self-acquired 

Matsui T et al. (2022) [66] Modified StarGAN fMRI HCP 

Mehmood M et al. (2022) [67] Pix2pix (cGAN) T1-CE T1-CE MRI 

Hu S et al. (2022) [68] BMGAN MRI to PET  ADNI 

Mukherkjee D et al. (2022) [69] AGGrGAN T1ce, T1, T2, T2-FLAIR Brain tumor dataset + BraTS 2020 

Zhan B et al. (2022) [70] D2FE-GAN T1, T2, T1c, FLAIR BraTS2015 + IXI  
 Zhao X et al. (2022) [71] sTBI-GAN T1 Self-acquired + ADNI 

Zhang H et al. (2022) [72] switchable CycleGAN  T1w to/from T2w  ABCD 

Wang J et al. (2022) [73] FedMed-ATL T1, T2, PD IXI + BraTS2021 
Huang P et al. (2022) [74] eCoCa-GAN and iCoCa-GAN Frameworks T1, T1c, T2, and T2-F BraTS19 

Luo Y et al. (2022) [75] AR-GAN LPET to HPET Self-acquired 

Qin Z et al. (2022) [76] ST-cGAN MRI IXI 
Bai X et al. (2022) [77] dual-generator GAN T1w to T2w Self-acquired 

Alrashedy et al. (2022) [78] Vanilla GAN and DCGAN T1, T2, PD Brain Tumor Classification-Kaggle 

Aljohani A et al. (2022) [79] Pix2Pix GAN T1, T2, PD IXI 
Finck T et al. (2022) [80] Extended pix2pix T1w, FLAIR to DIR Self-acquired 

Zhang J et al. (2022) [81] BPGAN MRI to PET ADNI 

Wang J et al. (2023) [82] FedMed-GAN T1, T2, PD-weighted images (PD) IXI + BraTS2021 
Gu X et al. (2023) [83] perceptual supervised GAN MRI to CT Self-acquired 

Li Y et al. (2023) [84] 3D StyleGAN T1 ADNI + OASIS 

Zhang X et al. (2023) [85] BCGAN CBCT to CT  Self-acquired 

Jin Y et al. (2023) [86] 3D Contrastive Learning GAN T1w, FLAIR to PET-Aβ ADNI 

Wang B et al. (2023) [87] 

feature-consistency GAN & three-

dimensional encoder-decoder network with 

mean absolute error loss 

synthesizing CBV maps using T1-weighted 

images, contrast-enhanced T1-weighted 
images, and apparent diffusion coefficient 

(ADC) maps 

Self-acquired SCALE-PWI 

Cao B et al. (2023) [88] ACA-GAN T1, T1GD, T2, FLAIR BraTS2020 
Hamghalam M et al. (2024) [89] ESGAN + EnhGAN FLAIR, T1, T1c, T2 BraTS 2013 + BraTS 2018 

You S et al. (2024) [90] FA-GAN MRI to PET ADNI 

Huang Y et al. (2024) [91] BrainGAN T1, T2, T1c, FLAIR MIDAS + IXI + BraTS 2018 
Zhang Y et al. (2024) [92] Unified Framework based on GAN T1+T2+T1Gd→FLAIR and T1+PD→T2 BraTS2019 + IXI  

Jiang M et al. (2024) [93] cGAN based on the pix2pix architecture T1WI, T2WI, FLAIR, and DWI from CT  Self-acquired 
Fard AS et al. (2024) [94] Pix2pix (cGAN) SPECT from PET and MRI Self-acquired 

Tabassum M et al (2024) [95] pix2pix WGAN T1, T2, and FLAIR to T1c BraTs2023 

  

Figure4. The Visual Segmented Patch Resulted From 3DAdGanSeg model for Different Types of Brain Tissue from Source Domain (dHCP 

Dataset) [127] 
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and T1-weighted contrast-enhanced (T1c), T2-weighted and T2-

weighted fluid attenuated inversion recovery (FLAIR) techniques 

that are used for brain tumor segmentation. 

In brain tumor segmentation studies, deep-learning-based 

techniques are becoming common, as their success is superior in 

fields, such as object detection [130], image classification [131] and 

semantic segmentation [132]. An important method for image 

recognition and prediction is the Convolutional Neural Network 

(CNN). However, CNN is mainly used for patient segmentation, 

assessment, and recovery time estimation of brain tumors [133]. In 

brain tumor segmentation, there are a variety of unsolved issues. As 

an example, the goal of brain tissue segmentation or anatomical 

segmentation of the brain is to mark each voxel or pixel into a 

distinct class of brain tissue. This segmentation presumption is that 

no tumor tissue or other abnormalities are included in the brain 

image [134][135]. Besides that, some research methods return the 

single label segmentation mask or the tumor core center as the point 

of interest without further reasoning and segmentation being done. 

Segmentation techniques can be roughly divided into four 

categories: threshold-based techniques, region-based techniques, 

model-based techniques, and pixel/voxel classification techniques 

[136]. Researchers have typically used pixel-wise or voxel-wise loss 

for segmentation, such as cross entropy. In automatically obtained 

segmentations, where a voxel-wise unstructured loss is usually used 

to train them, this can lead to holes and fragments. In addition, in 

deep networks, the pixel-wise assessment and optimization 

mechanism is not adequate to remove notions of anatomical 

structures.  To resolve these downside, additional corrections for the 

CNNs architecture required, such as Conditional Random Fields 

(CRFs) and Statistical Shape Models (SSMs) [137][138]. These 

additional methods are usually hard to optimize. A potential solution 

to these issues is the GANs, which offer a different learning flow. 

As outlined in Table (6), only GAN-based segmentation approaches 

to brain medical imaging research are discussed in this section. 

Numerous GAN-based brain segmentation techniques have been 

suggested, including semi-automatic techniques and fully automatic 

techniques. The primary goal of image segmentation is to divide an 

image into homogeneous regions that are mutually exclusive and 

exhaustive with respect to a predefined criterion. In brain tumors, 

segmentation includes the isolation of various tumor tissues such as 

solid or active tumor, edema, and necrosis, from the normal brain 

tissues such as gray matter (GM), white matter (WM) and 

cerebrospinal fluid (CSF). Segmentation of brain tumors requires an 

objective measure that can be used to define the homogeneity of 

each tissue. There are two approaches to accomplish an analytical 

measure, namely unsupervised and supervised segmentation 

processes. Early research by Moeskops et al. [139] indicates that the 

use of the GAN training strategy in CNNs not only increases the 

reliability of methods of semantic segmentation, but also puts non-

semantic segmentation methods closer to semantic methods. A 

superior efficiency of GANs in the segmentation of normalized 

patches of brain tumors is also highlighted by Li et al. [140]. 

Through preserving the premise that the distribution of tumor image 

pixels is partially different from that of a healthy reconstruction 

image, tumor segmentation can be done easily by comparing the 

input image with the healthy image reconstructed. The adversarial 

loss can also be used as an adaptively trained indicator of similarities 

between the segmented outputs and the input image annotated. 

Instead of computing the similarity in the pixel domain, the 

discriminatory network then projections the input to a low-

dimensional manifold and evaluates the similarity there. The 

adversarial loss is then determined from a network trained 

adaptively during the generator's progress. Xue et al. [27] suggest 

the SegAN structure that uses the U-Net as the GAN generator 

architecture. This was shown to be successful in applying multi-

scale spatial constraints on segmentation maps and achieved state-

of-the-art results. In addition to adversarial and pixel-wise losses, 

they demonstrate that pixel-dependencies are learned best when 

using a multiscale loss function. Output loss on unseen images is 

one of the recognized difficulties of most supervised segmentation 

approaches. Yang et al. [148] employed an end-to-end training 

adversarial network composed of a segmentor and a discriminator 

in a pixel-wise classification way. Their segmentor is a 3D residual 

U-Net designed to be conscious of contours by applying contour 

constraints to the training process. In order to provide auxiliary 

supervision, the discriminator network is trained alongside the 

segmentation network. They demonstrated that the neural network 

was able to generate predictions that closely resemble reality and 

fine-tune predictions due to subtle anomalies by adding additional 

constraints by contours and adversarial training to the model. In 

addition, a 3D image segmentation using 3D Pix2Pix GAN, named 

Vox2Vox, was introduced by Cirillo et al. [189] to segment brain 

gliomas. Their group of numerous Vox2Vox models re-transform 

high-quality segmentation outputs. Besides that, not only for image 

segmentation, but also for further image augmentation, their 

Vox2Vox model can be used as they stated. Moreover, Weninger et 

al. [152] have suggested an unsupervised method of semantic 

segmentation for gliomas in brain MRI, which can classify the three 

distinct types of tumor tissue. Differently, Rezaei et al. [190] 

suggested end-to-end trainable architecture for semantic brain tumor 

segmentation by conditional adversarial training for the multi-class 

classification of brain tumors. They utilized cGAN and trained a 

CNN semantic segmentation along with an adversarial network that 

discriminates against segmentation maps from the real images or the 

segmentation network. These networks learn a loss adapted to the 

task and data at hand, which makes it applicable in unseen data. Yu 

et al. [70], however, used an 11-layer, two-pathway 3D CNN 

segmentation model to efficiently segment brain tumors with the 

synthesized FLAIR-like, created from their proposed 3D cGAN and 

T1 MR images, achieving high performance on multimodal 

segmentation of brain tumors. The synthesized FLAIR images only 

improve the segmentation of entire tumors and tumor core 

components efficiently from the T1 modality. 

Yet, due to the distinct image characteristics of multiple modalities, 

multimodal segmentation using a single model remains very 

difficult. The extraction of modality-invariant functionality is a 

critical issue. Previous methods of multimodal segmentation needed 

paired images of n-modality. A two-stream unified attentional 

generative adversarial network (UAGAN) is proposed by Yuan et 

al. [149] to overcome the constraint of having paired multimodal 

images. They incorporate the features of all streams of segmentation 

and translation and   recalibration of features is carried out with 

attentional blocks to highlight valuable features. Brain tumor 

segmentation studies show that, in most cases, their UAGAN 

framework achieved better efficiency.  

Moreover, the issue of paired multimodal medical image shortage 

can be alleviated.  Even while GANs-based approaches have 

allowed a major advance in brain image segmentation. In general, 

experimental findings suggest that rivalry is closed between 

segmentors that use and do not use adversarial training. 

3.3 Brain Image Reconstructions 

The diagnostic accuracy of obtained medical images can be 

restricted by noise and artifacts because of restrictions of clinical 

environments, such as radiation dosage and patient comfort. In brain 

medical diagnostics, Magnetic Resonance Imaging (MRI) is 

commonly used. A key challenge in medical imaging is fast MR 

regeneration without losing data. Any kind of motion artifact is 

directly decreased by rapid acquisition and restoration and is thus 

highly desirable. In order to recreate images, classic compressed 

sensing-based solutions specifically use k-space information [191]. 

In images with quick inference, the potential to foster realism makes 

GANs an obvious candidate for solving the problem of MR 

reconstruction. GAN-based MR reconstruction analysis focuses on 

the alteration and combination of well-known architectures with 

suitable loss functions. In the following, Table (7) above, 

summarized available brain reconstruction GAN-based medical 

images studies. 

Yang G et al., [192] presented an early study on GAN-based MR 

reconstruction concentrating on the DAGAN architecture. A 

perceptual loss is applied to adversarial and pixel-wise losses in this 

approach to compare deep derived features in real and generated 

data, which also improves the model's stability. Also, by modifying 

loss functions to retain frequency information, they refine the 

DAGAN architecture. Quan et al. [195], who added a refinement 
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network to distinguish pixel-wise and perceptual information-based 

training, has revised the DAGAN architecture. Centered on the 

reconstruction of data in the missing frequencies, they suggest a 

cyclic training strategy. Moreover, they suggest using a generator 

chain to resolve the uncertainties that have been generated in 

previous generators. In addition to ensuring fidelity of image 

domain data, frequency domain data fidelity is often enforced when 

raw K-space data is usable in MR reconstruction. 

Otherwise, Pix2pix-based is a well-accepted model used to maintain 

data fidelity in situations where multiple image modality data can 

be co-registered. For MRI reconstruction, the simple pix2pix 

structure has been used in several studies includes [193][197][198]. 

In order to cope with volumetric details and boost the reliability of 

the proposed GAN model, researches in [222] are adapting the 

SRGAN with 3D convolutional layers. To overcome the blurring 

effect in the reconstructions, their loss function blends a pixel-wise 

loss with a Gradient-Based Loss (GDL).  

GAN-based methods of reconstruction usually apply alternative loss 

functions to the initial structure. A software-only architecture for 

high-quality MRI reconstruction using only 52 percent of the initial 

k-space data was suggested by Shitrit and Raviv [193]. The main 

concept is to use an adversarial loss in addition to the loss of L2. 

Also, Zhang et al. [200] suggested a multi-channel GAN model for 

parallel MRI reconstruction that uses multi-channel complex-valued 

k-space data directly. By introducing a new loss function to merge 

adversarial and perceptual loss in image reconstruction for better 

artifact reduction. Recently the proposed framework of Shaul et al. 

[206] uses the capabilities of the U-Net and GAN architectures for 

high-quality MRI reconstruction. They provided up to 20% of k-

space data with a deep learning model for MRI reconstruction and 

demonstrated its usefulness as a real-time software-only approach 

for MRI acceleration. A two-stage GAN process for estimating the 

missing k-space samples and fixing aliasing artifacts in the image-

space is the basis of the proposed method. This is achieved by an 

end-to-end optimization mechanism involving image-space, k-

space, and adverse loss functions. 

Differently, A multi-level Densely Connected Super-Resolution 

Network (mDCSRN), which is a hybrid of the WGAN model and a 

revised version of DenseNet, was proposed by Chen et al. [197]. To 

overcome the substantial memory footprint of the problem of 3D 

convolution. In addition, in other study, Chen et al. [205] applied a 

3D U-Net deep convolutional neural network approach to enhancing 

dipole inversion problems in the reconstruction of QSM 

(Quantitative susceptibility mapping). The proposed QSMGAN 

model is based on a 3D U-Net architecture with an improved input 

phase receptive field relative to the output. Further refinement to the 

network was then accomplished by the use of the WGAN-GP with 

gradient penalty training strategy. Their approach effectively 

produces reliable QSM maps from single orientation step maps and 

performs substantially better than conventional dipole inversion 

algorithms that are non-learning-based. Their findings indicate that 

their suggested approach  

Table 6: Brain segmentation medical images studies 
Paper Authors GAN-based Methods Modality Dataset/s 

Moeskops et al. (2017) [96] GAN (FCN + DN)  T1-weighted MRI Self-acquired 

Li et al. (2017) [97] CNN + GAN T1, T1c, T2-weighted and FLAIR MRI BRATS 2017 
Kamnitsas et al. (2017) [98] GAN ((3D) CNN)   MPRAGE, FLAIR, T2 and PD MRI (for TBI) 2 unknown Datasets 

Rezaei et al. (2017) [99]  
cGAN (U-Net + Markovian 

GAN) 
T1, T2 -weighted MRI  BRATS 2017 

Rezaei et al. (2018) [100] cGAN (U-Net+ LSTM) T1, T1c, T2-weighted and FLAIR MRI BRATS 2017 

Xue et al. (2018) [101] 
SegAN (GAN + novel multi-scale 

loss function) 

T1c, T2-weighted and FLAIR MRI 

Segmentation 
BRATS 2013 + BRATS 2015 

Mondal et al. (2018) [102] DCGAN T1, T1IR, FLAIR + T1, T2 -weighted MRBrains-2013 + iSeg2017 

Bowles et al. (2018) [14] PGGAN CT(CSF) + MRI(FLAIR) 2 unknown Datasets 

Yang et al. (2018a) [35] cGAN T1 To/From T2 MRI  BRATS2015 

Rezaei et al. (2018) [103] 
3D voxel-GAN (S (U-Net) + D 

(FC Markovian PatchGAN)) 

T1, T2, T1ce, and Flair + 4DPWI, CBF, CBV, 

MTT, Tmax 
BRATS2018 + ISLES2018 

Yu et al. (2018) [38] (3D) cGAN T1 To FLAIR MR  BRATS2015 

Baur et al. (2018) [104] 
AnoVAEGAN (VAE + 

AnoGAN) 
FLAIR and T1 images Self-acquired 

Zhu et al. (2018) [105] GAN (SR (LFSR))  T1-weighted (T1Gd) MRI BRATS2018 

Yang et al. (2018b) [106] 
GAN (S (3D Residual U-Net) + D 

(auxiliary discriminator)) 
T1, T1ce, T2, and FLAIR MRI BRATS2018 

Yuan et al. (2019) [107] UAGAN (U-net) T1Gd, T2 and FLAIR 
Medical Segmentation Decathlon 
dataset 

Rezaei et al. (2019) [108] 3DJoinGANs MRI + CT  ISLES2018  

Liu et al. (2019) [109]  3D U-Net    

Weninger et al. (2019) [110] VAEs + GANs FLAIR and T1CE MRI BRATS2018 

Cui et al. (2019) [111] DGAN   

Tokuoka et al. (2019) [112] 
3D U-Net + Cycle-GAN based 

UDA  
T1w, T2w, T1ce and FLAIR BRATS2015 + BRATS2017 + ADNI 

Shi et al. (2019) [113]  UG-net (U-Net) + GAN 3D T1-weighted and T2-weighted brain MRI CIND Center in San Francisco + ADNI 

Hamghalam et al. (2020) 
[114] 

GAN (2D-U-net + 2D FCN) FLAIR MRI BRATS2019 

Sun et al. (2020) [115] 
Parasitic GAN (S (3D U-Net) + G 
(3D GAN) + D (PatchGAN)) 

T1, T1ce, T2, and FLAIR MRI BRATS2015 + BRATS2017 

Li et al. (2020) [116] TumorGAN (CycleGAN) T1, T1ce, T2, and FLAIR MRI BRATS2017 

Nema et al. (2020) [117] RescueWNe T1, T1c, T2, and FLAIR MRI BRATS2015 + BRATS2017 
Yuan et al. (2020) [118] UAGAN T1, T1Gd, T2 and T2 FLAIR 3 collected datasets from other studies 

Cirillo et al. (2020) [119] Vox2Vox (3D U-Net) 
T1, T1-weighted (T1Gd), T2-weighted, and T2 

FLAIR 
BRATS2018 

Giacomello et al. (2020) 

[120] 
SegAN-CAT (SegAN) T1, T1c, T2-weighted and FLAIR MRI BRATS2015 + BRATS2019 

Hamghalam et al. (2020) 
[59] 

GAN (Enh-Seg-GAN) FLAIR to FLAIR, T1c, and T2 BRATS2013 

Wang S et al. (2021) [121] CPGAN 3D T1w ATLAS 

Cui S et al. (2022) [122] GAN-segNet T1, T1w, T1c, T2, T2w, FLAIR BarTS2018 
 Zhao X et al. (2022) [123] TBI-GAN T1 Self-acquired + ADNI 

Wang S et al. (2022) [23] UTC-GAN CT ISLES 2018 

Khaled A et al. (2022) [124] GAN Transfer Model T1, T1w, T2, T2w, FLAIR iSEG2017 + MRBrains 

Zhu L et al. (2022) [125] 
GMMS(DualMMP-

GAN+CACNN-Wnet) 
T1, T1w, T1c, T2, T2w, FLAIR BarTS2018 

Neelima G et al. (2022) 
[126] 

DeepMRSeg + Optimizer (SPO) T1, T1w, T1c, T2, T2w, FLAIR BarTS2018 
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Khaled A et al. (2022) [127] multi-stage GAN T1, T1w, T2, T2w, FLAIR iSEG2017 + MRBrains 

Zoghbi A et al. (2022) [128] CADe system T1c Figshare 

De Asis-Cruz J et al. (2022) 

[129] 
FetalGAN rs-fMRI Self-acquired  

Prajapati R et al. (2022) 

[130] 
cGAN + patchGAN T1-w OASIS 1 

Niu K et al. (2022) [131] QBrain T1-w SLANT-27 + Self acquired  

Huang L et al. (2022) [132] transformer-based GAN T1, T1GD, T2, FLAIR BraTS2015+BraTS2018+BraTS2020 

Dong D et al. (2022) [133] AMD-DAS  MRI + CT RSNA 2019 + MSD challenge 
Kiani Kalejahi B et al. 

(2023) [134] 
AC-GAN T1, T1GD, T2w, T2FLAIR BraTS 2019 

Narayanan SJ et al. (2023) 
[135] 

DCGAN+pix2pix GAN T1, T2, PD BraTS 2021  

Sille R et al. (2023) [136] DCGAN T1, T1GD, T2, FLAIR BarTS2015 

Güven et al. (2023) [137] SSimDCL   

Xie B et al. (2023) [138] MLP-GAN Brain Vessel DeepVesselNe 

Fan C et al. (2023) [139] U-Patch GAN SPECT, TI, MRT1, MRT2, PET, FDG The whole Brain Atlas 

Tao C et al. (2023) [140] VAE-GAN  T1w, T1c Self-acquired  

Datta P et al. (2024) [141] ViT+ GAN T1w 
BraTS 2020 + Masoud2021 + SARTAJ 

+ Figshare + BR35H 

Raut P et al. (2024) [142] Pix2PixNIfTI T1w, T2w, T1ce, FLAIR BraTS2021  

Usman Akbar M et al. 

(2024) [143] 
progressive GAN30+StyleGAN T1, T1wGD, T2w, T2FLAIR BraTS2020+BraTS2021 

Asadi F et al. (2024) [144] StyleGAN2-ada T1, T2, FLAIR TCIA 
Hamghalam M et al. (2024) 

[89] 
ESGAN + EnhGAN  T1, T2, T1c, FLAIR BraTS2013+BraTS2018 

Shaari et al. (2024) [145] 3DAdGanSeg T1w, T2w dHCP + Schizophrenia Bulletin 2008 
Paramarthalingam A et al. 

(2024) [146] 
Keras GAN models Brain tumor CE-MRI 

Table 1: Brain reconstructions medical images studies 
Paper Authors GAN-based Methods Modality Dataset/s 

Yu et al. (2017) [147] cGAN T1-weighted MRI  IXI 

Yang G, et al. (2017)[148]  dubbed DAGAN T1-weighted MICCAI 2013 grand challenge  
Shitrit and Raviv (2017) 

[149] 
GAN MRI Self-acquired 

Armanious et al. (2018) [150] 
cGAN (Cascade U-Net + Markovian 
GAN (PatchGAN) 

CT + (FLAIR) MRI   Self-acquired 

Quan et al. (2018) [151] cycleGAN  MRI IXI 

Sanchez and Vilaplana (2018) 
[152] 

SRGAN (3D) T1-weighted MRI ADNI 

Chen et al. (2018) [153] 3D mDCSRN-GAN (WGAN-GP) (3D) T1-weighted MRI HCP 

Dar et al. (2018) [154] GAN (rsGAN) T1-weighted, T2-weighted and PD-weighted MIDAS + IXI + BRATS2015  
Ran et al. (2018) [155] WGAN T1, T2, PD-weighted MRI IXI + BrainWeb 

Zhang et al. (2018) [156] GANCS T1, T2 weighted MRI Self-acquired 

Armanious et al. (2018) [157] MedGAN (cGAN) T1 weighted MRI Self-acquired 

Wang et al. (2018) [158] 
3D c-GANs (3D U-net-like 

generator) 
3D PET Self-acquired 

Armanious et al. (2018) [159] CasNet (cascades residual blocks) T1 weighted MRI / PET (2D axial slices) Self-acquired 
Latif et al. (2018) [160] U-Net MRI BRATS2015 

Chen et al. (2020) [161] SMGAN (U-Net +WGAN-GP) QSM Self-acquired 

Shaul et al. (2020) [162] DCE-MRI sequences T1, T2, PD, and FLAIR IXI + DCE-MRI + MS-lesion 
Usman et al. (2020) [163] CG-SENSE + GAN(U-Net) T2 FLAIR BRATS2018 

Dar et al. (2020) [60]  sGAN + jGAN + rGAN + sr-sGAN 
T1-weighted, T2-weighted, PD weighted and 

FLAIR 
MIDAS + IXI + BRATS2015  

Li G et al. (2021) [164] RSCA-GAN  CS-MRI  Calgary Campinas brain MR 

Lv J et al. (2021) [165] PI-GAN T1w, T1SAG, FLAIR 
Calgary-Campinas brain MR + 

Self acquired  
Han C et al. (2021) [166] MADGAN T1w, T1c OASIS-3 + Self acquired  

Zhao Y et al. (2021) [167] mi-GAN sMRI ADNI 

Sandhiya B et al. (2021) [168] DCGAN+ Faster R-CNN  MRI Self-acquired 
Fei Y et al. (2022) [169] BiC-GAN LPET to SPET Self-acquired 

Pan J et al. (2022) [170] CT-GAN DTI, rs-fMRI ADNI 
Lui X et al. (2023) [171] BTMF-GAN T1WI, CE-T1WI, T2WI, FLAIR BraTS2019 

Li X et al. (2023) [172] DR-CAM-GAN CS-MRI  
MPRAGE + diencephalon 

challenge + OASIS 
Cong S et al. (2024) [173] DDASR T1w ADNI-1 

Tudosiu PD et al. (2024) 

[174] 
3D generative model T1w ADNI + UKB 

Zhou X et al. (2024) [175] GAN-NOV + GAN-VAN T1w ADNI + NACC 

Zuo Q et al. (2024) [176] UCT-GAN fMRI ADNI 

Wang Y et al. (2024) [177] MEaTransGAN LPET to SPET Self-acquired 

Table 8: Brain detection medical images studies 
Paper Authors GAN-based Methods Modality Dataset/s 

Alex et al. (2017) [178] GAN T1, T2, FLAIR and & T1 post contrast MRI ISLES + BRATS 2014 

Chen and Konukoglu (2018) 
[179] 

WGAN-GP T2-weighted MRI 
HCP (train) + BRATS2015 
(test) 

Baumgartner et al. (2018) 
[180] 

WGAN + VA-GAN T2-weighted MRI ADNI 

Han et al. (2018) [181] PGGAN T1c brain axial MR images BRATS 2016 

Han et al. (2019) [182] PGGAN T1-weighted (T1c) MRI BRATS2016 
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Vu et al. (2019) [183] 
Adversarial Dual Autoencoders 

(ADAE) 
 HGG and LGG  HCP + BRATS2017 

Han et al. (2019) [44] CPGGAN T1-weighted (T1c) brain axial MRI 

Self-acquired (National Center 

for Global Health and Medicine, 

Tokyo, Japan) 

Sun et al. (2020) [184] ANT-GAN FLAIR MRI BRATS2018 + LiTS 
Shen et al. (2020) [185] adGAN FLAIR MRI BRATS2017 

Han C et al. (2021) [166] MADGAN T1w, T1c OASIS-3 + Self acquired  

Hu N et al. (2022) [186] GAN-based Method CT to MR (FLAIR) Self-acquired 
Saravanakumar S et al. (2022) 

[187] 
semi-supervised GAN MRI ADNI  

Kuttala D et al. (2022) [188] Dense GAN + Dense Attentive GAN  sMRI ABIDE II 

Devika K et al. (2022) [189] 
GAN-based encoder-decoder 

framework 
longitudinal sMRI  ABIDE I + ABIDE II 

Pan J et al. (2023) [190] CT-GAN DTI, rs-fMRI ADNI 
Sahoo S et al. (2023) [191] GAN ensemble Hybrid CNN-based  CE-MR Figshare 

Datta P et al. (2024) [141] ViT+ GAN T1w 
BraTS 2020 + Masoud2021 + 

SARTAJ + Figshare + BR35H 
Siddiquee MM et al. (2024) 

[192] 
 Brainomaly T1w ADNI  

could produce more detailed, COSMOS-like QSM maps from 

single-orientation efficiently. 

In a different prospective, Dar et al. [92] introduced a GAN-based 

architecture to accelerate multi-contrast MRI acquisitions by 

exploiting low-spatial-frequency, high-spatial-frequency and 

perceptual priors at the same time. In order to maximize recovery of 

the target contrast, the proposed rsGAN uses high-spatial-frequency 

prior in-formation in the source contrast. In comparison to pure 

learning-based synthesis, rsGAN bases extracted images from data 

obtained from sampled acquisitions of the target contrast. The 

proposed rsGAN approach surpasses state-of-the-art methods of 

reconstruction and synthesis with enhanced high-frequency tissue 

structure recovery and efficiency improvements against degradation 

or loss of features. 

Overall, the underlying methods are almost the same with all the 

reconstruction tasks. MR is a particular case since it has a well-

defined forward and backward mechanism, i.e. Fourier 

transformation, so that raw K-space data can be integrated.  Better 

reconstructed results can be achieved by using more data, either raw 

K-space or images from other sequences. Additionally, using 

adversarial loss provides more visually pleasing results in general 

than using pixel-wise reconstruction loss alone. But the model can 

hallucinate unseen structures by using adversarial loss to balance the 

generated and actual data distribution. However, Pixel-wise 

reconstruction loss tends to combat this issue if paired samples are 

usable, even if the model has been conditioned on all normal images, 

then used to recreate images of diseases, there would always be a 

hallucination problem due to domain overlap. 

3.4 Brain Image Detection 

Detecting anomalies from images using supervised Deep Learning 

algorithms involves a significant volume of annotated training data. 

GANs approach this issue in a separate way by either improving 

datasets with synthetic samples, or by mapping distributions by 

which deviations may be observed as outliers. In the following, 

Table (8). summarized available GAN-based brain detection 

medical images studies. The presented techniques demonstrate good 

success in the detection of anomalies while greatly decreasing the 

volume of training data despite getting more structural difficulty 

compared to other implementations since they belong to various 

facets of GANs. While in the aforementioned detection methods, the 

role of the discriminator is emphasized. However, the various 

databases and measures used for the analyses dispute a fair 

comparison between the approaches. 

On MR images, Alex et al. [223] employed GAN for brain lesion 

identification. The generator has been used to simulate the 

distribution of regular patches and the discriminator has been used 

to measure the posterior likelihood of patches in the test image based 

on each pixel.  

The modeling of the distribution of normal data with GANs is a 

different approach to unsupervised anomaly detection. The most 

comparable normal image to the query image is then reconstructed 

by the GAN and irregularities can be observed as differences 

between the query and the reconstructed image. To learn the data 

distribution of normal brain MR images, Chen and Konukoglu [224] 

utilized an adversarial auto-encoder. By examining the learned 

latent space, the lesion image was then mapped to an image without 

lesion, and the lesion could be highlighted by computing the residual 

of these two images.  

Baumgartner et al. [225] suggested the Visual Attribution GAN 

(VA-GAN) for the detection of Alzheimer's disease, influenced by 

AnoGAN. VA-GAN extracts the map of adjustments that turn the 

image class from normal to diseased and uses it to detect 

abnormalities. Vu et al. [228] suggested a different semi-supervised 

GAN-based anomaly detection method, called Adversarial Dual 

Autoencoders (ADAE), such that both generator and discriminator 

are composed of autoencoders, where anomalies are observed using 

discriminator pixel-wise reconstruction error during the testing. 

Results from ADAE shows that the model in multiple problem 

domains is robust. 

Patch reconstruction is based on the aforementioned GAN-based 

anomaly detection techniques, the main aim of which is to recreate 

the corresponding normal counterpart provided a new image patch. 

Shen et al. [230] recently proposed the adGAN model, which is a 

discriminative patch-level model that explicitly learns the boundary 

of normal data distribution and can output the anomaly score of a 

new image patch without the mechanism of reconstruction.  The 

comprehensive experiments indicated that on all suggested datasets, 

adGAN is consistently superior to its rivals. 

The above techniques demonstrate good success in the detection of 

anomalies while greatly decreasing the volume of training data 

despite getting more structural difficulty compared to other 

implementations since they belong to various facets of GANs. 

While in the aforementioned detection methods, the role of the 

discriminator is emphasized. However, the various databases and 

measures used for the analyses dispute a fair comparison between 

the approaches. 

3.5 Brain Image Classification 

In the domain of deep learning applications, classification is 

considered as the most successful task that has been deployed. It is 

possible to extract hierarchical image features from a deep neural 

network trained discriminatively with image-wise class labels. The 

complexity of obtaining medical records, however, hinders their 

employment opportunities. GANs' ability to increase training data 

and derive domain-specific features from each class will probably 

help solve this constraint. A two-stage process strategy is primarily 

applied for the classification studies, with the first stage learning to 

increase the images and the second stage learning to classify by 

implementing the appropriate classification network. These two 

stages are trained independently without any contact between them. 

In the following, Table (9). summarized available GAN-based brain 

classification images studies.  

For the particular task of glioma classification, Ge et al. [73] 

suggested a pairwise GAN architecture to synthesize MR images in 

a cross-modality fashion. They also adopted a two-stage training 

strategy that proved that the approach introduced was efficient and 

robust, leading to a consistent improvement in test success in the 

classification of glioma. One year later, Ge et al. [238] have 

suggested a post-processing technique to incorporate the outcomes 
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of the slice-level glioma subtype classification by plurality vote to 

produce the diagnostic outcome at the patient level. To learn the 

glioma feature using GAN-augmented MRIs followed by real MRIs, 

a two-stage coarse-to-fine training methodology is suggested. 

Results have shown that the proposed methodology is efficient and 

stable after testing the proposed training methodology using real and 

pairwise GAN-augmented MRIs as training results. 

For brain tumor type classification, Ghassemi et al. [239] suggested 

a method for data augmentation across distinct datasets. On different 

sets of MRI scans, a GAN is first trained to generate MRI like 

images as the outputs of its generative model and to differentiate 

them by their discriminator from real ones. The discriminator model 

is then presented for tumor type classification as a pre-trained deep 

neural network model and is fine-tuned over the main limited set of 

labeled MRI scans. They claimed that the results of the proposed 

model obtained the highest precision compared to state-of-the-art 

models. In addition, they argued that pre-training of CNN as a GAN 

discriminator is a dominant approach with a small amount of data 

for the implementation of deep learning. The findings, as stated 

earlier, indicate that the classification tasks benefit from the samples 

produced by the GAN.  

3.6 Brain Image Registration 

Although CNNs have been successfully used to align medical 

images across the network in a single forward-pass, GANs have 

emerged as a contender for more optimal registration mapping with 

their excellent image transformation capability. Table 9. 

summarized available GAN-based brain registration images studies. 

To automatically learn the similarity metric for training a 

deformable registration network, Fan et al. [242] suggested an 

unsupervised adversarial similarity network. A registration network 

that predicts the deformations is the model generator. Whereas the 

model discriminator is a discrimination network that decides when 

images are well matched and then supplies the registration network 

with misalignment information during training. Via adversarial 

training, both the registration and discrimination networks are 

trained, learning a metric for precise registration. The results of the 

proposed method show greater accuracy of registration relative to 

state-of-the-art registration methods.  

In addition, a cross-modality generative model for cross-modality 

image registration was proposed by Yang et al. [67]. The proposed 

approach is inspired by an atlas-based registration in which a non-

linear registration algorithm registers the source image to the target 

image. They reported that the proposed approach outperforms the 

state-of-the-art results on widely accepted MRI datasets in cross-

modality registration. 

With utilizing of autoencoder latent space feature maps that allow 

independent registration of datasets Mahapatra et al. [243] have 

suggested a GAN-based model for the registration of multiple forms 

of medical images using unsupervised domain adaptation and 

generative adversarial networks. The approach proposed achieves 

independent registration of the dataset where it is trained on one type 

of images and achieve state-of-the-art result in registering differing 

type of image. To produce the registered image and the 

corresponding deformation field, GANs are trained. Authors proved 

that the registration approach based on domain adaptation performs 

better than current methods that rely on large volumes of image 

registration training data. 

Due to the necessity of learning both local and global features in 

different scales to model the difference between distributions, 

GANs provide this useful information. Although GANs greatly 

boost the efficiency of registration procedures, the necessary 

performance can still not be achieved in certain real medical 

settings. 

3.7 Brain Image De-noising 

Diagnostic radiology imaging often involves a trade-off between 

radiation risk and image contrast. Reduced radiation exposure 

results in poorer contrast and signal-to-noise levels, which can 

enhance diagnosis but expose the patient to more dangerous 

radiation. Deep Learning has been successfully applied to improve 

the clarity and reduce noise in low-contrast images. However, 

images produced by these methods are often fuzzy. GANs, which 

are thought to promote the creation of clear lifelike images, offer a 

way to mitigate this problem. Many studies have acknowledged this 

capability, and a variety of methods have been proposed to modify 

GANs in order to de-noise photos of noticeably greater quality. 

Table 9 is summarized the available GAN-based brain de-noising 

medical image studies. 

By addressing the problems of image synthesis and image de-nosing 

as crucial elements of manifold learning, Bermudez et al. [45] 

investigated implicit manifold. By using DCGAN that has proved to 

generate high-resolution, high-fidelity images in an unsupervised 

manner, they utilized a skip-connected autoencoders for image 

denoising. Connections between convolutional layers in the 

autoencoder retain structural features to improve resolution. They 

revealed that this de-noising methodology outperforms the latest 

state-of-the-art FSL SUSAN de-noising tool.  

For the simultaneous correction of rigid and non-rigid motion 

artifacts from multiple body areas, Armanious et al. [201] expand 

their previous MedGAN model. They further demonstrate the utility 

of jointly correcting rigid and non-rigid motion artifacts by 

contrasting them with an identical model trained solely on a single 

type of motion artifact. After quantitatively and qualitatively 

comparing the results against many state-of-the-art GAN-based 

strategies, the updated MedGAN demonstrated superior results in 

the motion correction task. 

Although the findings appear convincing visually, it appears like an 

appropriate, quantitative criterion is not yet available to determine 

the strength of procedures in retaining essential medical image data. 

The results of the forementioned papers benefit from the ability of 

GANs to learn the key common features of the image domain. 

4. GANs Potentials and challenges 

The GANs models are an effective methodology for a wide range of 

tasks that has gained tremendous popularity in the area of medical 

image processing. The sections described above define GANs and 

the application of variants and their implementations in different 

brain medical image domains. The potential and challenges of using 

GANs are provided in this section. It also emphasizes the main 

difficulties and complications of using GANs.  

4.1 GANs Potentials 

GANs offer major benefits over other supervised or unsupervised 

learning methods. Its main advantage is that it does not include any 

description of the form of the generator model's probability 

distribution. Naturally, GAN thus avoids density forms that need to 

represent complex and high-dimensional distributions. GANs main 

advantages includes: 

They are an unsupervised learning method: In medical imaging, 

collecting labelled data is a manual procedure that requires a lot of 

time and is costly to acquire.  Because GANs learn the internal 

representations of the data they can be trained using unlabeled data, 

hence do not need labeled data. 

Capable to generate data: The capacity of GANs to produce data 

that nearly looks like the genuine thing is one of its best features. 

Their ability to expand training datasets, operate in semi-supervised 

or unsupervised environments, and address issues like class 

imbalance makes them extremely useful in medical imaging. In 

cross-modality image synthesis, they have excelled, particularly in 

converting one sort of image to another. Conditional GANs reduce 

the expenses and dangers associated with medical imaging while 

producing data from several modalities, giving physicians access to 

richer, more varied datasets that aid in decision-making. 

Ability to learn data density distributions: GANs can learn 

complex and hierarchical data distributions. The capacity to learn 

data distributions opens up the possibility of detecting in actual 

datasets unseen abnormal cases. Existing GANs methods 

demonstrate good success in the detection of anomalies in brain 

medical images while greatly decreasing the volume of training 

data. 

Using discriminator as a classifier: A discriminator and a 

generator are the two primary parts of a GAN after training. 

Curiously, the discriminator may also function as a classifier, which 

makes it helpful for tasks like object classification, in addition to 

evaluating the generator's output. The classification capability of 

GANs has been extensively utilized in brain imaging. Furthermore, 
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GANs excel in extracting valuable features from medical images, 

particularly when pixel-based approaches are insufficient. Their 

adversarial training methodology, which enables them to 

comprehend the most profound and semantic facets of the material, 

is responsible for this. In applications like brain image 

segmentation, registration, and classification, this property has 

proven especially useful. 

4.2 GANs Challenges  

In addition to such advantageous GAN utilities, there are also 

difficulties that need to be overcome for medical imaging to be 

effective. Although many improvements have been achieved to 

mitigate some of the training and evaluation issues of GANs, there 

are still some open challenges, includes: 

Training challenges of GANs 

There are several concerns involved with GANs such as training 

process difficulties which include mode collapse, vanishing 

gradients and internal covariate shifts. 

Mode collapse: A typical problem with GANs is mode collapse, in 

which the generator produces outputs that lack variation and are 

strikingly similar, if not identical. This occurs because the 

probability distribution of the data is frequently multimodal and 

complicated, with several peaks denoting several sample groups. 

Mode collapse can occur when GANs are unable to adequately 

represent this complexity. In the worst situations, the generator may 

consistently provide almost the same output, a phenomenon known 

as total collapse. Thankfully, there are solutions for this issue, such 

as training separate GANs to handle different modes or encouraging 

the generator to generate a wider range of outputs during training by 

employing a broad collection of data samples. 

Vanishing gradients: Neural networks frequently experience 

disappearing gradients, particularly when backpropagating. The 

gradient tends to get smaller as it goes backward through the layers, 

from the last to the first. It can occasionally grow so tiny that the 

early layers either learn very little or cease to learn at all. This 

basically freezes their training because the weights in those first 

levels are rarely adjusted. We refer to this issue as the "vanishing 

gradients problem." Activation functions like as ReLU, 

LeakyReLU, or PReLU can be used to address this issue. They 

ensure that the network trains more efficiently by preventing the 

gradients from decreasing excessively during backpropagation. 

Batch normalization is another useful technique that improves the 

stability and effectiveness of the training process by normalizing the 

inputs to the hidden layers. 

An internal covariate shift: When the network's input distribution 

shifts, an internal covariate shift takes place. The training process is  

Table 9: Brain classification, registration and de-noising medical images studies 
Paper Authors GAN-based Methods Modality Dataset/s 

Classification 

Ge et al. (2019) [41] 
pairwise GAN (U-Net + 

Markovian) 
 Enhanced-T1-MRI and T2-MRI TCGA 

Ge et al. (2020) [193] pairwise GAN T1, T1e, T2, FLAIR IDH1 genotype TCGA 

Ghassemi et al. (2020) [194] CNN + GAN T1ce Self-acquired 

Gao X et al. (2021) [63] TPA-GAN + PT-DCN MRI to PET  ADNI-1 & ADNI-2 
Fei Y et al. (2022) [169] BiC-GAN LPET to SPET Self-acquired 

Alrashedy HH et al. (2022) [78] Vanilla GAN and DCGAN MRI Brain Tumor Classification-Kaggle 

Neelima G et al. (2022) [126] CAViaR-SPO + PO T1, T1w, T1c, T2, T2w, FLAIR BarTS2018 
Cao Y et al. (2023) [195] BNLoop-GAN dMRI, rsfMRI  ADNI 

Zhang M et al. (2024) [196] PA-Net MRI to PET  ADNI 

Zhou X et al. (2024) [175] GAN-NOV + GAN-VAN T1w ADNI + NACC 
Registration 

Fan et al. (2018) [197] GAN (cascades U-net) 3D brain images LPBA40, IBSR18, CUMC12 and MGH10 

Yang et al. (2018) [35] cGAN T1 To/From T2 MRI  BRATS2015 
Mahapatra et al. (2020) [198] CAEs + GAN T1 and dual echo T 2 −weighted ADNI-1 

Zheng Y et al. (2021) [199] SymReg-GAN T1, T2, CT 

BraTS 2018, ALBERTs, LPBA40, 

IBSR18, CUMC12, MGH10 and self-
acquired CT-MRI dataset 

Han R et al. (2022) [200] JSR network MR to CBCT  Self-acquired 

Zhu X et al. (2022) [201] 
TGAN 
(GAN_dr+GAN_ie) 

3D brain MRI Atlas, BrainWeb, RIRE 

Zhu X et al. (2022) [202] FSGAN T1, T2w BrainWeb, IXI, HGG, LPBA40 
Fu J et al. (2023) [203] MIG (AGM + QCM) T1w ADNI + OASIS-3 + GENIC (self-acquired) 

Li M et al. (2023) [204] GAN-based Method T1w HBN + ABIDE  

Liu S et al. (2023) [205] SCAM-GAN CT to MRI Self-acquired 
Liu M et al. (2023) [206] style-encoding GAN T1w UKBB + PPMI + ADNI + ABCD + ICBM 

Xie K et al. (2024) [207] MARINet T1w Self-acquired 

Rahmani M et al. (2024) [208] D²BGAN T1w, T2-FLAIR RESECT+ BITE 

Park Y et al. (2024) [209] GAN-MAT T2- from T1-weighted MRI  HCP + SMC + ABIDE-II 

De-noising 

Armanious et al. (2018) [157] MedGAN (cGAN) 3D PET Self-acquired 
Bermudez et al. (2018) [17] DCGAN T1-weighted MRI BLSA 

Christilin DA et al. (2021) [210] 
Residual Encoder- Decoder 

WGAN 
T1w TCIA 

Tian M et al. (2021) [211] conditional GAN T1w, T2w, PDw BrainWeb 

Li Z et al. (2022) [212] HDnGAN 3D T2 -SPACE FLAIR Self-acquired 

Yu M et al. (2023) [213] RIRGAN T1, T1ce, T2w, T2-FLAIR BraTS 2019 
Wang Q et al. (2023) [214] DISGAN T1w HCP (Insample) + Epilepsy + BraTS2015 

Zuo Q et al. (2023) [215] DiffGAN  fMRI to SC ADNI 

Fu Y et al. (2024) [216] MPGAN LPET to FPET Bern + UI  
Wu Y et al. (2024) [217] AttGAN-FT-2 LD PET, CT Self-acquired 

Cui J et al. (2024) [218] PMC2-GAN LPET to SPET BrainWeb 

slowed down by the hidden layers' ongoing need to adjust to the 

changing input distribution. As a result, the model takes a lot longer to 

converge to a global minimum. Methods such as batch normalization 

and other normalizing techniques can be applied to solve this problem. 

By stabilizing the input distribution, these methods provide faster and 

more seamless training. 

Training instability: One of the most significant difficulties in using 

GANs is training instability. For both conceptual and numerical 

reasons, traditional GAN training is frequently unstable [264]. This 

can result in problems like mode-hopping or mode collapse, where the 

model finds it difficult to converge correctly. The majority of solutions 

are made for computer vision datasets, where it is simpler to visually 

examine the produced images and identify faults, even if there is a lot 

of research focused on finding answers for these challenges. To 

increase the stability of GANs, methods such as feature matching, 

mini-batch discrimination, historical averaging, one-sided label 

smoothing, and batch or instance normalization have been suggested. 

But things become more complicated with medical imaging. Because 
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medical image modes are frequently less evident, it might be more 

difficult to identify erratic behavior or irrational results. Researchers 

have proposed unique loss functions and architectural modifications 

to address these issues. However, the medical industry lacks defined 

benchmarks and trustworthy assessment measures to accurately 

evaluate and gauge the effectiveness of various strategies. 

5. Evaluation matrixes diversities 

A potent and cutting-edge method for developing generative models 

is the use of GANs. In contrast to conventional neural networks, which 

are trained using a predetermined loss function until they converge, 

GANs function by comparing two models: a discriminator and a 

generator. The generator produces artificial images, while the 

discriminator gains the ability to discern between produced and real 

images. Simultaneously, these two models are taught, reining in one 

another. The disadvantage of this configuration is that there does not 

seem a simple loss function to gauge the generator's performance 

directly. Because of this, tracking training progress and evaluating the 

model's effectiveness in absolute terms are challenging Researchers 

have created a combination of qualitative and quantitative techniques 

to evaluate GANs according to the caliber and variety of images they 

generate in order to overcome this issue. These methods aid in 

assessing the model's performance even in the absence of a 

conventional loss metric [265]. 

5.1Quantitative measures: GAN generators are assessed 

quantitatively by allocating numerical scores that correspond to the 

degree of quality of images they produce. Metrics such as Average 

Log-likelihood, Coverage Metric, Inception Score (IS), Frechet 

Inception Distance (FID), Precision, Recall, and F1 Score are among 

the approximately 24 quantitative methods available for evaluating 

GAN models. Some of these measures are "model agnostic," which 

means they do not require to estimate the underlying probability 

distribution; instead, they regard the generator as a black box that 

simply has the capacity to sample images. However, measures like 

Average Log-likelihood are a little more complex since they need to 

approximate the probability distribution from the produced samples. 

Researchers may objectively evaluate a GAN's performance in terms 

of image quality and variety with the use of these quantitative 

techniques. 

5.2 Qualitative measures: Non-numerical qualitative measurements 

are based on comparison analysis or subjective assessment. Among 

them are Nearest Neighbors, Rapid Scene Categorization, Rating and 

Preference Judgment, Mode Drop and Mode Collapse Evaluation, and 

Network Internals Investigation and Visualization. The most popular 

method of these is Rating and Preference Judgment, which entails 

examining and assessing the produced pictures by hand. Human 

participants are asked to rank or contrast models according to how 

accurate or lifelike the produced images seem in these investigations. 

A more intuitive understanding of the GAN's performance is provided 

by this type of practical assessment, which can reveal insights that 

statistics alone cannot. 

There is still no consensus on the most effective method for assessing 

GANs. Quality, diversity, and realism are only a few of the features of 

picture production that are the subject of several measures, and no one 

score can encompass them all. However, by contrasting the statistical 

characteristics of produced and actual images, some measures, such as 

the Frechet Inception Distance (FID), have gained popularity since 

they provide a more impartial perspective. An effective assessment 

technique should be able to distinguish between authentic and fake 

images, identify problems such as mode collapse, which occurs when 

the generator generates outputs that are extremely similar, and detect 

overfitting, which occurs when the generator just replicates the 

training data. We should expect increasingly sophisticated and 

trustworthy methods to evaluate GAN performance as the field 

develops. 

However, when evaluating GANs in medical imaging, researchers still 

frequently rely on conventional pixel-wise measurements like Mean 

Squared Error (MSE) or Peak Signal-to-Noise Ratio (PSNR). 

Ironically, GANs were created to get around the drawbacks of these 

measures, which frequently fall short of capturing the finer features or 

perceived quality of pictures. Another problem is that many of these 

measures depend on comparisons with ground-truth images, which is 

not always feasible in semi-supervised or unsupervised environments. 

Because of this, it is challenging to assess GANs in jobs where ground-

truth data may be lacking or insufficient, such as image synthesis or 

reconstruction. 

The difficulty is increased by the fact that GANs are notoriously 

difficult to train because of their overall instability and 

unpredictability in initialization and optimization. This implies that in 

order to accurately assess their effectiveness, we require certain 

measures, as mentioned in [266]. Metrics that emphasize the clinical 

utility of produced images, such as how well they support diagnosis, 

might be significantly more significant in the field of medical imaging 

than conventional ratings. Regretfully, the research examined here 

have not looked at these customized measures too much. Future 

research should focus on improving assessment techniques since 

doing so will not only enhance our ability to evaluate GANs but also 

increase their usefulness and dependability for actual medical 

applications. 

6. Privacy and Credibility Issues in Data Generated by GANs 

Significant privacy issues and questions about the reliability of the 

produced data are brought up by the usage of GANs. The possibility 

that GANs will unintentionally remember and replicate particular 

details from the training data, raising the possibility of sensitive 

information leaking, is a major privacy concern. In medical imaging, 

for instance, if a GAN model were trained on a collection of patient 

scans, it may produce pictures that contained recognizable private 

information, jeopardizing patient privacy and breaking data protection 

laws. Since synthetic data does not always accurately reflect real-

world data distributions, trustworthiness is still another crucial issue. 

This calls into doubt the clinical or operational usefulness of data 

generated by GANs, especially in high-stakes applications like 

diagnostics where even little mistakes can have a big impact. It is 

frequently necessary to do thorough validation, be open about the 

constraints of the data produced, and conduct thorough testing against 

real-world datasets in order to ensure reliability. To address these 

concerns, privacy-preserving strategies like secure federated learning 

and differential privacy are being investigated; nonetheless, building 

confidence in synthetic data is still a significant obstacle that requires 

further study and regulatory supervision. 

7. Real-World Applications of GANs in Brain Imaging: Scenarios 

and Case Studies 

GANs have been deployed in real-world applications for brain 

analysis, particularly in medical imaging and neuroscience research. 

While many applications are still in the research or clinical trial phase, 

some have already been integrated into clinical workflows or are being 

actively used in healthcare settings. Below are examples of real-world 

deployments and case studies where GANs are making an impact in 

brain analysis: 

Synthetic Data Generation for Rare Disease Analysis 

Training AI models to detect rare brain conditions (e.g., gliomas, 

multiple sclerosis lesions) using synthetic data. For example, NVIDIA 

Clara AI: NVIDIA’s healthcare platform uses GANs to generate 

synthetic brain MRI scans for training AI models in hospitals where 

patient data is scarce [267]. This has been deployed in partnerships 

with institutions like the Mayo Clinic to improve tumor segmentation 

models. This approach has been particularly useful in developing 

models for rare diseases, where real-world data is limited. 

Super-Resolution MRI in Alzheimer’s Diagnosis 

Enhancing low-resolution MRI scans to improve visualization of brain 

structures like the hippocampus. For example, Alzheimer’s Disease 

Neuroimaging Initiative (ADNI): Researchers have integrated GAN-

based super-resolution tools into ADNI’s pipeline to enhance MRI 

scans for early Alzheimer’s detection [268]. Additionally, Siemens 

Healthineers: Collaborated with academic hospitals to deploy GAN-

powered MRI reconstruction tools (e.g., Deep Resolve) on Siemens 

scanners, reducing scan times while maintaining diagnostic quality 

[269]. 

Cross-Modal Synthesis for Radiation Therapy Planning 

Generating synthetic MRI scans from CT images to improve brain 

tumor targeting. As MD Anderson Cancer Center uses GANs to 

synthesize MRI-like images from CT scans for patients who cannot 
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undergo MRI (e.g., those with implants), streamlining radiation 

therapy planning [270]. Also, RaySearch Laboratories integrated 

GAN-based tools into their RayStation treatment planning system to 

reduce reliance on multiple imaging modalities [271]. 

Noise Reduction in fMRI for Decides Monitoring 

Removing motion artifacts from fMRI scans to improve brain activity 

mapping. GANs have been used in fMRI studies to remove motion 

artifacts caused by patient movement during scans. This has improved 

the reliability of brain activity mapping, which is crucial for research 

in neuroscience and clinical applications like epilepsy monitoring. For 

example, BrainVoyager a neuroimaging software suite that 

incorporates GANs for preprocessing fMRI data, used in research labs 

worldwide [272]. 

GANs for Stroke Rehabilitation Prediction 

Simulating brain recovery patterns to personalize rehabilitation 

strategies by using GANs to predict post-stroke recovery trajectories 

by analyzing MRI scans, enabling tailored rehabilitation programs. 

Arterys a cloud-based medical imaging platform that employs GANs 

to model stroke outcomes, deployed in partnership with hospitals like 

Stanford Health Care [273]. 

Ethical and Regulatory Considerations 

Addressing challenges in deploying GANs in clinical settings is 

essential. The U.S. FDA has cleared GAN-based tools like Subtle 

Medical’s SubtleMR, which enhances brain MRI quality using GANs. 

It is clinically deployed in over 100 imaging centers [274]. In addition, 

EU’s GDPR Compliance hospitals in the EU use GANs to generate 

synthetic data for research while adhering to strict patient privacy laws 

[275][276]. 

8. Discussion  

Recent years have seen a huge increase in the usage of GANs in 

research; the sections above describe how GANs function, their 

various variations, and their uses in brain image processing. Fig. 5 

illustrates that around 39% of these researches concentrate on brain 

image synthesis, with the most prevalent use case being cross-

modality or conditional synthesis shown in Fig.6. The reason for this 

is that GANs are especially adept at creating one kind of brain image 

from another, which is highly beneficial for medical imaging. 

The most often cited imaging method in GAN-related research is MRI 

because of the large number of publicly accessible MRI datasets and 

the time-consuming nature of gathering many MRI sequences. 

Patients and physicians can save a great deal of time and money by 

using GANs to efficiently generate one sequence from another. The 

adaptability and promise of this technology in increasing brain image 

analysis are demonstrated by the several innovative GAN-based 

techniques that researchers have presented for both unconditional and 

conditional image synthesis. 

 
Figure 5. Brain imaging GAN-Based Studies 

The efficacy of GAN-based methods frequently prompts doubts and 

calls for more research. For example, research such as that conducted 

by Frid-Adar et al. and Chuquicusma et al. has demonstrated that 

artifacts in the created samples can make it reasonably straightforward 

to discern between genuine and synthetic images in visual Turing tests 

[34] [35]. Furthermore, it might be difficult to get exact alignment 

across several imaging modalities, such CT and MRI. In an effort to 

address this, Nie et al. [61] combined adversarial feedback from a 

discriminator with voxel-wise loss from a CNN regression to produce 

more realistic synthetic CT images from MRI. For training, this 

approach still requires ideally aligned MR-CT pairings, which are not 

always accessible. 

Wolterink et al. [60] suggested employing CycleGANs for MR-to-CT 

synthesis in order to get around the requirement for paired data. A 

forward CycleGAN is trained to convert MR images into CT and back 

to MR, and a reverse CycleGAN is trained to convert CT images into 

MR and back to CT. The model is more adaptable and useful because 

of its cyclic consistency, which enables it to function without paired 

training data. Notwithstanding these developments, there are still 

issues with the artificial realism of images, artifacts, and other 

characteristics that set GAN-generated samples. 

The wider effects of these parameters on the performance and 

dependability of GAN-based models are still unclear, despite the fact 

 
Figure 6. Numbers of Brain imaging GAN-Based Studies in 

Different Application 

that GANs have shown promise for data simulation and augmentation 

in tasks like classification and segmentation. To find out how these 

factors affect GANs' overall efficacy in medical imaging and other 

fields, more investigation is required.  

Approximately 24% of the research concentrated on brain image 

segmentation due to the increasing popularity of image-to-image 

translation frameworks. In these situations, the generator is able to 

keep fine control over form and texture because to adversarial training, 

which makes it a potential method for segmentation tasks. The 

discrepancy between reference segmentations' discrete label masks 

and the generator's continuous probability values for every voxel and 

class, however, presents a problem for adversarial segmentation 

techniques. The discriminator may learn to take use of this difference 

instead of concentrating on enhancing the segmentation quality when 

it is taught to distinguish between the continuous outputs of the 

generator and the discrete reference masks. This demonstrates a 

significant drawback of using adversarial networks directly for 

segmentation tasks and emphasizes the necessity of creative fixes to 

close this gap. 

Designing the discriminator to assess the input image and its 

segmentation is a practical way to overcome this difficulty. An 

adversarial encoder network was suggested by Xue et al. [27] that 

looks at the reference (ground truth) segmentation in addition to the 

input image and the projected segmentation. They added a scalar 

adversarial loss based on the L1 loss between the multi-scale features 

that were extracted from the input and the projected segmentation. 

This method showed notable gains in accuracy and proved to be very 

successful for brain tumor segmentation in MRI. 

In a similar vein, Kamnitsas et al. [141] used domain adversarial 

networks to tackle the problem of domain changes between MR 

collection procedures. By adding multi-connected adversarial 

networks to the basic design, they improved it and made it possible for 

the domain discriminator to process data from several feature extractor 

layers. A more resilient domain classifier resulted from this approach, 

which also improved the gradients returning to the core network and 

increased domain adaption. They also demonstrated how 3D CNNs for 

volumetric image processing may use this domain adversarial training 

technique. Their approach proved useful in managing domain changes 

when it was successfully tested on multi-modal MR brain scans of 

traumatic brain injuries, where one of the modalities varied between 

datasets. Both papers show creative approaches to using adversarial 

training for segmentation tasks, whether it is to handle domain changes 

in multi-modal data or to increase segmentation accuracy through 

multi-scale feature analysis. These methods highlight adversarial 

networks' adaptability and potential in medical image processing. 

Brain image reconstruction accounted for about 14% of those 
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surveyed studies. While several GAN architectural modifications are 

suggested, it appears that ResNet is the most common generator 

architecture. In addition to the adversarial loss, most of the methods 

enforce a pixel-wise loss. In order to retain critical information in the 

missing data reconstruction, other loss functions are also applied. 

GANs can have satisfactory accuracy in the reconstruction of missing 

data in medical images due to their synthesis abilities. In comparison, 

for the quantitative assessment of proposed approaches, much of the 

analysis for image reconstruction uses conventional metric system 

methods. Particularly where GAN introduces additional losses, in the 

absence of a standardized reference metric, there is difficulties in 

improving the visual standard of an image. 

In order to fully analyze the quality of GAN-generated images, 

Armanious et al. [203] has suggested that MedGAN evaluations 

should incorporate both subjective assessments by subject matter 

experts, such as seasoned radiologists, and perceptual analysis. 

Although this method offers in-depth insights, it has some serious 

disadvantages, including being costly, time-consuming, and 

challenging to generalize in other situations. This calls into doubt the 

validity and applicability of such measurements for broad use.  

The possible loss of data fidelity in GAN-based techniques is another 

significant issue, especially in unpaired training situations. GANs 

sometimes have trouble preserving information from small or subtle 

aberrant areas during cross-domain image-to-image translation, which 

can be important in medical imaging. Notwithstanding these 

drawbacks, the results of the experiments under evaluation indicate 

that GANs execute faster and more accurately than alternative 

techniques for tasks like data reconstruction. This demonstrates both 

their promise and the necessity of more improvement to meet current 

obstacles. 

A further 8% of brain imaging studies are concerned with anomaly 

detection. In contrast to previous applications, papers proposed for 

anomaly detection by GANs have more structural sophistication 

because they gain from multiple facets of GANs. In particular, in 

detection methods, the importance of the discriminator is emphasized. 

While significantly lowering the amount of training data, the 

aforementioned techniques demonstrate good effectiveness in 

anomaly identification. The trials' diverse datasets and metrics, 

however, make it difficult to compare the approaches in a practical 

way. In the unpaired image transfer based on CycleGAN, lesions 

inside an image may be excluded because of the distribution matching 

effect if the intended distribution is created from medical images 

without pathology. It is also possible to use this negative impact to 

discover abnormalities if the source and target domains are of the same 

imaging modality and just differ in terms of normal and pathological 

tissue Sun et al. [57]. Lastly, the little amount of research that is still 

available on classification, registration, and de-noising makes it 

challenging to draw any conclusions.  

The remining 15% brain imaging studies is aggregating the studies that 

have been carried out on brain image classification, registration and 

denoising as shown in Figure2. Despite being extensively used for 

tasks like as image synthesis and brain imaging segmentation, GANs' 

application in classification, registration, and denoising is restricted 

because of a number of unique difficulties. Because GANs are 

primarily built for creating new data rather than differentiating 

between classes, they are not well suited for classification jobs that 

need exact class separation. While several versions try to include 

classification skills, such auxiliary classifier GANs (AC-GANs), these 

models frequently lack the accuracy and durability needed for 

trustworthy diagnostic application. The difficulty of registration is in 

matching multi-modal or multi-timepoint brain pictures, which calls 

for extremely precise spatial changes. 

In addition, GANs are not built to tackle spatial alignment challenges 

and might not be precise enough, researchers prefer more conventional 

approaches, such non-rigid registration techniques, which yield more 

dependable results. Finally, because the adversarial training process 

does not naturally emphasize maintaining tiny, diagnostically 

significant features, GANs may find it difficult to remove noise from 

images without unintentionally creating artifacts or deleting important 

details. Because of this, researchers are concentrating on models that 

are especially tailored for the complex needs of classification, 

registration, and denoising in brain imaging, leaving the potential of 

GANs in these domains underutilized. 

Finally, GANs lack meaningful metrics to determine the performance 

of GANs. It is therefore very difficult to compare various variants of 

GANs and still based on the visual evaluation of the generated images. 

Furthermore, due to lack of rigorous and reliable criteria, it is difficult 

to determine which are the best GANs algorithms. A reasonable 

evaluation is required because it will allow a very wide variety of 

appropriate algorithms to be identified. Also, to have the best 

algorithms and their understanding and which algorithms in practice 

would make a significant difference [266]. Researchers have 

suggested different evaluation methods for GANs in order to resolve 

the above-mentioned problems [55]. In addition, various measurement 

criteria are preferred for different implementations, as different 

applications need different trade-offs for various metrics. A mixture of 

training and evaluation metrics for the target application is critical to 

consider. 

9. The Impact of GANs Application in the Healthcare Domain 

Generative Adversarial Networks (GANs) are revolutionizing medical 

imaging by improving diagnostic precision and addressing data 

scarcity. For instance, GANs enable super-resolution enhancements, 

transforming low-quality CT or MRI scans into high-resolution 

images, which is particularly impactful in resource-limited settings 

where advanced imaging equipment is unavailable [277]. This 

capability reduces reliance on costly hardware and expands access to 

accurate diagnostics globally. Additionally, GANs facilitate tasks like 

lesion segmentation and tumor detection by generating synthetic data 

that augment training datasets, thereby improving the robustness of AI 

models used in radiology and pathology [277]. Such advancements not 

only elevate diagnostic confidence but also democratize access to 

advanced healthcare tools, bridging gaps between high- and low-

resource regions. 

Additionally, GANs are pivotal in synthesizing patient-specific 

medical data, enabling personalized treatment strategies while 

mitigating privacy concerns. By generating synthetic yet realistic 

patient images, GANs allow researchers to create diverse datasets for 

training predictive models without compromising sensitive 

information [278]. For example, GAN-based image-to-image 

translation can convert MRI scans into synthetic CT images, aiding in 

radiotherapy planning without exposing patients to additional 

radiation. Beyond imaging, GANs are used in predictive analytics, 

such as forecasting patient readmission risks by augmenting 

imbalanced datasets with synthetic samples, which improves model 

accuracy in identifying high-risk individuals. This synthesis of 

multimodal data supports tailored interventions, from precision 

oncology to chronic disease management, fostering a shift toward 

individualized care paradigms [278]. 

While GANs offer transformative potential, their deployment raises 

ethical and operational challenges. Biases in training data can 

propagate into synthetic outputs, potentially exacerbating health 

disparities if underrepresented populations are excluded from datasets 

[279]. For instance, GANs trained on homogeneous data may fail to 

generalize across diverse patient demographics, leading to inequitable 

diagnostic outcomes. Moreover, the lack of standardized validation 

frameworks for synthetic data poses risks in clinical adoption, as 

inaccuracies could compromise patient safety. Regulatory bodies must 

establish guidelines to ensure transparency, fairness, and 

accountability in GAN applications. Collaborative efforts between 

technologists, clinicians, and policymakers will be critical to harness 

GANs’ benefits while addressing ethical pitfalls, ensuring these tools 

align with equitable and patient-centered healthcare goals [280]. These 

impacts underscore GANs’ dual role as both a catalyst for innovation 

and a subject of scrutiny, demanding balanced integration into 

healthcare systems to maximize societal benefit. 

10. Research Directions and Key Research Pathways 

The redesign network architectures, adding new loss functions, and 

creating alternative optimization algorithms are the three primary 

strategies that recent research has suggested to overcome the 

difficulties with GANs. As demonstrated by research such as in [37] 

[39] [43] redesign network architectures seek to optimize the structure 

of GANs. In works like [40] [44], new loss functions are put forth with 
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the goal of enhancing output quality and training stability. To improve 

convergence, various optimization methods adjust or regularize the 

optimization procedure. Many creative approaches have been 

developed to address the inherent difficulties of GANs as a result of 

the increasing amount of study on the subject, opening the door for 

more reliable and efficient models. 

In addition, we also look at more general topics for further research to 

expand on previous findings. In order to overcome frequent problems 

including unstable training, disappearing gradients, and mode 

collapse, a number of academics have suggested solutions, including 

creating more resilient network designs, regularizing goals, improving 

training techniques, and adjusting hyperparameters. However, because 

these issues are intrinsically linked, these solutions frequently involve 

trade-offs, especially between variety and image quality. In order to 

develop more reliable and efficient GAN models for medical imaging 

applications, future research will need to carefully weigh these trade-

offs.One potential path for study might be to focus on image quality 

without suffering from the poor variety of images. In order to explore 

more tractable formulations and to make training stable and 

transparent, another important research path is to provide a theoretical 

framework for managing problems in the training phase of GANs. In 

addition, it was shown to approach the creation of solutions with 

algorithmic enhancements for improved performance rather than 

better precision, as the majority of related works largely stressed the 

achievement of state-of-the-art accuracy.  

Complex geometric connections are often overlooked by current data 

synthesis methods in medical imaging, which limits their use in 

modalities like MRI, CT, and ultrasound where maintaining structural 

integrity is essential. The next generation of GAN designs will 

probably concentrate on incorporating sophisticated geometric 

modeling skills in order to get beyond these restrictions. For example, 

architectures such as Spatial GANs (SAGANs) and Geometric GANs 

(GeoGANs) have demonstrated potential in producing data that more 

closely resembles the anatomical structures and spatial connections 

seen in actual medical imaging. In medical imaging, where even little 

spatial irregularities can affect the validity of a diagnosis, these models 

promote spatial consistency and continuity by utilizing spatial 

attention processes and customized loss functions. 

Furthermore, bidirectional mapping capabilities are introduced by 

Bidirectional Generative Adversarial Networks (Bi-GANs) and 

Invertible Conditional GANs (IcGANs), which enable high-quality 

synthesis while maintaining geometric properties unique to the 

anatomy of interest. In order to efficiently recreate genuine pictures 

while synthesizing new ones, bi-GANs, for instance, use an encoder 

network to build a shared latent space. This makes the model 

extremely versatile for complicated tasks like multi-modal image 

translation and alignment. In applications like MRI to PET translation, 

where anatomical alignment is crucial, IcGANs further improve this 

by conditioning on certain geometric features, enabling fine control 

over synthetic picture qualities. 

Besides, by resolving issues with registration and alignment, models 

such as Spatially-Conditioned GANs (SC-GANs) and Deformable 

GANs offer an extra degree of refinement. The ability of SC-GANs to 

conditionally produce images in response to spatial limitations is 

especially useful for registration tasks that call for the alignment of 

structures across several imaging modalities. Conversely, deformable 

GANs use deformable convolutional layers that adjust to the spatial 

geometry of the input data, making them more useful for creating 

pictures that need precise spatial distortion, such as in some forms of 

elastography or ultrasound imaging. 

GANs can better manage the many geometric properties and 

correlations present in many medical imaging applications by merging 

these specific designs. This makes them reliable tools for real-time 

clinical applications that demand accuracy and spatial coherence, in 

addition to increasing their potential for producing synthetic data. 

These advancements open the door to more extensive GAN 

applications, from robust synthetic training data that satisfies the 

exacting validation requirements of medical imaging to realistic 

anatomical simulations. 

Although GANs were first created as entirely unsupervised models, 

real-world applications have demonstrated that adding some labeled 

input greatly improves the quality and control of their creation. This 

method, which is frequently used with Semi-Supervised GAN (SS-

GAN) architectures, shows that even a small number of labels may 

direct the model to produce outputs that are more precise and 

significant. For example, by anchoring the model to these important 

properties, a medical GAN might significantly increase the therapeutic 

relevance and variety of the produced images by using a small number 

of annotated photos of certain brain pathologies or anatomical 

locations. 

One well-known example is the Auxiliary Classifier GAN (AC-GAN), 

which adds an auxiliary output to predict labels in addition to creating 

images. Even with sparse labels, the generator may learn more focused 

features with the aid of an auxiliary prediction, resulting in higher-

fidelity images that correspond to the designated classes. In a similar 

vein, the Semi-Supervised GAN (SS-GAN) is an extension of 

conventional GANs that incorporates a discriminator that divides 

images into labeled and unlabeled categories. This improves the 

discriminator's capacity to differentiate between generated and 

realistic images, thereby improving the quality of the generator. A 

different strategy is the Label Propagation GAN (LP-GAN), which 

propagates labels using pseudo-labeling techniques on a tiny labeled 

set. This successfully amplifies the influence of limited labeled data 

without having to pay the high costs of complete labeling. 

Advanced models that can more adaptably and dynamically use both 

labeled and unlabeled data are probably where GAN integration with 

semi-supervised learning is headed. Examples of potential solutions 

are Self-Training GANs and Few-Shot GANs, which allow models to 

repeatedly refine themselves after self-generating labels based on the 

labeled subset. Furthermore, Conditional GANs (cGANs) may be used 

in semi-supervised contexts to generate varied, realistic data that 

generalizes effectively while conditioning on a restricted number of 

labels for certain features. By improving model resilience and 

lowering reliance on large labeled datasets, this semi-supervised 

method may revolutionize the application of GANs in areas where 

labels are expensive or hard to get, such as uncommon medical 

illnesses or highly specialized diagnostic imaging. 

The use of GANs for text production is being investigated more and 

more in the context of semi-automated medical report generation. 

Attentional GANs and Transformer-based GANs are two models that 

have the ability to provide thorough, diagnostically relevant image 

reports. By using attention methods to rank disease-critical 

information in the output text, these designs make sure that every 

report stays focused on important diagnostic markers that are pertinent 

to the particular imaging scenario. 

In order to provide structured and contextually correct text outputs that 

closely match physician standards, Attentional GANs, for instance, 

can weigh the significance of characteristics associated with diseases 

such as tumors, lesions, or fractures. Additionally, because 

Transformer GANs can capture long-range dependencies within 

complex medical narratives, they are especially well-suited for the 

nuanced task of report generation. This is because they integrate 

transformer layers, which are known for their strengths in sequence 

modeling, and produce reports that reflect the coherence and detail of 

documents authored by clinicians. 

Looking toward the future, to improve these designs to satisfy clinical 

requirements, cooperation between medical experts and AI 

researchers is essential. Doctors' knowledge of data annotation and 

clinically relevant feature selection is crucial, particularly when it 

comes to spotting subtle imaging patterns that automated algorithms 

could miss. Their participation guarantees that the attention 

mechanisms of the GAN are adjusted to the most diagnostically 

important characteristics, hence improving the quality of the reports 

that are produced. By including physician input into model 

improvement and diagnostic validation, this multidisciplinary synergy 

might possibly revolutionize physician roles and maximize the effect 

of GANs in medical imaging and report creation. As these 

technologies advance, GAN-assisted reporting may help enable a 

more accurate and efficient diagnostic process by lowering effort and 

improving report accuracy and consistency. 

Finding suitable measures to assess the consistency and quality of 

samples produced by GANs is, last but not least, a major difficulty. 

Determining how to evaluate this realism is not simple, even though 

many research use adversarial techniques to create realistic samples. 



Generative Adversarial Networks in Brain Imaging: A Decade-Long Review of Progress and Future Directions                                                             Shaari. 

JOPAS Vol.24 No.  1 2025                                                                                                                                                                                  92  

It becomes challenging to compare various implementations in the 

absence of uniform assessment criteria. Since various applications 

necessitate distinct trade-offs between parameters like picture quality, 

variety, and clinical relevance, a benchmarking framework is crucial. 

Developing a set of training and evaluation criteria appropriate to the 

intended application is essential to addressing this issue and 

guaranteeing a fair and insightful evaluation of GAN performance. 

Following are summarization the Key Research Pathways: 

Geometric Consistency in Medical Data Synthesis 

Current GANs often fail to preserve complex anatomical geometries 

in modalities like MRI, CT, and ultrasound, where structural integrity 

directly impacts diagnostic validity. Emerging architectures address 

this limitation by integrating spatial and geometric priors: 

• Spatial Attention Mechanisms: Models like Spatial GANs 

(SAGANs) use attention layers to enforce spatial coherence, 

producing anatomically plausible structures. 

•Bidirectional Mapping: Bi-GANs and Invertible cGANs (IcGANs) 

employ encoder-decoder frameworks to map between latent spaces 

and image domains, preserving geometric fidelity during tasks like 

MRI-to-PET translation. 

• Deformable Convolutions: Deformable GANs adaptively adjust 

kernel receptive fields to model tissue elasticity and distortions, 

enabling applications in ultrasound and elastography. 

These innovations enhance GANs’ ability to maintain spatial 

relationships, making them viable for tasks requiring precise 

alignment (e.g., multi-modal registration) and synthetic data 

generation for rare pathologies. 

Semi-Supervised Learning for Enhanced Generalization 

Incorporating limited labeled data into GAN training has proven 

effective for improving output controllability and clinical relevance: 

• Auxiliary Classifiers (AC-GANs): By predicting labels during 

generation, AC-GANs anchor outputs to clinically meaningful 

features, such as tumor morphology. 

•Self-Training Architectures: Few-shot and label-propagating GANs 

(LP-GANs) amplify small labeled datasets through pseudo-labeling, 

reducing dependency on costly annotations. 

• Hybrid Architectures: Transformer-GANs and attention-based 

models (e.g., Attentional GANs) integrate sequence modeling for 

tasks like automated report generation, prioritizing diagnostically 

critical features through learned attention weights. 

Future semi-supervised frameworks could enable dynamic label 

refinement and domain adaptation, particularly for rare diseases or 

specialized imaging protocols. 

Standardized Evaluation and Clinical Validation 

A major unresolved challenge is the lack of standardized metrics for 

assessing GAN outputs in medical contexts. Current adversarial 

metrics (e.g., Fréchet Inception Distance) often fail to capture 

clinically relevant features. To address this: 

• Domain-Specific Benchmarks: Develop task-specific evaluation 

criteria (e.g., structural similarity index for MRI, lesion consistency 

scores) co-designed with clinicians. 

•Multi-Dimensional Assessment: Balance metrics across quality (e.g., 

SNR, resolution), diversity (e.g., coverage of anatomical variations), 

and clinical utility (e.g., diagnostic accuracy of synthetic-augmented 

datasets). 

• Validation Pipelines: Implement rigorous human-in-the-loop 

validation, where radiologists assess synthetic images and reports for 

diagnostic plausibility. 

Collaborative Roadmap for Clinical Translation 

The next frontier lies in bridging AI innovation with clinical expertise: 

•Clinician-AI Collaboration: Integrate physician insights into feature 

selection, model training, and output validation to ensure outputs align 

with diagnostic workflows. 

•Regulatory Alignment: Establish guidelines for synthetic data usage 

in training and validation, addressing ethical and regulatory concerns. 

•Real-World Deployment: Optimize models for edge devices and 

PACS integration, ensuring compatibility with existing clinical 

infrastructure. 

By addressing these challenges, GANs could revolutionize medical 

imaging—from enabling low-cost synthetic training datasets to 

assisting in real-time diagnostics and personalized treatment planning. 

We can summarize these fsuture revolutionize to three main aspects:  

1. Quality-Diversity Synergy: A critical goal is improving image 

quality without sacrificing diversity. Current methods often prioritize 

one at the expense of the other, limiting their clinical utility. Novel 

architectures that decouple these objectives or introduce adaptive loss 

functions could resolve this tension. 

2. Theoretical Frameworks: Developing rigorous mathematical 

frameworks to analyze GAN training dynamics (e.g., convergence 

guarantees, equilibrium conditions) is essential for stabilizing training 

and improving interpretability. Such frameworks could unify disparate 

solutions and guide the design of more tractable optimization 

landscapes. 

3. Algorithmic Innovation Over Precision: While many studies focus 

on achieving state-of-the-art accuracy, future efforts should emphasize 

algorithmic robustness and computational efficiency. This shift would 

better align with clinical workflows, where reliability and speed are 

paramount. 

11. Conclusion 

    Generative Adversarial Networks (GANs) have gained significant 

popularity not only due to their ability to learn intricate, non-linear 

mappings between latent and data spaces but also because they can 

leverage large volumes of unlabeled image data, which are often 

underutilized in deep representation learning. This review paper 

provides an in-depth discussion on the various applications, 

architectures, available brain imaging datasets, and unresolved 

research challenges of GANs in medical image processing for brain-

related disorders. Despite their potential, GANs are notoriously 

difficult to train, with challenges such as instability, non-convergence, 

and mode collapse posing substantial obstacles. Addressing these 

issues should remain a focus of future research. Overcoming the 

difficulties associated with GANs may be possible by designing more 

efficient models through the adoption of suitable network 

architectures, activation functions, and optimization strategies. 

Although several GAN variants with distinct features have been 

introduced, challenges remain. There is still significant room for 

improving the theoretical foundations and methodologies behind GAN 

training. Additionally, the growing capabilities of deep networks 

present exciting opportunities for novel applications in brain imaging 

research. Adversarial guidance, for instance, can assist in generating 

images that more closely resemble real images in the target domain, 

enhancing their potential for clinical applications in tasks such as 

image synthesis or segmentation, where designing an efficient loss 

function is particularly challenging. To achieve the consistency and 

reliability required for GAN-based imaging techniques to be widely 

adopted in clinical practice, continued research is essential. 
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