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Due to the increasing demand for effective and objective analysis to address complex challenges
such as brain medical image reconstruction, segmentation, and classification, medical image
analysis for brain tumor research has gained significant attention. The ability of Generative
Adversarial Networks (GANSs) to increase the probability density over data distributions by
estimating density ratios, along with their capacity to uncover high-dimensional latent
distributions, has led to substantial performance improvements in visual feature extraction.
Furthermore, the adversarial loss incurred by the discriminator offers a subtle method of
incorporating unlabeled samples into training, thereby improving accuracy at higher orders.
These characteristics of GANs have proven valuable in various applications, including
enhancing medical images and translating images across different modalities. Additionally, the
ability of GANs to generate images with remarkable realism offers hope that, through these
generative models, the ongoing challenge of limited labelled data in the medical field may be
overcome. The aim of this review is to provide a comprehensive overview, starting with a
concise summary of the range of available GAN architectures and datasets. This study then
highlights the research conducted in processing and interpreting GAN-based brain images.
Finally, the limitations of GAN-based methods for brain image analysis are discussed,
identifying unresolved research issues and suggesting avenues for further exploration in this
emerging field.
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1. Introduction

Medical imaging plays a crucial role in enhancing public health for all
demographic groups, utilizing a variety of imaging modalities and
procedures to capture images of the human body, including the brain,
heart, and soft tissues, for diagnostic and therapeutic purposes.
Numerous imaging techniques, such as computed tomography (CT),
positron emission tomography (PET), magnetic resonance imaging
(MRI), X-rays, and ultrasound, each use different image capturing
methods, which significantly influence patient diagnosis and
treatment. However, the fundamental principles behind these
modalities differ, especially in terms of image capture, data
processing, and complexity [1]. The complexity and dimensionality of
CT, PET, and MRI images are tailored to incorporate modality-
specific information, which improves the accuracy of image diagnosis.
Brain tumors arise when abnormal cell growth occurs inside or around
the brain, disturbing normal brain function and impacting a patient’s
health [2]. Recently, researchers, radiologists, and clinicians have
focused on brain imaging analysis, diagnosis, and therapy using
approved medical imaging techniques [3]. Brain tumors, being fatal,
account for a significant proportion of mortality in low-income
countries, making brain image processing vital. The latest
advancements in soft tissue and non-invasive imaging techniques have
resulted in vast amounts of high-resolution data. Radiologists use these
high-resolution soft tissue images to diagnose various diseases,
including viral infections, traumatic brain injury, aneurysms, and brain
cancer. Additionally, soft tissue scans provide abundant data that help
differentiate between diseased and healthy tissue. Unfortunately, no
single imaging method can serve as a universal diagnostic tool,
requiring a combination of imaging techniques to detect specific brain
disorders [4]. Each type of soft tissue exhibits a distinct signature,
which is formed by integrating image sets from different modalities
[5], leading to a large number of features that drive deep learning
applications.

In many of these supervised applications, convolutional neural
networks (CNNSs) are trained to provide accurate predictions based on
input images. CNNs are highly effective in distinguishing between
images or image voxels belonging to different classes, making them
invaluable for segmentation, classification, and predicting patient
survival times for brain cancer.

For a long time, medical image analysis focused primarily on
supervised learning. However, this paradigm shifted with the advent
of Generative Adversarial Networks (GANSs) [6], which introduced a
new wave of interest in generative modeling and understanding data
distributions. The central idea behind generative models is to learn the
underlying structure of data and the processes that generate it. This
enables researchers to better understand the data and generate new data
by sampling from the model. GANs have been particularly
groundbreaking due to their ability to combine supervised learning
with image generation. Their success largely stems from their capacity
to fine-tune the probability density of data generation, using
techniques such as density ratio estimation [7]. Furthermore, GANs
excel at uncovering hidden, complex patterns in data, leading to
significant advances in feature extraction and analysis.

This study aims to provide a comprehensive and up-to-date overview
of GAN-based techniques used in brain image processing, focusing on
tasks such as image synthesis, segmentation, and reconstruction. We
reviewed various databases, including PubMed, arXiv, and
proceedings from esteemed conferences like the International
Conference on Medical Image Computing and Computer-Assisted
Intervention (MICCAI), SPIE Medical Imaging, the IEEE
International Symposium on Biomedical Imaging (ISBI), and the
International Conference on Medical Imaging with Deep Learning
(MIDL), to ensure a thorough review of GANs in medical imaging.
Additionally, we examined key references and citations to uncover
further relevant research. Given that GANSs are a relatively new field
and many studies are still in the publication pipeline, we also included
preprints to capture the latest advancements and trends in this rapidly
evolving area.

Although several previous reviews have explored GANs in medical
image analysis, most of them focus on general surveys introducing the
progress of GANs, their architectural variants, and various medical
imaging applications [8][9][10][11][12], or delve into specific

applications such as image synthesis, classification, and segmentation
[13][14][15][16][17]. Additionally, some surveys only cover one type
of imaging technology [18][19].

To the best of our knowledge, this paper is the first comprehensive
survey on the application of GAN-based methods in brain image
analysis. Motivated by the rapid development of GANs in this field,
this review covers the latest advancements across all areas of brain
imaging, including synthesis, segmentation, reconstruction, detection,
denoising, registration, and classification. By including a broad array
of recent studies, we present a wide variety of GAN-based methods
used for brain tumor analysis, highlighting key contributions,
methodologies, techniques, frameworks, architectures, and
evaluations in brain tumor analysis.

The structure of the remainder of the paper is as follows. Section 2
provides a brief overview of GAN basics and structural variants,
followed by a discussion on available brain imaging datasets. Section
3 presents a comprehensive analysis of medical image processing
tasks using GANs, organized around core tasks such as detection,
registration, classification, segmentation, reconstruction, image
synthesis, and more. Finally, Section 4 concludes the review,
discussing potential applications and suggesting future research
directions.

2. Background

In order to provide an inclusive perspective into the use of brain
medical image analysis and applications, this background section will
provide the basic GANs architecture concepts behind these
applications as well as accessible datasets for medical brain images.
2.1 Variance of GANs architectures

Generally, there are three categories of generative models: Generative
Adversarial Networks (GANs) [6], Variational Autoencoder (VAE)
[20], and AutoRegressive Networks [21]. With no clear aim function
and difficult training, GANs may create remarkably realistic images.
However, their extremely limited diversity may cause mode collapse
when the generator is unable to learn. The other most popular deep
generative models, Variational Autoencoders (VAEs), have an
objective function to optimize, which may result in fuzzier samples
because of noise and insufficient sample reconstruction [22].

In 2014, lan Goodfellow and colleagues published an article [6] titled
"Generative Adversarial Networks," which was the first demonstration
of the generative adversarial network architecture technique. In the
study, a generator model with fully linked layers (MLPs) and ReLU
activations is described. This model uses a latent space as input points
and generates an image. In addition, a discriminator model that uses
fully connected layers (MLPs) with maxout activations to distinguish
between actual and fake images is used. Using typical image datasets
like MNIST and CIFAR-10, this model was implemented.

In the literature, there are many forms of GANSs architecture variants
are introduced. Architecture variant of GANs have recently seen
substantial advances in numerous applications such as image-to-image
translation, image resolution enhancements, image reconstruction.
Many medical imaging researchers have therefore started using GANs
in many fields, such as image resolution enhancement, identification
of anomalies and estimate of CT images from the corresponding MR
images. To acquire images with the desired characteristics, fully
convolutional layers and conditional image constraints were later used
instead of the GAN, which was first deployed with fully connected
layers and no data generation limits. They typically use conditional
GANs to generate desired images since GANs allow for the
application of conditioning on class labels and images, making
learning robust latent spaces hard.

To meet the desired performance, several different versions of the
GAN model were suggested. The main purpose of this paper, however,
is to only address base GAN models for the application of brain
medical imaging, which are generally: GAN, cGAN, DCGAN,
LAPGAN, pix2pix, CycleGAN, WGAN, WGAN-GP, VAEGAN
(BiGAN), StyleGAN and StyleGAN2. Table (1) summarizes the basic
GAN models employed in brain medical imaging applications
according to the literature.

2.2 Available Datasets.

Large and balanced dataset generation might be seen as a major barrier
to the creation of high-quality Al systems for image processing in
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radiology. This is due to the expensive cost of creating these datasets
as well as the restricted availability of pre-existing datasets. The
sharing of such information is expected to be hindered by privacy
concerns about patient data interchange and the competitive advantage
of medical Al companies from their own private databases. In recent
years, a number of significant ongoing initiatives worldwide have
made a substantial number of early releases from public databases
available to academics in an effort to solve these problems. Table (2)
compiled the brain imaging datasets that are publicly available for
brain tumor analysis training and evaluation.

2.3 GANSs Potential over ML Approaches

Generative Adversarial Networks (GANS) have carved a niche in brain
image analysis by overcoming limitations inherent to traditional
machine learning (ML) approaches, particularly in scenarios requiring
data generation, cross-modal synthesis, and anomaly detection.
Classical ML methods, such as Support Vector Machines (SVMs) and
Random Forests, rely heavily on handcrafted features and static
datasets, which struggle to capture the complex, high-dimensional
patterns in brain imaging data. These methods are inherently limited
by their inability to generate new data, forcing reliance on small, often
imbalanced datasets. For instance, conventional data augmentation
(e.g., rotation, flipping) only creates superficial variations, failing to
address the need for anatomically diverse synthetic samples. In
contrast, GANs learn underlying data distributions, enabling synthesis
of realistic brain images that enhance model robustness. Frid-Adar et
al. [23] demonstrated this in medical imaging by augmenting scarce
lesion datasets with GAN-generated samples, improving classification
accuracy, a strategy directly applicable to brain pathology detection
where data scarcity is acute.

Non-generative deep learning approaches, such as standard CNNs and
autoencoders, also face critical limitations in tasks like cross-modal
image synthesis (e.g., MRI-to-CT translation). Traditional CNNs,
optimized for pixel-wise losses (e.g., mean squared error), often
produce blurry or anatomically implausible outputs due to their
inability to model global structural coherence. Autoencoders, while
capable of dimensionality reduction, lack the adversarial feedback
loop of GANSs, resulting in less realistic reconstructions. For example,
Nie et al. [24] showed that GANs outperform autoencoders in
synthesizing high-fidelity brain MRIs, as adversarial training enforces
realism by penalizing "unnatural” features. Similarly, CycleGAN [25]
addressed unpaired image translation—common in clinical settings
where paired datasets are rare, while classical methods like sparse
coding or patch-based regression fail to generalize across such
heterogeneous data. These limitations underscore GANS’ superiority
in preserving fine-grained anatomical details critical for applications
like radiotherapy planning.

In anomaly detection, traditional ML approaches like One-Class
SVMs or isolation forests require explicit assumptions about data
distributions, which are often violated in neuroimaging due to the high
variability of brain anatomy. Supervised CNNs, meanwhile, demand
large labeled datasets of pathologies—a practical barrier given the
rarity of conditions like rare brain tumors. GANSs circumvent these
issues by learning the distribution of healthy brain scans and flagging
deviations without requiring labeled anomalies. AnoGAN [26], for
instance, identifies subtle pathologies in retinal OCT images by
reconstructing inputs and quantifying residuals, a framework
adaptable to brain MRI. Similarly, U-Net, a gold standard for
segmentation, relies on pixel-wise losses (e.g., Dice loss) that may
overlook structural context, leading to fragmented or over-smoothed
tumor boundaries. Adversarial frameworks like SegAN [27] mitigate
this by incorporating a discriminator to penalize anatomically
implausible segmentations, enhancing precision in tasks like
glioblastoma delineation.

However, GANs are not without trade-offs. Their computational
complexity and training instability—issues less prevalent in simpler
ML models like SVMs—can hinder deployment in resource-
constrained clinical environments. Additionally, GANs’ "black-box"
nature complicates interpretability compared to decision-tree-based
methods, raising concerns in clinical validation. Yet, their ability to
synthesize data, refine image quality, and detect anomalies without
heavy reliance on labeled data positions GANs as uniquely
transformative. While traditional ML remains valuable for

interpretable, low-dimensional tasks, GANs address foundational gaps
in neuroimaging, pushing boundaries in personalized medicine and
multimodal diagnostics. Ongoing advancements in stable training
(e.g., Wasserstein GANSs) and hybrid models (e.g., GANs combined
with transformers) aim to further solidify their role in brain image
analysis.

3. GANs Medical Application for Brain Imaging Analysis

For clinical diagnosis and medical treatment, medical imaging is
necessary because it offers valuable information into certain diseases
whose structures can be concealed by the skin or bones. A variety of
different medical imaging modalities, such as Magnetic Resonance
Imaging (MRI), Computed Tomography (CT), X-Ray, ultrasound and
Positron Emission Tomography (PET), have been applied to GAN-
based approaches. This diversity of image modalities has led to a
variety of adversarial image applications used to detect, classify and
predict a brain disease and disorder. As a result, GANs and adversarial
techniques have been used in recent years to address a wide range of
medical image processing problems. The most common uses of the
adversarial technique in medical image processing have focused on
segmentation, image synthesis, and quality improvement as illustrated
in Figure 1. This section discusses only the GANSs applications that are
related to brain image analysis of these applications.

— Classification

o Detection

= Segmentation

Unconditional
Synthesis

Generétion and
Synthesis

Processing
1

Cross modality /
Conditional Synthesis

== Reconstructions

GANs Application In Brain Image

o De-noising

o Registration

Figure 1: GANs Medical Application for Brain Imaging Analysis

3.1 Brain Image Generation and Synthesis

GANs have been used to generate samples from a latent distribution
of medical images. These samples may be used to synthesis data for
training human experts or to expand training sets for discriminatory
models. While there may be some tolerance for faults in generated
samples in some areas, such natural images, this might be a
challenging task since errors could have serious detrimental
consequences on medical imaging. Improvements in medical image
analysis [28], including brain imaging classification and segmentation,
have recently been shown by deep neural networks, especially
convolutional neural networks (CNNs). CNN training, however,
requires comprehensive medical datasets that is time consuming to
acquire [29]. Furthermore, one of the key barriers to the inadequate
number of positive cases of each pathology is patient privacy concerns
related to disclosing or releasing their medical images to the public
research domain. The absence of experts who can annotate medical
images is another obstacle to the use of supervised learning methods.
However, as Table. 2 summarizes, a number of cooperative efforts are
being carried out by various healthcare institutions to provide
extensive open access data sets.

In response to these challenges, data augmentation techniques are
common for better performance by reconstructing original images.
Scaling, rotation, flipping, translation, and elastic deformation are
common methods of augmenting the training sample [30]. These
advancements do not, however, take into consideration variances in
the size, shape, location, and appearance of individual pathologies, as
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Table 1: Basic GAN models employed in brain medical imaging applications

GAN Architectures  Authors Basic Concept Loss Function Mathematical Formula Pros/ Cons
GAN ( Goodfellow Generative (G): a fully connected layers (MLPs) min max V (D, G) = Hard to train.
Vanilla GAN) et al, 2014 with ReLU activations and discriminative (D): fully G D Ei~pdata(x)[log(D(x))] + E~xz (20 [1 — Convergence is heavily dependent on hyper-parameter.
[1] connected layers (MLPs) with maxout activations. log(D(G(2)))] Vanishing or exploding gradients issues.
Prone to mode collapse.
cGAN Mirza  and The generator is given random noise z along with min max V (D, G) = Improves the generation of detailed features.
Osindero, some preexisting information c. The discriminator is E,~pdata(x)[log(D(x|c))] +E;~pz Helps training stability.

2014 [2] then supplied the relevant true or false data together (z)d-19g(D(G(z|c)))]
with the prior knowledge c.
DCGAN Radford et The generator (G) and discriminator (D) both follow Constraints CNN architectures: Helps training stability.

al., 2015 [3] a deep convolutional network architecture. Removing fully-connected hidden layers. Mode collapse was not entirely resolved.
Replacing the pooling layers with strided convolutions on the
discriminator.
Replacing pooling layers with fractional strided convolutions on
the generator.
Using batchnormalization on both the generator and the
discriminator.
Using ReL U activations in every layer of the generator except the

last layer.
LeakyReLU activations in all layers of the discriminator.
LAPGAN Denton et al., layers of conditional GAN model with Laplacian ik = Lk [ = Gk I —U Grsa [ =1k — U lkna To obtain a maximum resolution image, a sequential
2015 [4] pyramid representation. Ik =U1I1k=1 +hk =U k=1 +Gk Zk,UIk=1 sampling procedure is used.
Each of layers adds higher frequency into a Take advantage of the cGAN model by applying to both
generated image. the generator and the discriminator a low-pass image [ k.
CycleGAN Zhu et al., It combines two GANSs to determine a mapping from L(G, F, Dx, Dy ) = Lean (G, Dy, X, Y ) + Lgan (F, Dy, Y, X) + Unpaired data is used to do higher-resolution image-to-
2017 [5] domain X to domain Y and vice versa. Generators G: ALc(G, F) image translation.
X —Y, trained by discriminator DY, and F: Y — X, L,c(G, F ) = Ex-pdata(x)[ F (G(x)) — x 1] + Ey~pdata(y)[ G(F (y)) Could not construct geometric reverse transformation.
taught by discriminator DX, make up these. -y
pix2pix Isola et al,is a CGAN design using an encoder-decoder Zezuw G, D = Fiy logD x,y + £r. log 1— D x, Gx,z Eamned approval for image synthesis across the domain
2017 [6] structure instead of a generator. ZZ1 & = Fxy~Pdata xy 7~R2)| y—C xz |1 users. Surpasses CycleGAN for high quality medical image
The class information combines the L1 regularizer ¢+, - =argminGgmaxp LCGCAN G, 0 + ALL1 & synthesis.
loss and the cGAN loss, as does the comparable
image from the second domain.
WGAN Arjovsky et prevents gradients from disappearing by using a W (Py, Pg) = sup Ex~pr [f (X)] — Ex~p [f (X)] Able to minimize the vanishing gradient and mode collapse
al.,, 2017 [7] more effective divergence measure, such as the If I, <1 problem.
Earth Mover (ME) or Wasserstein-1 distance. max Ex~er [fu(X)] — Exp[ful(96(2)] Improve the stability of learning.
Proven to be much more robust.
V”fﬁ%r, P9) = —Ez~p[Vef (96(2))] Easy to implement.
Slow optimization.
The constant ¢ for weight clipping may cause a vanishing
gradient problem.
WGAN-GP Gulrajani et Utilizing a gradient penalty to enforce the 1-Lipshitz G = —Ez~P(z) [D(G(2))] Converges more quickly than WGAN.
al., 2017 [8] constraint on the discriminator. D = Ex~Pdata (x),z~Pz (z) h [D(x") — D(x) + A (1Vx"D(x") |>-;) Learn complicated functions.
2 Reduces the vanishing gradient.
wheree ~U[0, 1], x™=G(z), x " =ex + (I — e)x” Cannot use batch normalization because gradient.
Penalization is done for each sample in the batch.
PGGAN Karras et al., Starting with low-quality images, this GAN training WGAN-GP loss was used alternately on a per-minibatch basis High image quality.
2017 [9] process gradually raises the resolution by adding between optimizing the generator and the discriminator. Training is stable in large resolutions.
layers to the networks for the discriminator and A fourth term with an extremely small weight, to prevent the Semantic sensibility
generator. discriminator output from shifting far away from zero, was Understanding dataset dependent constraints.
inserted into the discriminator loss.
VAEGAN (BiGAN) Donahue et The discriminator (D), generator (G), and encoder Min Max V(D, E, G) = Capable of projecting data back into latent space (learning
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al., 2017 [10] (E) make up the architecture in general. G,E D,EG the inverse mapping).
Actual sample data is encoded into E(x) by E and Where V (D, E, G) := ExsX [ E.~E (-[x) [log D(x, 2)]] +
decoded into G(z) by G. Tog D(x ,E(X))

Finding the difference between each pair's (E(X); X) E;~pZ [ Ex~pG(‘|z) [log (1 — D(x, 2))]]
and (G(z); z) is the aim of D. . log(1-D ( G(2),2)) )
G never sees E(x), and E never sees G(z), indicating T

that E and G do not directly interact.

StyleGAN Karras et al., It makes several important suggestions for A progressive growing GAN architecture with five modifications: Introduces control at various levels over the style of
2019 [11] improving the generator model, such as using a Tuning addition and bilinear up sampling. generated images.
mapping network to link latent space points to Mapping Network Extension and AdalN (styles). When used to generate synthetic human faces, remarkable
intermediate latent space, using intermediate latent Removing the generator's latent vector input. results are obtained.
space to control the generator model's style at each Adding noise to each block. It makes it possible for the intermediate latent space W to
point, and adding noise as a source of variance at Adding mixed Regularization. be much less entangled than the latent space Z input.
each point. The applied bias and noise allowing their relative effect to
be inversely proportional to the present style's magnitudes.
StyleGAN2 Karras et al., With many shifts, it expands on StyleGAN. Next, the Modifications to StyleGAN: Because W is the pertinent latent space from the
2020 [12] normalization of adaptive instances is redesigned Eliminate some initial, pointless processes perspective of the synthesis network, this approach
and replaced by a method of normalization called Adjust the bias and noise to operate outside of a style's active concentrates all study on it.
weight demodulation. Furthermore, new forms of region. Putting these operations (noise and bias) outside the style
regularization such as lazy regularization and path Only change the standard deviation for each feature map. block, where they work on data that has been normalized.
length regularization are introduced, and an In place of instance normalization, use a “"demodulation” operation enhancement of perceived image quality and current
expanded training method is implemented upon on the weights assigned to each convolution layer. distribution quality measures.

progressively growing.

Table 2: Available brain image datasets

Dataset Name Modalities Description Related Active Links

BraTS Multimodal Brain Magnetic resonance imaging (MRI) utilizes A large dataset of MR scans of brain tumors in which the https://www.med.upenn.edu/cbica/bra
Tumor  Segmentation multi-institutional pre-operative MRI scans. required tumor structures were defined. Focuses on: ts/
Challenge (BraTS2012 the segmentation of brain tumors which are fundamentally
to BraTS2023) heterogeneous, namely gliomas. Also, the prediction of overall

survival and the experimentally evaluate the uncertainty in the
segmentation of tumors.
BrainWeb  BrainWeb is a Simulated Magnetic resonance imaging (MRI) It comprises a collection of realistic volumes of MRI data https://brainweb.bic.mni.mcgill.ca/bra
Brain Database (SBD). produced by an MRI simulator, a normal brain database and MS inweb/
lesion brain database. To evaluate the performance of various
image analysis methods in a setting where the truth is known.

ISLES2015 Ischemic Stroke Lesion Multi-spectral MRI images. A public dataset of diverse ischemic stroke cases for http://lwww.isles-
& segmentation. Segmentation.  Provides stroke lesion/clinical outcome challenge.org/ISLES2015/
ISLES2016) prediction from acute MRI scans. http://www.isles-
challenge.org/ISLES2016/
ISLES2017 Ischemic Stroke Lesion Multi-spectral MRI images. Stroke lesions segmentation dataset includes acute stroke http://www.isles-
segmentation. imaging scans and manually outlined lesions on follow-up scans. challenge.org/ISLES2017/
ISLES2018 Ischemic Stroke Lesion CT perfusion data. Stroke lesions segmentation provides Segmentation of stroke http://www.isles-challenge.org/
segmentation. lesions based on acute CT perfusion data that includes new
dataset of stroke patients and matching expert segmentations.
IBSR The Internet  Brain Magnetic resonance imaging (MRI) Evaluation and development of brain segmentation methods. It https://www.nitrc.org/projects/ibsr/
Segmentation provides manually-guided expert segmentation results along
Repository. with magnetic resonance brain image data.
ABIDE | & Autism Brain Imaging Functional magnetic resonance imaging (R- Promote discovery science on the brain connectome in ASD. It http://fcon_1000.projects.nitrc.org/in
ABIDE Il  Data Exchange. fMRI) is a multi-international site, sharing previously collected resting di/abide/abide_I.html
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OASIS

HCP

ADNI

iSeg-2017
and
iSeg-2019
IXI

MIDAS

BALSA

TCIA

PBTA

PING

CoRR

state functional magnetic resonance imaging (R-fMRI), http://fcon_1000.projects.nitrc.org/in
anatomical and phenotypic characterization, particularly in di/abide/abide_II.html
regard to measures of core ASD and associated symptoms.
Open Access Series of OASIS-1: Cross-sectional MRI Data in Young, The goal of OASIS is to make neuroimaging databases publicly https://www.oasis-brains.org/
Imaging Studies. Middle Aged, Nondemented and Demented accessible to the scientific community. This multi-modal dataset
Older Adults. created by the Knight ADRC and its related studies is compiled
OASIS-2:  Longitudinal MRl Data in and freely distributed.
Nondemented and Demented Older Adults.
OASIS-3: Longitudinal Neuroimaging, Clinical,
and Cognitive Dataset for Normal Aging and

Alzheimer’s Disease (MRI & PET).

The Lifespan Human Namely structural MRI, resting state fMRI, task The goal of the Human Connectome Project is to provide an http://www.humanconnectomeproject.

Connectome
Development.

Project fMRI, and diffusion MRI.

Alzheimer’s

Neuroimaging Initiative. includes MRI and PET images,

unparalleled compilation of neural data, an interface to access org/
this data graphically and the ability to reach unprecedented
conclusions about the living human brain.

Disease Dataset (ADNI1, ADNI-GO, ADNI2 and ADNI3) The goal of ANDI is to discover, improve, standardize, and verify http://adni.loni.usc.edu/
genetics, the biomarkers and clinical trial interventions used in AD

cognitive tests, CSF and blood biomarkers as clinical studies.

predictors of Alzheimer’s disease.

Challenge data 6-month Magnetic resonance imaging (MRI) for data 6- These challenges aim to promote automatic segmentation http://iseg2017.web.unc.edu/

Infant brain MRI month Infant brain.

Segmentation.

Information eXtraction Magnetic resonance imaging (MRI) from To facilitate the computational study of brain development.

from Images dataset. normal, healthy subjects.

algorithms on 6-month infant brain MRI from multiple sites. http://iseg2019.web.unc.edu/

https://brain-development.org/ixi-
dataset/

Designed Database of Magnetic resonance imaging (MRI) from Analyze illness through empirical review of the awareness of the http://insight-

MR Brain Images of normal, healthy subjects.
Healthy Volunteers.

The  Brain
Library of Spatial maps
and Atlases database.

The Cancer Imaging Magnetic resonance imaging (MRI).

Archive.

Pediatric Brain Tumor Magnetic resonance imaging (MRI)
Atlas.

Pediatric Imaging, Magnetic resonance imaging (MRI).
Neurocognition, and
Genetics

The  consortium
Reliability
Reproducibility.

Analysis Magnetic resonance imaging (MRI).

variety of shapes identified by magnetic resonance (MR) images journal.org/midas/community/view/21
of the brain of healthy anatomical structures.

BALSA is a structured archive of reference data precisely https://balsa.wustl.edu/study/show/W
mapped to surfaces and volumes of the brain atlas, including G33

different forms of spatial maps extracted anatomically and

functionally, as well as brain connectivity.

Glioblastoma that has been recently identified and treated with https://wiki.cancerimagingarchive.net
surgery and standard concurrent chemotherapy and radiation /display/Public/Brain-Tumor-
treatment (CRT) with adjuvant chemotherapy is included in Progression

TCIA.

Full genomic data (WGS), RNAseq, proteomics, longitudinal https://chttc.org/pediatric-brain-
clinical data, imaging data (including MRIs and radiology tumor-atlas/

records), histology slides, pathology reports, and matching

tumor/normal are all included in PBTA.

The aim is to create a broad MRI and genetics data resource that https://www.nitrc.org/projects/ping/
can be shared freely with the science community. The data

resource provides information on the development of children's

mental and emotional functions.

for Magnetic resonance imaging (MRI). resting Aims to promote the evaluation of reliability and reproducibility http://fcon_1000.projects.nitrc.org/in
and state fMRI (R-fMRI) and diffusion imaging data. of the test-retest for functional and structural connectomics. By di/CoRR/html/index.html

concentrating on fundamental phenotypic tests, which are
generally common in the field of neuroimaging, as well as
important for interpretation and sample characterization.
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well as changes resulting from different imaging techniques or
sequences. In this regard, GANs-based data augmentation has
shown impressive performance in broad computer vision tasks. The
capacity of GAN to fit the generated distribution of noise variables
with a

sharp value function to the real one is attributed to its excellent
generalization capabilities. Specifically, Shrivastava et al.
(SIimGAN) beat the state-of-the-art with a relative 21 percent gain
in eye-gaze prediction [31]. Typically, the most direct application
of GANSs is data generation, as a kind of generative model. This is
to benefit from the distribution of actual samples and to generate
samples compliant with distribution. The majority of current GAN
research focuses on improving the effectiveness and utility of
imagine synthesis and generating capabilities. As a result, GANs are
increasingly widely employed and have been used to augment
training medical images in a number of studies with promising
outcomes. For medical image synthesis, applied GAN research may
be broadly categorized into two groups: unconditional image
synthesis and conditional image synthesis. Here, we concentrate on
GAN-based synthesis techniques, which are divided into two
categories: conditional (cross modality) as an example shown in
Fig. 2, Conditional synthesis of a reconstructed two-dimensional
super resolution MR image by using different GAN-based
algorithms [32], and unconditional medical image synthesis, as Fig.
3 shows visual results by CycleGAN and switchable CycleGAN on
the ABCD Study Dataset, T1w to T2w image synthesis [33].

3.1.1 Unconditional Brain Image Synthesis

Unconditional synthesis involves the generation of random noise
images with no other conditional information. A vast amount of
work has recently surfaced in the field of unsupervised medical
image generation using GANs, enabling the resolution of issues like
class imbalance and data scarcity [34], encouraging data simulation
[35], and contributing to a better understanding of the existence of
data distributions and their latent structure. The medical imaging
sector uses DCGAN, WGAN, and PGGAN extensively because of
their exceptional training stability. Table 3 lists all of the
unconditional brain image synthesis research that are currently
accessible. Preliminary studies have shown that the DCGAN can be
used for realistic synthesizing. Using DCGAN, Bermudez et al. [45]
were able to generate high-fidelity images that closely mimic
acquired images.

The promising results obtained are presumably due to a sufficiently
homogeneous training set to solve a basic problem in terms of
acquisition parameters and demographics. Previous quality control
research by Kazuhiro et al. [46] indicates that DCGAN may help
satisfy the requirement to provide large data sets with high-quality
MR images, such that even seasoned neuroradiologists can be
misled. Islam J and Zhang Y. [47] suggested a model based on the
DCGAN model that can be extended using PET images in disease
diagnosis systems and can help complement the training dataset.
The suggested model's qualitative and quantitative assessment
shows that the synthesized images are similar to actual brain PET
images of multiple phases of Alzheimer's disease. Lee et al. [48]
used CycleGAN to suggest a more stable model to synthesize brain
tumor-segmented MR images due to its significant success in
medical imaging.

(a) (b) (c)

(d) (e)

Figure2: Visual results of reconstructed two-dimensional super
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resolution MR image by using different GAN-based algorithms
[32]

Switchable CycleGAN Target T2w

Input Tiw CycdeGAN

Figure3. Visual results by CycleGAN and switchable CycleGAN
on the ABCD Study Dataset, T1w to T2w image synthesis.
Different rows display two individual brain MRI images [33].

In their research, the proposed generative networks demonstrated
the capacity to synthesize not only brain tumor-segmented images,
but also other medical images, such as lung and heart segmentation.
Finally, Chang et al. [49] demonstrated that GANSs are capable of
producing pediatrics wbMRIs required to allow automatic anomaly
detection. In this study, samples generated using the StyleGAN2
architecture, in particular, had high visual quality, which the
radiologist considered to be true. In order to identify tumor lesions,
the role of anomaly detection using GAN trained on normal images
was shown, that could minimize the need for limited examples of

WbMRI tumors.

3.1.2 Cross modality / Conditional Brain Image Synthesis

In clinical practice, data from many medical imaging modalities is
often combined. However, information obtained in one imaging
modality may already be available in another, depending on the
application. Accurate image conversion from one imaging modality
to another may reduce the number of acquisitions required, which
would reduce expenses and patient discomfort. As a result,
conditional synthesis and cross modality (such as creating CT-like
images from MR images) are thought to be highly beneficial. Table
4. summarized available cross modality / conditional brain image
synthesis studies.

An early study by Nie et al. [24], which was motivated by the
possibility of cell damage and cancer due to radiation exposure
induced by CT imaging, used a cascades 3D FCNN to synthesize
CT images from MR acquisitions. In addition to the adversarial
training, the model is trained with a pixel-wise reconstruction loss
and an image gradient loss to increase the realism of the synthetic
CT images. The definition of using a generator cascade derives from
an Auto-Context Model (ACM). In ACMs, a network contributes its
output to a successful network as additional input to provide
contextual information and facilitate adjustments.

In cross modality synthesis, however, many studies have used the
CycleGAN-based approach because it uses unpaired data to achieve
higher-resolution image-to-image translation. Jin et al. [63]
proposed a dual CycleGAN-based solution called MR-GAN, which
uses paired and unpaired data together to address the problem of
unpaired training context-misalignment and to remove rigid
registration operations and blurred effects of paired training. The
results suggest that structures inside the complex 2D brain slices can
be effectively measured by the synthetic method and MR-GAN can
also be used in CT-based radiotherapy planning by further removing
image registration uncertainties while integrating MRI with CT and
reducing clinical workload. Moreover, Welander et al. [69]
evaluates two unsupervised GAN models (CycleGAN and UNIT)
by comparing synthetic MR images generated to ground truth
images for image-to-image conversion of T1 and T2-weighted MR
images. The results indicated that the GAN models that have been
applied can synthesize visually realistic MR images. and that,
relative to ground-truth results, models generating more visually
accurate synthetic representations do not inherently have better
quantitative error measurements.

Another well-accepted model architecture used for conditional

79



Generative Adversarial Networks in Brain Imaging: A Decade-Long Review of Progress and Future Directions

Shaari.

image synthesis is the cGAN-based method, a two-stage deep
learning framework is proposed by Pan et al. [68] to use all available
MRI and PET for the diagnosis of Alzheimer's disease.

The missing PET images are assigned, in the first stage, by 3D-
CcGAN by learning bi-directional mappings between MRI and PET.
While in the second stage, they create a landmark multi-modal
multi-instance learning method for the diagnosis of Alzheimer's
disease, based on the full MRI and PET, by automatically learning
MRI and PET features in a data-driven way. The results demonstrate
that their proposed two-stage deep learning framework beats
traditional multi-modal approaches for classification of Alzheimer's
disease and the synthetic PET images generated by their method are
acceptable. By using a GAN model with a ResNet architecture as
the generator, Emami et al. [62] present a cGAN-based approach to
generating synCTs from T1-weighted post-Gadolinium MRI
datasets. Their strategy presented strong potential to facilitate near-
real-time MR-only brain treatment planning. Additionally, a new
end-to-end framework for medical image translation activities,
introduced by Armanious et al. [65], is MedGAN. It integrates the
conditional adversarial framework with a modern mix of non-
adversarial losses and a CasNET generator architecture to increase
the accuracy of global outcomes and high frequency details. With
no task-specific changes, MedGAN was introduced to three difficult
medical imaging tasks: PET-CT translation, MR motion correction
and PET denoising. MedGAN has quantitatively and qualitatively
outperformed most related translation methods through the various
proposed activities. Furthermore, Yu et al. [70] is exploring how to
synthesize T1 FLAIR images to facilitate single modality brain
tumor segmentation based on T1. Via the suggested 3D cGAN and
the local adaptive fusion scheme, their structure produces the
synthesized FLAIR images. The synthesized FLAIR images
effectively improve the segmentation of entire tumors and tumor
from the T1 modality with the two-way 3D CNN segmentation

model.

3.2 Brain Image Segmentation

For many applications, such as detection and classification,
segmentation of objects and organs in medical images is an
important prerequisite. A significant role for cancer diagnosis,
treatment, and assessment of treatment results is the segmentation
of the tumor area. Using MRI, CT, PET, and multimodal
segmentation techniques, such as PET/CT and PET/MRI, a large
range of semi-automatic and automatic segmentation methods and
techniques are used for tumor segmentation. In medical image
processing, the tedious and time-consuming nature of manual
segmentation made automated methods the most active area in
Deep-Learning research.

Numerous GAN-based brain segmentation techniques have been
suggested, including semi-automatic techniques and fully automatic
techniques. The primary goal of image segmentation is to divide an
image into homogeneous regions that are mutually exclusive and
exhaustive with respect to a predefined criterion. In brain tumors,
segmentation includes the isolation of various. tumor tissues such as
solid or active tumor, edema, and necrosis, from the normal brain
tissues such as gray matter (GM), white matter (WM) and
cerebrospinal fluid (CSF).

Segmentation of brain tumors requires an objective measure that can
be used to define the homogeneity of each tissue. There are two
approaches to accomplish an analytical measure, namely
unsupervised and supervised segmentation processes Fig. 4
illustrate the visual segmented patch resulted from 3DAdGanSeg
model for different types of brain tissue. In brain tumor
segmentation studies that involve image textures [127], local
histograms [128], and structure tensor eigenvalues [129], MRIs
have different features that are adopted. MRI comprises multi-
sequence approaches that include T1-weighted (TI)

Table 3: Unconditional brain image synthesis studies

Paper Authors GAN-based Methods  Modality Dataset/s
Calimeri et al. (2017) [13] LAPGAN 3D-T1-weighted MRI Self-acquired
Bowles et al. (2018) [14] PGGAN CT(CSF) + MRI(FLAIR) 2 unknown Datasets
Han et al. (2018) [15] WGAN T1, Tlc, T2-weighted and FLAIR MRI BRATS2016
Beers et al. (2018) [16] PGGAN T1, T1 post-gadolinium, T2, and T2 FLAIR weighted MRI BRATS2017
Bermudez et al. (2018) [17] DCGAN T1-weighted MRI BLSA
Kazuhiro et al. (2018) [18] DCGAN T1-weighted MRI Self-acquired
Mondal et al. (2018) [19] GAN (3D U-Net) T1, T1IR, FLAIR + T1, T2 -weighted MRBrains-2013 + iSeg2017
Lee et al. (2020) [20] cycleGAN MRI Self-acquired
Chang et al. (2020) [21] StyleGAN2 wbMRlIs Self-acquired
Islam J, and Zhang Y (2020) [22] DCGAN PET ADNI
Wang S et al. (2022) [23] UTC-GAN CT ISLES 2018
Sun L et al. (2022) [24] HA-GAN CT, MRI COPDGen + GSP
Mourad D etal.(2024) [25] CDGAN MRI OpenNeuro websire
Xin B et al. (2024) [26] DA-GAN T1, T2 BraTS2018
Table 4: Cross modality / Conditional brain image synthesis

Paper Authors GAN-based Methods Modality Dataset/s

Nie et al. (2017) [27] (3D) FCN + ACM(GAN) MRI To CT ADNI

Wolterink et al. (2017) [28] synthesisGAN (CNNSs) MRI To CT/CT To MRI Self-acquired

Nie et al. (2018) [29] (3D) FCN + ACM(GAN) MRI To CT/ 3T MRI to 7T MRI ADNI

Emami et al. (2018) [30]
Jinetal. (2018) [31]
Yang et al. (2018) [32]

CcGAN (GAN + ResNet)

MR-GAN (cycleGAN)

cycleGAN

. cGAN (U-block (U-nets) + CasNet
Armanious et al. (2018) [33] (cascades residual blocks)

Wei et al. (2018) [34] cGANs

Yang et al. (2018) [35] cGAN

Pan et al. (2018) [36] 3D CycleGAN
Welander et al. (2018) [37] cycleGAN + UNIT
Yu et al. (2018) [38] (3D) cGAN

Chen et al. (2018) [39]
Olut et al. (2018) [40]
Ge et al. (2019) [41]
Dar et al. (2019) [42]
Kwon et al. (2019) [43]

PTGAN (U-Net + CNN)

SGAN (PatchGAN)

pairwise GAN (U-Net + Markovian)
cycleGAN (pGAN + cGAN)

3D GAN (VAE + a-GAN + WGAN-GP)

Han et al. (2019) [44] CPGGAN
Ali et al. (2019) [45] CAE + DCGAN

Yu et al. (2019) [46] Ea-GANs (U-Net + CNN)
Huang et al. (2019) [47] CoCa-GAN

Armanious et al. (2019) [48]
JOPAS Vol.24 No. 1 2025

MedGAN (cGAN)

MRI To CT
CT To MRI
CT To MRI

PET ToCT

MR To PET

T1 To/From T2 MRI

MR To PET

T1 To/From T2 MRI

T1To FLAIR MR

T2-weighted To PD-weighted
T1, T2 To MRA
Enhanced-T1-MRI and T2-MRI
T1 To/From T2 MRI

T1, T2, FLAIR and T1-weighted

T1-weighted (T1c) brain axial MRI

Tlce, T2 and FLAIR

T1To T2 and FLAIR
T1MRI

Fluorine-18-FDG PET To CT

IRB approved study dataset
Self-acquired
Self-acquired

Self-acquired

Self-acquired

BRATS2015

ADNI

HCP

BRATS2015

IX1

IX1

TCGA

MIDAS + IXI + BRATS2015
ADNI + BRATS2018 + ATLAS
Self-acquired (National Center for
Global Health and Medicine, Tokyo,
Japan)

BRATS2017

BRATS2015 + IXI

BRATS2015

Self-acquired
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Anders Eklund (2019) [49] 3D PGAN T1-weighted To T1-weighted MRI HCP

Yurt et al. (2019) [50] mustGAN T1, T2, PD-weighted and FLAIR images IXI + ISLES
Carver et al. (2019) [51] U-Net T1, T2, and FLAIR MRI BRATS2018
Lei et al. (2020) [52] unified GAN T1-weighted, T1c Flair and T2-weighted MRI

Kearney et al (2020) [53] A-CycleGAN + VAE MR To CT

Xin et al. (2020) [54] TC-MGAN T2 To T1, Tlce and FLAIR BRATS2018

Emami et al. (2020) [55]
Hagiwara et al. (2020) [56]

Dikici et al. (2020) [57]
Koike et al. (2020) [58]
Hamghalam et al. (2020) [59]

attention-GAN (encoder decoder + 3 CNN) T1-weighted to CT/synCT

GAN (plxe_l-Wlse t_ra_nsla}tlon network + MRI To ELAIR

multiresolution classification)

cGANe (DCGAN + FD) T1-weighted to 3D MRI

CGAN (U-Net + PatchGAN) MRI To sCT / Tiw, T2w and FLAIR
FLAIR to FLAIR, Tic, and T2

GAN (Enh-Seg-GAN)
T1-weighted, T2-weighted, PDweighted and

Self-acquired
Self-acquired

Self-acquired
TCIA
BRATS2013

MIDAS + IXI + BRATS2015

Dar et al. (2020) [60]

SGAN + jGAN + rGAN + sr-sGAN

FLAIR
Li et al. (2020) [61] cycleGAN MRI To CT
Bourbonne V et al. (2021) [62] cGAN based on the pix2pix architecture  planning CT and MRI-T1 Self-acquired
Gao X etal. (2021) [63] TPA-GAN + PT-DCN MRI to PET ADNI-1 & ADNI-2
Liu X et al. (2021) [64] CGAN (GAN + ResNet) MRIto CT Generated synCT images
Abu-Srhan A et al. (2021) [65] uagGAN Bidirectional MR-CT Self-acquired
Matsui T et al. (2022) [66] Modified StarGAN fMRI HCP
Mehmood M et al. (2022) [67] Pix2pix (cGAN) T1-CE T1-CE MRI
Hu S et al. (2022) [68] BMGAN MRI to PET ADNI

Mukherkjee D et al. (2022) [69] AGGrGAN

Tlce, T1, T2, T2-FLAIR

Brain tumor dataset + BraTS 2020

Zhan B et al. (2022) [70] D2FE-GAN T1, T2, Tlc, FLAIR BraTS2015 + 1XI
Zhao X et al. (2022) [71] SsTBI-GAN T1 Self-acquired + ADNI
Zhang H et al. (2022) [72] switchable CycleGAN T1lw to/from T2w ABCD

Wang J et al. (2022) [73] FedMed-ATL T1, T2, PD IXI + BraTS2021
Huang P et al. (2022) [74] eCoCa-GAN and iCoCa-GAN Frameworks T1, T1c, T2, and T2-F BraTS19

Luo Y etal. (2022) [75] AR-GAN LPET to HPET Self-acquired

Qin Z et al. (2022) [76] ST-cGAN MRI IXI

Bai X et al. (2022) [77] dual-generator GAN Tlwto T2w Self-acquired
Alrashedy et al. (2022) [78] Vanilla GAN and DCGAN T1,T2,PD Brain Tumor Classification-Kaggle
Aljohani Aetal. (2022) [79]  Pix2Pix GAN T1,T2,PD IXI

Finck T et al. (2022) [80] Extended pix2pix Tlw, FLAIR to DIR Self-acquired

Zhang J et al. (2022) [81] BPGAN MRI to PET ADNI

Wang J et al. (2023) [82] FedMed-GAN T1, T2, PD-weighted images (PD) IXI + BraTS2021

Gu X et al. (2023) [83] perceptual supervised GAN MRIto CT Self-acquired

Li Y et al. (2023) [84] 3D StyleGAN T1 ADNI + OASIS
Zhang X et al. (2023) [85] BCGAN CBCTto CT Self-acquired

JinY et al. (2023) [86] 3D Contrastive Learning GAN Tlw, FLAIR to PET-AB ADNI

synthesizing CBV maps using T1-weighted
images, contrast-enhanced  T1-weighted
images, and apparent diffusion coefficient

feature-consistency GAN &  three-

Wang B et al. (2023) [87] dimensional encoder-decoder network with Self-acquired SCALE-PWI

Cao B et al. (2023) [88]

mean absolute error loss
ACA-GAN

Hamghalam M et al. (2024) [89] ESGAN + EnhGAN

You S et al. (2024) [90]
Huang Y et al. (2024) [91]
Zhang Y et al. (2024) [92]
Jiang M et al. (2024) [93]
Fard AS et al. (2024) [94]

FA-GAN
BrainGAN
Unified Framework based on GAN

cGAN based on the pix2pix architecture

Pix2pix (cGAN)

(ADC) maps

T1, T1GD, T2, FLAIR
FLAIR, T1, Tlc, T2
MRI to PET

T1, T2, Tlc, FLAIR

T14T2+T1Gd—FLAIR and T1+PD—T2
T1WI, T2WI, FLAIR, and DWI from CT

SPECT from PET and MRI

BraTS2020

BraTS 2013 + BraTS 2018
ADNI

MIDAS + IXI + BraTS 2018
BraTS2019 + IXI
Self-acquired

Self-acquired

Tabassum M et al (2024) [95]  pix2pix WGAN T1, T2, and FLAIR to T1c BraTs2023
" One Patch of Source " Associated Label Patch 3DAﬂGanSeg Model |
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Figure4. The Visual Segmented Patch Resulted From 3DAdGanSeg model for Different Types of Brain Tissue from Source Domain (dHCP
Dataset) [127]
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and T1-weighted contrast-enhanced (T1c), T2-weighted and T2-
weighted fluid attenuated inversion recovery (FLAIR) techniques
that are used for brain tumor segmentation.

In brain tumor segmentation studies, deep-learning-based
techniques are becoming common, as their success is superior in
fields, such as object detection [130], image classification [131] and
semantic segmentation [132]. An important method for image
recognition and prediction is the Convolutional Neural Network
(CNN). However, CNN is mainly used for patient segmentation,
assessment, and recovery time estimation of brain tumors [133]. In
brain tumor segmentation, there are a variety of unsolved issues. As
an example, the goal of brain tissue segmentation or anatomical
segmentation of the brain is to mark each voxel or pixel into a
distinct class of brain tissue. This segmentation presumption is that
no tumor tissue or other abnormalities are included in the brain
image [134][135]. Besides that, some research methods return the
single label segmentation mask or the tumor core center as the point
of interest without further reasoning and segmentation being done.
Segmentation techniques can be roughly divided into four
categories: threshold-based techniques, region-based techniques,
model-based techniques, and pixel/voxel classification techniques
[136]. Researchers have typically used pixel-wise or voxel-wise loss
for segmentation, such as cross entropy. In automatically obtained
segmentations, where a voxel-wise unstructured loss is usually used
to train them, this can lead to holes and fragments. In addition, in
deep networks, the pixel-wise assessment and optimization
mechanism is not adequate to remove notions of anatomical
structures. To resolve these downside, additional corrections for the
CNNs architecture required, such as Conditional Random Fields
(CRFs) and Statistical Shape Models (SSMs) [137][138]. These
additional methods are usually hard to optimize. A potential solution
to these issues is the GANSs, which offer a different learning flow.
As outlined in Table (6), only GAN-based segmentation approaches
to brain medical imaging research are discussed in this section.
Numerous GAN-based brain segmentation techniques have been
suggested, including semi-automatic techniques and fully automatic
techniques. The primary goal of image segmentation is to divide an
image into homogeneous regions that are mutually exclusive and
exhaustive with respect to a predefined criterion. In brain tumors,
segmentation includes the isolation of various tumor tissues such as
solid or active tumor, edema, and necrosis, from the normal brain
tissues such as gray matter (GM), white matter (WM) and
cerebrospinal fluid (CSF). Segmentation of brain tumors requires an
objective measure that can be used to define the homogeneity of
each tissue. There are two approaches to accomplish an analytical
measure, namely unsupervised and supervised segmentation
processes. Early research by Moeskops et al. [139] indicates that the
use of the GAN training strategy in CNNs not only increases the
reliability of methods of semantic segmentation, but also puts non-
semantic segmentation methods closer to semantic methods. A
superior efficiency of GANs in the segmentation of normalized
patches of brain tumors is also highlighted by Li et al. [140].
Through preserving the premise that the distribution of tumor image
pixels is partially different from that of a healthy reconstruction
image, tumor segmentation can be done easily by comparing the
input image with the healthy image reconstructed. The adversarial
loss can also be used as an adaptively trained indicator of similarities
between the segmented outputs and the input image annotated.
Instead of computing the similarity in the pixel domain, the
discriminatory network then projections the input to a low-
dimensional manifold and evaluates the similarity there. The
adversarial loss is then determined from a network trained
adaptively during the generator's progress. Xue et al. [27] suggest
the SegAN structure that uses the U-Net as the GAN generator
architecture. This was shown to be successful in applying multi-
scale spatial constraints on segmentation maps and achieved state-
of-the-art results. In addition to adversarial and pixel-wise losses,
they demonstrate that pixel-dependencies are learned best when
using a multiscale loss function. Output loss on unseen images is
one of the recognized difficulties of most supervised segmentation
approaches. Yang et al. [148] employed an end-to-end training
adversarial network composed of a segmentor and a discriminator

in a pixel-wise classification way. Their segmentor is a 3D residual
U-Net designed to be conscious of contours by applying contour
constraints to the training process. In order to provide auxiliary
supervision, the discriminator network is trained alongside the
segmentation network. They demonstrated that the neural network
was able to generate predictions that closely resemble reality and
fine-tune predictions due to subtle anomalies by adding additional
constraints by contours and adversarial training to the model. In
addition, a 3D image segmentation using 3D Pix2Pix GAN, named
Vox2Vox, was introduced by Cirillo et al. [189] to segment brain
gliomas. Their group of numerous Vox2Vox models re-transform
high-quality segmentation outputs. Besides that, not only for image
segmentation, but also for further image augmentation, their
Vox2Vox model can be used as they stated. Moreover, Weninger et
al. [152] have suggested an unsupervised method of semantic
segmentation for gliomas in brain MRI, which can classify the three
distinct types of tumor tissue. Differently, Rezaei et al. [190]
suggested end-to-end trainable architecture for semantic brain tumor
segmentation by conditional adversarial training for the multi-class
classification of brain tumors. They utilized cGAN and trained a
CNN semantic segmentation along with an adversarial network that
discriminates against segmentation maps from the real images or the
segmentation network. These networks learn a loss adapted to the
task and data at hand, which makes it applicable in unseen data. Yu
et al. [70], however, used an 11-layer, two-pathway 3D CNN
segmentation model to efficiently segment brain tumors with the
synthesized FLAIR-like, created from their proposed 3D cGAN and
T1 MR images, achieving high performance on multimodal
segmentation of brain tumors. The synthesized FLAIR images only
improve the segmentation of entire tumors and tumor core
components efficiently from the T1 modality.

Yet, due to the distinct image characteristics of multiple modalities,
multimodal segmentation using a single model remains very
difficult. The extraction of modality-invariant functionality is a
critical issue. Previous methods of multimodal segmentation needed
paired images of n-modality. A two-stream unified attentional
generative adversarial network (UAGAN) is proposed by Yuan et
al. [149] to overcome the constraint of having paired multimodal
images. They incorporate the features of all streams of segmentation
and translation and recalibration of features is carried out with
attentional blocks to highlight valuable features. Brain tumor
segmentation studies show that, in most cases, their UAGAN
framework achieved better efficiency.

Moreover, the issue of paired multimodal medical image shortage
can be alleviated. Even while GANs-based approaches have
allowed a major advance in brain image segmentation. In general,
experimental findings suggest that rivalry is closed between
segmentors that use and do not use adversarial training.

3.3 Brain Image Reconstructions

The diagnostic accuracy of obtained medical images can be
restricted by noise and artifacts because of restrictions of clinical
environments, such as radiation dosage and patient comfort. In brain
medical diagnostics, Magnetic Resonance Imaging (MRI) is
commonly used. A key challenge in medical imaging is fast MR
regeneration without losing data. Any kind of motion artifact is
directly decreased by rapid acquisition and restoration and is thus
highly desirable. In order to recreate images, classic compressed
sensing-based solutions specifically use k-space information [191].
In images with quick inference, the potential to foster realism makes
GANs an obvious candidate for solving the problem of MR
reconstruction. GAN-based MR reconstruction analysis focuses on
the alteration and combination of well-known architectures with
suitable loss functions. In the following, Table (7) above,
summarized available brain reconstruction GAN-based medical
images studies.

Yang G et al., [192] presented an early study on GAN-based MR
reconstruction concentrating on the DAGAN architecture. A
perceptual loss is applied to adversarial and pixel-wise losses in this
approach to compare deep derived features in real and generated
data, which also improves the model's stability. Also, by modifying
loss functions to retain frequency information, they refine the
DAGAN architecture. Quan et al. [195], who added a refinement
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network to distinguish pixel-wise and perceptual information-based
training, has revised the DAGAN architecture. Centered on the
reconstruction of data in the missing frequencies, they suggest a
cyclic training strategy. Moreover, they suggest using a generator
chain to resolve the uncertainties that have been generated in
previous generators. In addition to ensuring fidelity of image
domain data, frequency domain data fidelity is often enforced when
raw K-space data is usable in MR reconstruction.

Otherwise, Pix2pix-based is a well-accepted model used to maintain
data fidelity in situations where multiple image modality data can
be co-registered. For MRI reconstruction, the simple pix2pix
structure has been used in several studies includes [193][197][198].
In order to cope with volumetric details and boost the reliability of
the proposed GAN model, researches in [222] are adapting the
SRGAN with 3D convolutional layers. To overcome the blurring
effect in the reconstructions, their loss function blends a pixel-wise
loss with a Gradient-Based Loss (GDL).

GAN-based methods of reconstruction usually apply alternative loss
functions to the initial structure. A software-only architecture for
high-quality MRI reconstruction using only 52 percent of the initial
k-space data was suggested by Shitrit and Raviv [193]. The main
concept is to use an adversarial loss in addition to the loss of L2.
Also, Zhang et al. [200] suggested a multi-channel GAN model for
parallel MRI reconstruction that uses multi-channel complex-valued
k-space data directly. By introducing a new loss function to merge
adversarial and perceptual loss in image reconstruction for better

artifact reduction. Recently the proposed framework of Shaul et al.
[206] uses the capabilities of the U-Net and GAN architectures for
high-quality MRI reconstruction. They provided up to 20% of k-
space data with a deep learning model for MRI reconstruction and
demonstrated its usefulness as a real-time software-only approach
for MRI acceleration. A two-stage GAN process for estimating the
missing k-space samples and fixing aliasing artifacts in the image-
space is the basis of the proposed method. This is achieved by an
end-to-end optimization mechanism involving image-space, k-
space, and adverse loss functions.

Differently, A multi-level Densely Connected Super-Resolution
Network (mDCSRN), which is a hybrid of the WGAN model and a
revised version of DenseNet, was proposed by Chen et al. [197]. To
overcome the substantial memory footprint of the problem of 3D
convolution. In addition, in other study, Chen et al. [205] applied a
3D U-Net deep convolutional neural network approach to enhancing
dipole inversion problems in the reconstruction of QSM
(Quantitative susceptibility mapping). The proposed QSMGAN
model is based on a 3D U-Net architecture with an improved input
phase receptive field relative to the output. Further refinement to the
network was then accomplished by the use of the WGAN-GP with
gradient penalty training strategy. Their approach effectively
produces reliable QSM maps from single orientation step maps and
performs substantially better than conventional dipole inversion
algorithms that are non-learning-based. Their findings indicate that
their suggested approach

Table 6: Brain segmentation medical images studies

Paper Authors GAN-based Methods Modality Dataset/s
Moeskops et al. (2017) [96] GAN (FCN + DN) T1-weighted MRI Self-acquired
Lietal. (2017) [97] CNN + GAN T1, Tic, T2-weighted and FLAIR MRI BRATS 2017
Kamnitsas et al. (2017) [98] GAN ((3D) CNN) MPRAGE, FLAIR, T2 and PD MRI (for TBI) 2 unknown Datasets
Rezaei et al. (2017) [99] gi'?\l';‘ (U-Net + Markovian 1y 15 _eighted MRI BRATS 2017
Rezaei et al. (2018) [100] CGAN (U-Net+ LSTM) T1, Tic, T2-weighted and FLAIR MRI BRATS 2017

Xue et al. (2018) [101]

Mondal et al. (2018) [102]
Bowles et al. (2018) [14]
Yang et al. (2018a) [35]

Rezaei et al. (2018) [103]
Yu et al. (2018) [38]
Baur et al. (2018) [104]
Zhu et al. (2018) [105]
Yang et al. (2018b) [106]

Yuan et al. (2019) [107]

Rezaei et al. (2019) [108]
Liu et al. (2019) [109]
Weninger et al. (2019) [110]
Cui et al. (2019) [111]

Tokuoka et al. (2019) [112]

Shi et al. (2019) [113]
Hamghalam et al. (2020)
[114]

Sun et al. (2020) [115]

Li et al. (2020) [116]
Nema et al. (2020) [117]
Yuan et al. (2020) [118]

Cirillo et al. (2020) [119]

Giacomello et al. (2020)
[120]

Hamghalam et al. (2020)
[59]

Wang S et al. (2021) [121]
Cui Setal. (2022) [122]
Zhao X et al. (2022) [123]
Wang S et al. (2022) [23]
Khaled A et al. (2022) [124]

Zhu L et al. (2022) [125]

Neelima G et al. (2022)
[126]

JOPAS Vol.24 No. 1 2025

SegAN (GAN + novel multi-scale
loss function)

DCGAN

PGGAN

cGAN

3D voxel-GAN (S (U-Net) + D
(FC Markovian PatchGAN))
(3D) cGAN
AnoVAEGAN
AnoGAN)

GAN (SR (LFSR))
GAN (S (3D Residual U-Net) + D
(auxiliary discriminator))

UAGAN (U-net)

3DJoinGANs

3D U-Net

VAEs + GANs

DGAN

3D U-Net + Cycle-GAN based
UDA

UG-net (U-Net) + GAN

GAN (2D-U-net + 2D FCN)

Parasitic GAN (S (3D U-Net) + G
(3D GAN) + D (PatchGAN))
TumorGAN (CycleGAN)
RescueWNe

UAGAN

Vox2Vox (3D U-Net)

(VAE  +

SegAN-CAT (SegAN)

GAN (Enh-Seg-GAN)

CPGAN

GAN-segNet
TBI-GAN

UTC-GAN

GAN Transfer Model
GMMS(DualMMP-
GAN+CACNN-Wnet)

DeepMRSeg + Optimizer (SPO)

Tlc, T2-weighted and FLAIR MRI

Segmentation

T1, T1IR, FLAIR + T1, T2 -weighted
CT(CSF) + MRI(FLAIR)

T1 To/From T2 MRI

T1, T2, Tice, and Flair + 4DPWI, CBF, CBV,
MTT, Tmax

T1To FLAIR MR

FLAIR and T1 images
T1-weighted (T1Gd) MRI
T1, Tlce, T2, and FLAIR MRI

T1Gd, T2 and FLAIR
MRI +CT

FLAIR and T1CE MRI

Tlw, T2w, Tlce and FLAIR
3D T1-weighted and T2-weighted brain MRI
FLAIR MRI

T1, Tlce, T2, and FLAIR MRI

T1, Tlce, T2, and FLAIR MRI

T1, Tlc, T2, and FLAIR MRI

T1, T1Gd, T2 and T2 FLAIR

T1, T1-weighted (T1Gd), T2-weighted, and T2
FLAIR

T1, Tilc, T2-weighted and FLAIR MRI

FLAIR to FLAIR, Tic, and T2

3D Tlw

T1, Tiw, Tic, T2, T2w, FLAIR
T1

CT

T1, Tlw, T2, T2w, FLAIR

T1, Tiw, Tic, T2, T2w, FLAIR

T1, Tlw, Tlc, T2, T2w, FLAIR

BRATS 2013 + BRATS 2015

MRBrains-2013 + iSeg2017
2 unknown Datasets
BRATS2015

BRATS2018 + ISLES2018
BRATS2015
Self-acquired
BRATS2018
BRATS2018

Medical
dataset
ISLES2018

Segmentation

BRATS2018

Decathlon

BRATS2015 + BRATS2017 + ADNI
CIND Center in San Francisco + ADNI

BRATS2019

BRATS2015 + BRATS2017

BRATS2017
BRATS2015 + BRATS2017

3 collected datasets from other studies

BRATS2018
BRATS2015 + BRATS2019

BRATS2013

ATLAS

BarTS2018
Self-acquired + ADNI
ISLES 2018

iSEG2017 + MRBrains

BarTS2018

BarTS2018
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Khaled A et al. (2022) [127]

multi-stage GAN

T1, Tiw, T2, T2w, FLAIR

iISEG2017 + MRBrains

Zoghbi A etal. (2022) [128] CADe system Tlc Figshare
[I?LezéA]sw—Cruz Jetal (2022)  poaicaN rs-fMRI Self-acquired
'[Dlrg{)a]pa“ Roet al. (2022)  oAN + patchGAN T1-w OASIS 1
Niu K et al. (2022) [131] QBrain T1-w SLANT-27 + Self acquired
Huang L et al. (2022) [132]  transformer-based GAN T1, TIGD, T2, FLAIR BraTS2015+BraTS2018+BraTS2020
Dong D et al. (2022) [133] AMD-DAS MRI +CT RSNA 2019 + MSD challenge
Kiani Kalejahi B et al.
(2023) [134] AC-GAN T1, TIGD, T2w, T2FLAIR BraT$S 2019
ngg]ya”an Shetal (2023)  5osAN+pix2pix GAN T1, T2, PD BraTS 2021
Sille R et al. (2023) [136] DCGAN T1, TIGD, T2, FLAIR BarTS2015
Glven et al. (2023) [137] SSimDCL
Xie B et al. (2023) [138] MLP-GAN Brain Vessel DeepVesselNe
Fan C et al. (2023) [139] U-Patch GAN SPECT, TI, MRT1, MRT2, PET, FDG The whole Brain Atlas
Tao C et al. (2023) [140] VAE-GAN Tlw, Tlc Self-acquired

. BraTS 2020 + Masoud2021 + SARTAJ
Datta P et al. (2024) [141] ViT+ GAN Tiw + Figshare + BR35H
Raut P et al. (2024) [142] Pix2PixNIfTI Tiw, T2w, Tlce, FLAIR BraTS2021
é%?i?[lﬁgbar Moet al o ogressive GAN30+StyleGAN  T1, TIWGD, T2w, T2FLAIR BraTS2020+BraTs2021
Asadi F etal. (2024) [144]  StyleGAN2-ada T1, T2, FLAIR TCIA
E%Tgha'am Metal. (2024)  gsGAN + EnhGAN T1, T2, Tic, FLAIR BraTS2013+BraTS2018
Shaari et al. (2024) [145] 3DAdGanSeg Tlw, T2w dHCP + Schizophrenia Bulletin 2008
Paramarthalingam A et al. .
(2024) [146] Keras GAN models Brain tumor CE-MRI

Table 1: Brain reconstructions medical images studies

Paper Authors GAN-based Methods Modality Dataset/s
Yu et al. (2017) [147] cGAN T1-weighted MRI IXI
Yang G, et al. (2017)[148] dubbed DAGAN T1-weighted MICCAI 2013 grand challenge
Shitrit and Raviv (2017) GAN MRI Self-acquired

[149]
Armanious et al. (2018) [150]

Quan et al. (2018) [151]
Sanchez and Vilaplana (2018)
[152]

Chen et al. (2018) [153]

Dar et al. (2018) [154]

Ran et al. (2018) [155]
Zhang et al. (2018) [156]
Armanious et al. (2018) [157]

Wang et al. (2018) [158]

Armanious et al. (2018) [159]
Latif et al. (2018) [160]

Chen et al. (2020) [161]
Shaul et al. (2020) [162]
Usman et al. (2020) [163]

Dar et al. (2020) [60]
Li G et al. (2021) [164]
Lv Jetal. (2021) [165]

Han C et al. (2021) [166]
Zhao Y etal. (2021) [167]
Sandhiya B et al. (2021) [168]
Fei Y et al. (2022) [169]

Pan J et al. (2022) [170]

Lui X etal. (2023) [171]

Li X etal. (2023) [172]

Cong S et al. (2024) [173]
Tudosiu PD et al. (2024)
[174]

Zhou X et al. (2024) [175]
Zuo Q et al. (2024) [176]
Wang Y et al. (2024) [177]

CGAN (Cascade U-Net + Markovian
GAN (PatchGAN)
cycleGAN

SRGAN

3D mDCSRN-GAN (WGAN-GP)
GAN (rsGAN)
WGAN

GANCS
MedGAN (cGAN)
3D c-GANs
generator)

CasNet (cascades residual blocks)
U-Net

SMGAN (U-Net +WGAN-GP)
DCE-MRI sequences
CG-SENSE + GAN(U-Net)

SGAN + jGAN + rGAN + sr-sGAN
RSCA-GAN
PI-GAN

MADGAN

mi-GAN

DCGAN-+ Faster R-CNN
BiC-GAN

CT-GAN

BTMF-GAN

DR-CAM-GAN
DDASR
3D generative model

GAN-NOV + GAN-VAN
UCT-GAN
MEaTransGAN

(3D U-net-like

CT + (FLAIR) MRI
MRI
(3D) T1-weighted MRI

(3D) T1-weighted MRI

T1-weighted, T2-weighted and PD-weighted
T1, T2, PD-weighted MRI

T1, T2 weighted MRI

T1 weighted MRI

3D PET

T1 weighted MRI1 / PET (2D axial slices)

MRI

QSM

T1, T2, PD, and FLAIR

T2 FLAIR

T1-weighted, T2-weighted, PD weighted and
FLAIR

CS-MRI

Tlw, T1SAG, FLAIR

Tlw, Tlc

SMRI

MRI

LPET to SPET

DTI, rs-fMRI

T1WI, CE-T1WI, T2WI, FLAIR

CS-MRI
Tiw
Tiw

Tiw
fMRI
LPET to SPET

Self-acquired
IX1
ADNI

HCP

MIDAS + IXI + BRATS2015
IXI + BrainWeb
Self-acquired

Self-acquired

Self-acquired

Self-acquired
BRATS2015
Self-acquired
IXI + DCE-MRI + MS-lesion
BRATS2018

MIDAS + IXI + BRATS2015

Calgary Campinas brain MR
Calgary-Campinas brain MR +
Self acquired

OASIS-3 + Self acquired
ADNI

Self-acquired

Self-acquired

ADNI

BraTS2019

MPRAGE + diencephalon
challenge + OASIS

ADNI-1

ADNI + UKB

ADNI + NACC
ADNI
Self-acquired

Table 8: Brain detection medical images studies

Paper Authors

GAN-based Methods

Modality

Dataset/s

Alex et al. (2017) [178]

Chen and Konukoglu (2018)
[179]

Baumgartner et al. (2018)
[180]

Han et al. (2018) [181]

Han et al. (2019) [182]

GAN
WGAN-GP

WGAN + VA-GAN

PGGAN
PGGAN

T1, T2, FLAIR and & T1 post contrast MRI
T2-weighted MRI

T2-weighted MRI

T1c brain axial MR images
T1-weighted (T1c) MRI

ISLES + BRATS 2014
HCP (train) + BRATS2015
(test)

ADNI

BRATS 2016
BRATS2016
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Adversarial Dual Autoencoders

Vu et al. (2019) [183] (ADAE) HGG and LGG HCP + BRATS2017
Self-acquired (National Center

Han et al. (2019) [44] CPGGAN T1-weighted (T1c) brain axial MRI for Global Health and Medicine,
Tokyo, Japan)

Sun et al. (2020) [184] ANT-GAN FLAIR MRI BRATS2018 + LiTS

Shen et al. (2020) [185] adGAN FLAIR MRI BRATS2017

Han C et al. (2021) [166] MADGAN Tlw, Tlc OASIS-3 + Self acquired

Hu N et al. (2022) [186] GAN-based Method CT to MR (FLAIR) Self-acquired

[Slagg\]/anakumar Setal. (2022) semi-supervised GAN MRI ADNI

Kuttala D et al. (2022) [188] Dense GAN + Dense Attentive GAN  sMRI ABIDE Il

Devika K etal. (2022) [189] 0o encoder-decoder ., v dinal SMRI ABIDE | + ABIDE Il
Pan J et al. (2023) [190] CT-GAN DTI, rs-fMRI ADNI
Sahoo S et al. (2023) [191] GAN ensemble Hybrid CNN-based  CE-MR Figshare

- BraTS 2020 + Masoud2021 +
Datta P et al. (2024) [141] ViT+ GAN Tiw SARTAJ + Figshare + BR35H
Siddiquee MM et al. (2024) Brainomaly Tiw ADNI

[192]

could produce more detailed, COSMOS-like QSM maps from
single-orientation efficiently.

In a different prospective, Dar et al. [92] introduced a GAN-based
architecture to accelerate multi-contrast MRI acquisitions by
exploiting low-spatial-frequency, high-spatial-frequency and
perceptual priors at the same time. In order to maximize recovery of
the target contrast, the proposed rsGAN uses high-spatial-frequency
prior in-formation in the source contrast. In comparison to pure
learning-based synthesis, rsSGAN bases extracted images from data
obtained from sampled acquisitions of the target contrast. The
proposed rsGAN approach surpasses state-of-the-art methods of
reconstruction and synthesis with enhanced high-frequency tissue
structure recovery and efficiency improvements against degradation
or loss of features.

Overall, the underlying methods are almost the same with all the
reconstruction tasks. MR is a particular case since it has a well-
defined forward and backward mechanism, i.e. Fourier
transformation, so that raw K-space data can be integrated. Better
reconstructed results can be achieved by using more data, either raw
K-space or images from other sequences. Additionally, using
adversarial loss provides more visually pleasing results in general
than using pixel-wise reconstruction loss alone. But the model can
hallucinate unseen structures by using adversarial loss to balance the
generated and actual data distribution. However, Pixel-wise
reconstruction loss tends to combat this issue if paired samples are
usable, even if the model has been conditioned on all normal images,
then used to recreate images of diseases, there would always be a
hallucination problem due to domain overlap.

3.4 Brain Image Detection

Detecting anomalies from images using supervised Deep Learning
algorithms involves a significant volume of annotated training data.
GANs approach this issue in a separate way by either improving
datasets with synthetic samples, or by mapping distributions by
which deviations may be observed as outliers. In the following,
Table (8). summarized available GAN-based brain detection
medical images studies. The presented techniques demonstrate good
success in the detection of anomalies while greatly decreasing the
volume of training data despite getting more structural difficulty
compared to other implementations since they belong to various
facets of GANs. While in the aforementioned detection methods, the
role of the discriminator is emphasized. However, the various
databases and measures used for the analyses dispute a fair
comparison between the approaches.

On MR images, Alex et al. [223] employed GAN for brain lesion
identification. The generator has been used to simulate the
distribution of regular patches and the discriminator has been used
to measure the posterior likelihood of patches in the test image based
on each pixel.

The modeling of the distribution of normal data with GANSs is a
different approach to unsupervised anomaly detection. The most
comparable normal image to the query image is then reconstructed
by the GAN and irregularities can be observed as differences
between the query and the reconstructed image. To learn the data
distribution of normal brain MR images, Chen and Konukoglu [224]
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utilized an adversarial auto-encoder. By examining the learned
latent space, the lesion image was then mapped to an image without
lesion, and the lesion could be highlighted by computing the residual
of these two images.

Baumgartner et al. [225] suggested the Visual Attribution GAN
(VA-GAN) for the detection of Alzheimer's disease, influenced by
AnoGAN. VA-GAN extracts the map of adjustments that turn the
image class from normal to diseased and uses it to detect
abnormalities. Vu et al. [228] suggested a different semi-supervised
GAN-based anomaly detection method, called Adversarial Dual
Autoencoders (ADAE), such that both generator and discriminator
are composed of autoencoders, where anomalies are observed using
discriminator pixel-wise reconstruction error during the testing.
Results from ADAE shows that the model in multiple problem
domains is robust.

Patch reconstruction is based on the aforementioned GAN-based
anomaly detection techniques, the main aim of which is to recreate
the corresponding normal counterpart provided a new image patch.
Shen et al. [230] recently proposed the adGAN model, which is a
discriminative patch-level model that explicitly learns the boundary
of normal data distribution and can output the anomaly score of a
new image patch without the mechanism of reconstruction. The
comprehensive experiments indicated that on all suggested datasets,
adGAN is consistently superior to its rivals.

The above techniques demonstrate good success in the detection of
anomalies while greatly decreasing the volume of training data
despite getting more structural difficulty compared to other
implementations since they belong to various facets of GANSs.
While in the aforementioned detection methods, the role of the
discriminator is emphasized. However, the various databases and
measures used for the analyses dispute a fair comparison between
the approaches.

3.5 Brain Image Classification

In the domain of deep learning applications, classification is
considered as the most successful task that has been deployed. It is
possible to extract hierarchical image features from a deep neural
network trained discriminatively with image-wise class labels. The
complexity of obtaining medical records, however, hinders their
employment opportunities. GANs' ability to increase training data
and derive domain-specific features from each class will probably
help solve this constraint. A two-stage process strategy is primarily
applied for the classification studies, with the first stage learning to
increase the images and the second stage learning to classify by
implementing the appropriate classification network. These two
stages are trained independently without any contact between them.
In the following, Table (9). summarized available GAN-based brain
classification images studies.

For the particular task of glioma classification, Ge et al. [73]
suggested a pairwise GAN architecture to synthesize MR images in
a cross-modality fashion. They also adopted a two-stage training
strategy that proved that the approach introduced was efficient and
robust, leading to a consistent improvement in test success in the
classification of glioma. One year later, Ge et al. [238] have
suggested a post-processing technique to incorporate the outcomes
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of the slice-level glioma subtype classification by plurality vote to
produce the diagnostic outcome at the patient level. To learn the
glioma feature using GAN-augmented MRIs followed by real MRIs,
a two-stage coarse-to-fine training methodology is suggested.
Results have shown that the proposed methodology is efficient and
stable after testing the proposed training methodology using real and
pairwise GAN-augmented MRIs as training results.

For brain tumor type classification, Ghassemi et al. [239] suggested
a method for data augmentation across distinct datasets. On different
sets of MRI scans, a GAN s first trained to generate MRI like
images as the outputs of its generative model and to differentiate
them by their discriminator from real ones. The discriminator model
is then presented for tumor type classification as a pre-trained deep
neural network model and is fine-tuned over the main limited set of
labeled MRI scans. They claimed that the results of the proposed
model obtained the highest precision compared to state-of-the-art
models. In addition, they argued that pre-training of CNN as a GAN
discriminator is a dominant approach with a small amount of data
for the implementation of deep learning. The findings, as stated
earlier, indicate that the classification tasks benefit from the samples
produced by the GAN.

3.6 Brain Image Registration

Although CNNs have been successfully used to align medical
images across the network in a single forward-pass, GANs have
emerged as a contender for more optimal registration mapping with
their excellent image transformation capability. Table 9.
summarized available GAN-based brain registration images studies.
To automatically learn the similarity metric for training a
deformable registration network, Fan et al. [242] suggested an
unsupervised adversarial similarity network. A registration network
that predicts the deformations is the model generator. Whereas the
model discriminator is a discrimination network that decides when
images are well matched and then supplies the registration network
with misalignment information during training. Via adversarial
training, both the registration and discrimination networks are
trained, learning a metric for precise registration. The results of the
proposed method show greater accuracy of registration relative to
state-of-the-art registration methods.

In addition, a cross-modality generative model for cross-modality
image registration was proposed by Yang et al. [67]. The proposed
approach is inspired by an atlas-based registration in which a non-
linear registration algorithm registers the source image to the target
image. They reported that the proposed approach outperforms the
state-of-the-art results on widely accepted MRI datasets in cross-
modality registration.

With utilizing of autoencoder latent space feature maps that allow
independent registration of datasets Mahapatra et al. [243] have
suggested a GAN-based model for the registration of multiple forms
of medical images using unsupervised domain adaptation and
generative adversarial networks. The approach proposed achieves
independent registration of the dataset where it is trained on one type
of images and achieve state-of-the-art result in registering differing
type of image. To produce the registered image and the
corresponding deformation field, GANSs are trained. Authors proved
that the registration approach based on domain adaptation performs
better than current methods that rely on large volumes of image
registration training data.

Due to the necessity of learning both local and global features in
different scales to model the difference between distributions,
GANs provide this useful information. Although GANs greatly
boost the efficiency of registration procedures, the necessary
performance can still not be achieved in certain real medical
settings.

3.7 Brain Image De-noising

Diagnostic radiology imaging often involves a trade-off between
radiation risk and image contrast. Reduced radiation exposure
results in poorer contrast and signal-to-noise levels, which can
enhance diagnosis but expose the patient to more dangerous
radiation. Deep Learning has been successfully applied to improve
the clarity and reduce noise in low-contrast images. However,
images produced by these methods are often fuzzy. GANSs, which
are thought to promote the creation of clear lifelike images, offer a

way to mitigate this problem. Many studies have acknowledged this
capability, and a variety of methods have been proposed to modify
GANSs in order to de-noise photos of noticeably greater quality.
Table 9 is summarized the available GAN-based brain de-noising
medical image studies.

By addressing the problems of image synthesis and image de-nosing
as crucial elements of manifold learning, Bermudez et al. [45]
investigated implicit manifold. By using DCGAN that has proved to
generate high-resolution, high-fidelity images in an unsupervised
manner, they utilized a skip-connected autoencoders for image
denoising. Connections between convolutional layers in the
autoencoder retain structural features to improve resolution. They
revealed that this de-noising methodology outperforms the latest
state-of-the-art FSL SUSAN de-noising tool.

For the simultaneous correction of rigid and non-rigid motion
artifacts from multiple body areas, Armanious et al. [201] expand
their previous MedGAN model. They further demonstrate the utility
of jointly correcting rigid and non-rigid motion artifacts by
contrasting them with an identical model trained solely on a single
type of motion artifact. After quantitatively and qualitatively
comparing the results against many state-of-the-art GAN-based
strategies, the updated MedGAN demonstrated superior results in
the motion correction task.

Although the findings appear convincing visually, it appears like an
appropriate, quantitative criterion is not yet available to determine
the strength of procedures in retaining essential medical image data.
The results of the forementioned papers benefit from the ability of
GANEs to learn the key common features of the image domain.

4. GANs Potentials and challenges

The GANs models are an effective methodology for a wide range of
tasks that has gained tremendous popularity in the area of medical
image processing. The sections described above define GANs and
the application of variants and their implementations in different
brain medical image domains. The potential and challenges of using
GANSs are provided in this section. It also emphasizes the main
difficulties and complications of using GANSs.

4.1 GANs Potentials

GANs offer major benefits over other supervised or unsupervised
learning methods. Its main advantage is that it does not include any
description of the form of the generator model's probability
distribution. Naturally, GAN thus avoids density forms that need to
represent complex and high-dimensional distributions. GANs main
advantages includes:

They are an unsupervised learning method: In medical imaging,
collecting labelled data is a manual procedure that requires a lot of
time and is costly to acquire. Because GANSs learn the internal
representations of the data they can be trained using unlabeled data,
hence do not need labeled data.

Capable to generate data: The capacity of GANs to produce data
that nearly looks like the genuine thing is one of its best features.
Their ability to expand training datasets, operate in semi-supervised
or unsupervised environments, and address issues like class
imbalance makes them extremely useful in medical imaging. In
cross-modality image synthesis, they have excelled, particularly in
converting one sort of image to another. Conditional GANSs reduce
the expenses and dangers associated with medical imaging while
producing data from several modalities, giving physicians access to
richer, more varied datasets that aid in decision-making.

Ability to learn data density distributions: GANs can learn
complex and hierarchical data distributions. The capacity to learn
data distributions opens up the possibility of detecting in actual
datasets unseen abnormal cases. Existing GANs methods
demonstrate good success in the detection of anomalies in brain
medical images while greatly decreasing the volume of training
data.

Using discriminator as a classifier: A discriminator and a
generator are the two primary parts of a GAN after training.
Curiously, the discriminator may also function as a classifier, which
makes it helpful for tasks like object classification, in addition to
evaluating the generator's output. The classification capability of
GANSs has been extensively utilized in brain imaging. Furthermore,
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GANSs excel in extracting valuable features from medical images,
particularly when pixel-based approaches are insufficient. Their
adversarial training methodology, which enables them to
comprehend the most profound and semantic facets of the material,
is responsible for this. In applications like brain image
segmentation, registration, and classification, this property has
proven especially useful.

4.2 GANs Challenges

In addition to such advantageous GAN utilities, there are also
difficulties that need to be overcome for medical imaging to be
effective. Although many improvements have been achieved to
mitigate some of the training and evaluation issues of GANs, there
are still some open challenges, includes:

Training challenges of GANs

There are several concerns involved with GANs such as training
process difficulties which include mode collapse, vanishing
gradients and internal covariate shifts.

Mode collapse: A typical problem with GANSs is mode collapse, in
which the generator produces outputs that lack variation and are
strikingly similar, if not identical. This occurs because the
probability distribution of the data is frequently multimodal and
complicated, with several peaks denoting several sample groups.
Mode collapse can occur when GANSs are unable to adequately

represent this complexity. In the worst situations, the generator may
consistently provide almost the same output, a phenomenon known
as total collapse. Thankfully, there are solutions for this issue, such
as training separate GANSs to handle different modes or encouraging
the generator to generate a wider range of outputs during training by
employing a broad collection of data samples.

Vanishing gradients: Neural networks frequently experience
disappearing gradients, particularly when backpropagating. The
gradient tends to get smaller as it goes backward through the layers,
from the last to the first. It can occasionally grow so tiny that the
early layers either learn very little or cease to learn at all. This
basically freezes their training because the weights in those first
levels are rarely adjusted. We refer to this issue as the "vanishing
gradients problem." Activation functions like as RelLU,
LeakyReLU, or PReLU can be used to address this issue. They
ensure that the network trains more efficiently by preventing the
gradients from decreasing excessively during backpropagation.
Batch normalization is another useful technique that improves the
stability and effectiveness of the training process by normalizing the
inputs to the hidden layers.

An internal covariate shift: When the network's input distribution
shifts, an internal covariate shift takes place. The training process is

Table 9: Brain classification, registration and de-noising medical images studies

Paper Authors GAN-based Methods Modality Dataset/s
Classification
Ge etal. (2019) [41] pairwise GAN (U-Net +  gppanced.T1-MRI and T2-MRI TCGA
Markovian)
Ge et al. (2020) [193] pairwise GAN T1, Tle, T2, FLAIR IDH1 genotype TCGA
Ghassemi et al. (2020) [194] CNN + GAN Tlce Self-acquired
Gao X et al. (2021) [63] TPA-GAN + PT-DCN MRI to PET ADNI-1 & ADNI-2
Fei Y etal. (2022) [169] BiC-GAN LPET to SPET Self-acquired
Alrashedy HH et al. (2022) [78] Vanilla GAN and DCGAN  MRI Brain Tumor Classification-Kaggle

Neelima G et al. (2022) [126]
Cao Y et al. (2023) [195]
Zhang M et al. (2024) [196]
Zhou X et al. (2024) [175]
Registration

Fan et al. (2018) [197]

Yang et al. (2018) [35]
Mahapatra et al. (2020) [198]

Zheng Y et al. (2021) [199]

Han R et al. (2022) [200]
Zhu X et al. (2022) [201]

Zhu X et al. (2022) [202]

Fu J et al. (2023) [203]

Li M et al. (2023) [204]

Liu S et al. (2023) [205]

Liu M et al. (2023) [206]

Xie K et al. (2024) [207]
Rahmani M et al. (2024) [208]
Park Y et al. (2024) [209]
De-noising

Armanious et al. (2018) [157]
Bermudez et al. (2018) [17]

Christilin DA et al. (2021) [210]

Tian M et al. (2021) [211]
Li Z et al. (2022) [212]

Yu M et al. (2023) [213]
Wang Q et al. (2023) [214]
Zuo Q et al. (2023) [215]
FuY etal. (2024) [216]
Wu Y etal. (2024) [217]
Cui J et al. (2024) [218]

CAViaR-SPO + PO
BNLoop-GAN

PA-Net

GAN-NOV + GAN-VAN

GAN (cascades U-net)
cGAN
CAEs + GAN

SymReg-GAN

JSR network

TGAN
(GAN_dr+GAN_ie)
FSGAN

MIG (AGM + QCM)
GAN-based Method
SCAM-GAN
style-encoding GAN
MARINet

D2BGAN
GAN-MAT

MedGAN (cGAN)
DCGAN

Residual Encoder- Decoder
WGAN
conditional GAN
HDnGAN
RIRGAN
DISGAN
DiffGAN
MPGAN
AttGAN-FT-2
PMC2-GAN

T1, Tiw, Tic, T2, T2w, FLAIR
dMRI, rsfMRI

MRI to PET

Tiw

3D brain images
T1 To/From T2 MRI
T1 and dual echo T 2 —weighted

T1,T2,CT

MR to CBCT
3D brain MRI

T1, T2w

Tlw

Tilw

CT to MRI

Tlw

Tilw

Tlw, T2-FLAIR

T2- from T1-weighted MRI

3D PET
T1-weighted MRI

Tiw

Tlw, T2w, PDw

3D T2 -SPACE FLAIR
T1, Tlce, T2w, T2-FLAIR
Tiw

fMRIto SC

LPET to FPET

LD PET, CT

LPET to SPET

BarTS2018
ADNI

ADNI

ADNI + NACC

LPBA40, IBSR18, CUMC12 and MGH10
BRATS2015

ADNI-1

BraTS 2018, ALBERTs, LPBA40,
IBSR18, CUMC12, MGH10 and self-
acquired CT-MRI dataset

Self-acquired

Atlas, BrainWeb, RIRE

BrainWeb, IXI, HGG, LPBA40

ADNI + OASIS-3 + GENIC (self-acquired)
HBN + ABIDE

Self-acquired

UKBB + PPMI + ADNI + ABCD + ICBM
Self-acquired

RESECT+ BITE

HCP + SMC + ABIDE-II

Self-acquired
BLSA

TCIA

BrainWeb

Self-acquired

BraTS 2019

HCP (Insample) + Epilepsy + BraTS2015
ADNI

Bern + Ul

Self-acquired

BrainWeb

slowed down by the hidden layers' ongoing need to adjust to the
changing input distribution. As a result, the model takes a lot longer to
converge to a global minimum. Methods such as batch normalization
and other normalizing techniques can be applied to solve this problem.
By stabilizing the input distribution, these methods provide faster and

more seamless training.

Training instability: One of the most significant difficulties in using
GANSs is training instability. For both conceptual and numerical
reasons, traditional GAN training is frequently unstable [264]. This

JOPAS Vol.24 No. 1 2025

can result in problems like mode-hopping or mode collapse, where the
model finds it difficult to converge correctly. The majority of solutions
are made for computer vision datasets, where it is simpler to visually
examine the produced images and identify faults, even if there is a lot
of research focused on finding answers for these challenges. To

increase the stability of GANs, methods such as feature matching,

mini-batch discrimination, historical averaging, one-sided label
smoothing, and batch or instance normalization have been suggested.
But things become more complicated with medical imaging. Because
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medical image modes are frequently less evident, it might be more
difficult to identify erratic behavior or irrational results. Researchers
have proposed unique loss functions and architectural modifications
to address these issues. However, the medical industry lacks defined
benchmarks and trustworthy assessment measures to accurately
evaluate and gauge the effectiveness of various strategies.

5. Evaluation matrixes diversities

A potent and cutting-edge method for developing generative models
is the use of GANSs. In contrast to conventional neural networks, which
are trained using a predetermined loss function until they converge,
GANs function by comparing two models: a discriminator and a
generator. The generator produces artificial images, while the
discriminator gains the ability to discern between produced and real
images. Simultaneously, these two models are taught, reining in one
another. The disadvantage of this configuration is that there does not
seem a simple loss function to gauge the generator's performance
directly. Because of this, tracking training progress and evaluating the
model's effectiveness in absolute terms are challenging Researchers
have created a combination of qualitative and quantitative techniques
to evaluate GANS according to the caliber and variety of images they
generate in order to overcome this issue. These methods aid in
assessing the model's performance even in the absence of a
conventional loss metric [265].

5.1Quantitative measures: GAN generators are assessed
quantitatively by allocating numerical scores that correspond to the
degree of quality of images they produce. Metrics such as Average
Log-likelihood, Coverage Metric, Inception Score (IS), Frechet
Inception Distance (FID), Precision, Recall, and F1 Score are among
the approximately 24 quantitative methods available for evaluating
GAN models. Some of these measures are "model agnostic," which
means they do not require to estimate the underlying probability
distribution; instead, they regard the generator as a black box that
simply has the capacity to sample images. However, measures like
Average Log-likelihood are a little more complex since they need to
approximate the probability distribution from the produced samples.
Researchers may objectively evaluate a GAN's performance in terms
of image quality and variety with the use of these quantitative
techniques.

5.2 Qualitative measures: Non-numerical qualitative measurements
are based on comparison analysis or subjective assessment. Among
them are Nearest Neighbors, Rapid Scene Categorization, Rating and
Preference Judgment, Mode Drop and Mode Collapse Evaluation, and
Network Internals Investigation and Visualization. The most popular
method of these is Rating and Preference Judgment, which entails
examining and assessing the produced pictures by hand. Human
participants are asked to rank or contrast models according to how
accurate or lifelike the produced images seem in these investigations.
A more intuitive understanding of the GAN's performance is provided
by this type of practical assessment, which can reveal insights that
statistics alone cannot.

There is still no consensus on the most effective method for assessing
GANSs. Quality, diversity, and realism are only a few of the features of
picture production that are the subject of several measures, and no one
score can encompass them all. However, by contrasting the statistical
characteristics of produced and actual images, some measures, such as
the Frechet Inception Distance (FID), have gained popularity since
they provide a more impartial perspective. An effective assessment
technique should be able to distinguish between authentic and fake
images, identify problems such as mode collapse, which occurs when
the generator generates outputs that are extremely similar, and detect
overfitting, which occurs when the generator just replicates the
training data. We should expect increasingly sophisticated and
trustworthy methods to evaluate GAN performance as the field
develops.

However, when evaluating GANSs in medical imaging, researchers still
frequently rely on conventional pixel-wise measurements like Mean
Squared Error (MSE) or Peak Signal-to-Noise Ratio (PSNR).
Ironically, GANs were created to get around the drawbacks of these
measures, which frequently fall short of capturing the finer features or
perceived quality of pictures. Another problem is that many of these
measures depend on comparisons with ground-truth images, which is

not always feasible in semi-supervised or unsupervised environments.
Because of this, it is challenging to assess GANSs in jobs where ground-
truth data may be lacking or insufficient, such as image synthesis or
reconstruction.

The difficulty is increased by the fact that GANs are notoriously
difficult to train because of their overall instability and
unpredictability in initialization and optimization. This implies that in
order to accurately assess their effectiveness, we require certain
measures, as mentioned in [266]. Metrics that emphasize the clinical
utility of produced images, such as how well they support diagnosis,
might be significantly more significant in the field of medical imaging
than conventional ratings. Regretfully, the research examined here
have not looked at these customized measures too much. Future
research should focus on improving assessment techniques since
doing so will not only enhance our ability to evaluate GANs but also
increase their usefulness and dependability for actual medical
applications.

6. Privacy and Credibility Issues in Data Generated by GANs
Significant privacy issues and questions about the reliability of the
produced data are brought up by the usage of GANs. The possibility
that GANs will unintentionally remember and replicate particular
details from the training data, raising the possibility of sensitive
information leaking, is a major privacy concern. In medical imaging,
for instance, if a GAN model were trained on a collection of patient
scans, it may produce pictures that contained recognizable private
information, jeopardizing patient privacy and breaking data protection
laws. Since synthetic data does not always accurately reflect real-
world data distributions, trustworthiness is still another crucial issue.
This calls into doubt the clinical or operational usefulness of data
generated by GANSs, especially in high-stakes applications like
diagnostics where even little mistakes can have a big impact. It is
frequently necessary to do thorough validation, be open about the
constraints of the data produced, and conduct thorough testing against
real-world datasets in order to ensure reliability. To address these
concerns, privacy-preserving strategies like secure federated learning
and differential privacy are being investigated; nonetheless, building
confidence in synthetic data is still a significant obstacle that requires
further study and regulatory supervision.

7. Real-World Applications of GANs in Brain Imaging: Scenarios
and Case Studies

GANs have been deployed in real-world applications for brain
analysis, particularly in medical imaging and neuroscience research.
While many applications are still in the research or clinical trial phase,
some have already been integrated into clinical workflows or are being
actively used in healthcare settings. Below are examples of real-world
deployments and case studies where GANs are making an impact in
brain analysis:

Synthetic Data Generation for Rare Disease Analysis

Training Al models to detect rare brain conditions (e.g., gliomas,
multiple sclerosis lesions) using synthetic data. For example, NVIDIA
Clara Al: NVIDIA’s healthcare platform uses GANs to generate
synthetic brain MRI scans for training Al models in hospitals where
patient data is scarce [267]. This has been deployed in partnerships
with institutions like the Mayo Clinic to improve tumor segmentation
models. This approach has been particularly useful in developing
models for rare diseases, where real-world data is limited.
Super-Resolution MRI in Alzheimer’s Diagnosis

Enhancing low-resolution MRI scans to improve visualization of brain
structures like the hippocampus. For example, Alzheimer’s Disease
Neuroimaging Initiative (ADNI): Researchers have integrated GAN-
based super-resolution tools into ADNI’s pipeline to enhance MRI
scans for early Alzheimer’s detection [268]. Additionally, Siemens
Healthineers: Collaborated with academic hospitals to deploy GAN-
powered MRI reconstruction tools (e.g., Deep Resolve) on Siemens
scanners, reducing scan times while maintaining diagnostic quality
[269].

Cross-Modal Synthesis for Radiation Therapy Planning
Generating synthetic MRI scans from CT images to improve brain
tumor targeting. As MD Anderson Cancer Center uses GANs to
synthesize MRI-like images from CT scans for patients who cannot
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undergo MRI (e.g., those with implants), streamlining radiation
therapy planning [270]. Also, RaySearch Laboratories integrated
GAN-based tools into their RayStation treatment planning system to
reduce reliance on multiple imaging modalities [271].

Noise Reduction in fMRI for Decides Monitoring

Removing motion artifacts from fMRI scans to improve brain activity
mapping. GANs have been used in fMRI studies to remove motion
artifacts caused by patient movement during scans. This has improved
the reliability of brain activity mapping, which is crucial for research
in neuroscience and clinical applications like epilepsy monitoring. For
example, BrainVVoyager a neuroimaging software suite that
incorporates GANSs for preprocessing fMRI data, used in research labs
worldwide [272].

GANs for Stroke Rehabilitation Prediction

Simulating brain recovery patterns to personalize rehabilitation
strategies by using GANSs to predict post-stroke recovery trajectories
by analyzing MRI scans, enabling tailored rehabilitation programs.
Avrterys a cloud-based medical imaging platform that employs GANs
to model stroke outcomes, deployed in partnership with hospitals like
Stanford Health Care [273].

Ethical and Regulatory Considerations

Addressing challenges in deploying GANs in clinical settings is
essential. The U.S. FDA has cleared GAN-based tools like Subtle
Medical’s SubtleMR, which enhances brain MRI quality using GANSs.
Itis clinically deployed in over 100 imaging centers [274]. In addition,
EU’s GDPR Compliance hospitals in the EU use GANs to generate
synthetic data for research while adhering to strict patient privacy laws
[275][276].

8. Discussion

Recent years have seen a huge increase in the usage of GANSs in
research; the sections above describe how GANSs function, their
various variations, and their uses in brain image processing. Fig. 5
illustrates that around 39% of these researches concentrate on brain
image synthesis, with the most prevalent use case being cross-
modality or conditional synthesis shown in Fig.6. The reason for this
is that GANs are especially adept at creating one kind of brain image
from another, which is highly beneficial for medical imaging.

The most often cited imaging method in GAN-related research is MRI
because of the large number of publicly accessible MRI datasets and
the time-consuming nature of gathering many MRI sequences.
Patients and physicians can save a great deal of time and money by
using GANS s to efficiently generate one sequence from another. The
adaptability and promise of this technology in increasing brain image
analysis are demonstrated by the several innovative GAN-based
techniques that researchers have presented for both unconditional and
conditional image synthesis.
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Figure 5. Brain imaging GAN-Based Studies

The efficacy of GAN-based methods frequently prompts doubts and
calls for more research. For example, research such as that conducted
by Frid-Adar et al. and Chuquicusma et al. has demonstrated that
artifacts in the created samples can make it reasonably straightforward
to discern between genuine and synthetic images in visual Turing tests
[34] [35]. Furthermore, it might be difficult to get exact alignment
across several imaging modalities, such CT and MRI. In an effort to
address this, Nie et al. [61] combined adversarial feedback from a
discriminator with voxel-wise loss from a CNN regression to produce
more realistic synthetic CT images from MRI. For training, this
approach still requires ideally aligned MR-CT pairings, which are not
always accessible.

Wolterink et al. [60] suggested employing CycleGANs for MR-to-CT
synthesis in order to get around the requirement for paired data. A
forward CycleGAN is trained to convert MR images into CT and back
to MR, and a reverse CycleGAN is trained to convert CT images into
MR and back to CT. The model is more adaptable and useful because
of its cyclic consistency, which enables it to function without paired
training data. Notwithstanding these developments, there are still
issues with the artificial realism of images, artifacts, and other
characteristics that set GAN-generated samples.

The wider effects of these parameters on the performance and
dependability of GAN-based models are still unclear, despite the fact
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Figure 6. Numbers of Brain imaging GAN-Based Studies in
Different Application

that GANs have shown promise for data simulation and augmentation
in tasks like classification and segmentation. To find out how these
factors affect GANs' overall efficacy in medical imaging and other
fields, more investigation is required.
Approximately 24% of the research concentrated on brain image
segmentation due to the increasing popularity of image-to-image
translation frameworks. In these situations, the generator is able to
keep fine control over form and texture because to adversarial training,
which makes it a potential method for segmentation tasks. The
discrepancy between reference segmentations' discrete label masks
and the generator's continuous probability values for every voxel and
class, however, presents a problem for adversarial segmentation
techniques. The discriminator may learn to take use of this difference
instead of concentrating on enhancing the segmentation quality when
it is taught to distinguish between the continuous outputs of the
generator and the discrete reference masks. This demonstrates a
significant drawback of using adversarial networks directly for
segmentation tasks and emphasizes the necessity of creative fixes to
close this gap.
Designing the discriminator to assess the input image and its
segmentation is a practical way to overcome this difficulty. An
adversarial encoder network was suggested by Xue et al. [27] that
looks at the reference (ground truth) segmentation in addition to the
input image and the projected segmentation. They added a scalar
adversarial loss based on the L1 loss between the multi-scale features
that were extracted from the input and the projected segmentation.
This method showed notable gains in accuracy and proved to be very
successful for brain tumor segmentation in MRI.
In a similar vein, Kamnitsas et al. [141] used domain adversarial
networks to tackle the problem of domain changes between MR
collection procedures. By adding multi-connected adversarial
networks to the basic design, they improved it and made it possible for
the domain discriminator to process data from several feature extractor
layers. A more resilient domain classifier resulted from this approach,
which also improved the gradients returning to the core network and
increased domain adaption. They also demonstrated how 3D CNNs for
volumetric image processing may use this domain adversarial training
technique. Their approach proved useful in managing domain changes
when it was successfully tested on multi-modal MR brain scans of
traumatic brain injuries, where one of the modalities varied between
datasets. Both papers show creative approaches to using adversarial
training for segmentation tasks, whether it is to handle domain changes
in multi-modal data or to increase segmentation accuracy through
multi-scale feature analysis. These methods highlight adversarial
networks' adaptability and potential in medical image processing.
Brain image reconstruction accounted for about 14% of those
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surveyed studies. While several GAN architectural modifications are
suggested, it appears that ResNet is the most common generator
architecture. In addition to the adversarial loss, most of the methods
enforce a pixel-wise loss. In order to retain critical information in the
missing data reconstruction, other loss functions are also applied.
GANSs can have satisfactory accuracy in the reconstruction of missing
data in medical images due to their synthesis abilities. In comparison,
for the quantitative assessment of proposed approaches, much of the
analysis for image reconstruction uses conventional metric system
methods. Particularly where GAN introduces additional losses, in the
absence of a standardized reference metric, there is difficulties in
improving the visual standard of an image.

In order to fully analyze the quality of GAN-generated images,
Armanious et al. [203] has suggested that MedGAN evaluations
should incorporate both subjective assessments by subject matter
experts, such as seasoned radiologists, and perceptual analysis.
Although this method offers in-depth insights, it has some serious
disadvantages, including being costly, time-consuming, and
challenging to generalize in other situations. This calls into doubt the
validity and applicability of such measurements for broad use.

The possible loss of data fidelity in GAN-based techniques is another
significant issue, especially in unpaired training situations. GANs
sometimes have trouble preserving information from small or subtle
aberrant areas during cross-domain image-to-image translation, which
can be important in medical imaging. Notwithstanding these
drawbacks, the results of the experiments under evaluation indicate
that GANs execute faster and more accurately than alternative
techniques for tasks like data reconstruction. This demonstrates both
their promise and the necessity of more improvement to meet current
obstacles.

A further 8% of brain imaging studies are concerned with anomaly
detection. In contrast to previous applications, papers proposed for
anomaly detection by GANs have more structural sophistication
because they gain from multiple facets of GANs. In particular, in
detection methods, the importance of the discriminator is emphasized.
While significantly lowering the amount of training data, the
aforementioned techniques demonstrate good effectiveness in
anomaly identification. The trials' diverse datasets and metrics,
however, make it difficult to compare the approaches in a practical
way. In the unpaired image transfer based on CycleGAN, lesions
inside an image may be excluded because of the distribution matching
effect if the intended distribution is created from medical images
without pathology. It is also possible to use this negative impact to
discover abnormalities if the source and target domains are of the same
imaging modality and just differ in terms of normal and pathological
tissue Sun et al. [57]. Lastly, the little amount of research that is still
available on classification, registration, and de-noising makes it
challenging to draw any conclusions.

The remining 15% brain imaging studies is aggregating the studies that
have been carried out on brain image classification, registration and
denoising as shown in Figure2. Despite being extensively used for
tasks like as image synthesis and brain imaging segmentation, GANs'
application in classification, registration, and denoising is restricted
because of a number of unique difficulties. Because GANs are
primarily built for creating new data rather than differentiating
between classes, they are not well suited for classification jobs that
need exact class separation. While several versions try to include
classification skills, such auxiliary classifier GANs (AC-GANS), these
models frequently lack the accuracy and durability needed for
trustworthy diagnostic application. The difficulty of registration is in
matching multi-modal or multi-timepoint brain pictures, which calls
for extremely precise spatial changes.

In addition, GANS are not built to tackle spatial alignment challenges
and might not be precise enough, researchers prefer more conventional
approaches, such non-rigid registration techniques, which yield more
dependable results. Finally, because the adversarial training process
does not naturally emphasize maintaining tiny, diagnostically
significant features, GANs may find it difficult to remove noise from
images without unintentionally creating artifacts or deleting important
details. Because of this, researchers are concentrating on models that
are especially tailored for the complex needs of classification,
registration, and denoising in brain imaging, leaving the potential of

GANSs in these domains underutilized.

Finally, GANSs lack meaningful metrics to determine the performance
of GANSs. It is therefore very difficult to compare various variants of
GANSs and still based on the visual evaluation of the generated images.
Furthermore, due to lack of rigorous and reliable criteria, it is difficult
to determine which are the best GANs algorithms. A reasonable
evaluation is required because it will allow a very wide variety of
appropriate algorithms to be identified. Also, to have the best
algorithms and their understanding and which algorithms in practice
would make a significant difference [266]. Researchers have
suggested different evaluation methods for GANs in order to resolve
the above-mentioned problems [55]. In addition, various measurement
criteria are preferred for different implementations, as different
applications need different trade-offs for various metrics. A mixture of
training and evaluation metrics for the target application is critical to
consider.

9. The Impact of GANs Application in the Healthcare Domain
Generative Adversarial Networks (GANS) are revolutionizing medical
imaging by improving diagnostic precision and addressing data
scarcity. For instance, GANSs enable super-resolution enhancements,
transforming low-quality CT or MRI scans into high-resolution
images, which is particularly impactful in resource-limited settings
where advanced imaging equipment is unavailable [277]. This
capability reduces reliance on costly hardware and expands access to
accurate diagnostics globally. Additionally, GANSs facilitate tasks like
lesion segmentation and tumor detection by generating synthetic data
that augment training datasets, thereby improving the robustness of Al
models used in radiology and pathology [277]. Such advancements not
only elevate diagnostic confidence but also democratize access to
advanced healthcare tools, bridging gaps between high- and low-
resource regions.

Additionally, GANs are pivotal in synthesizing patient-specific
medical data, enabling personalized treatment strategies while
mitigating privacy concerns. By generating synthetic yet realistic
patient images, GANSs allow researchers to create diverse datasets for
training predictive models without compromising sensitive
information [278]. For example, GAN-based image-to-image
translation can convert MRI scans into synthetic CT images, aiding in
radiotherapy planning without exposing patients to additional
radiation. Beyond imaging, GANs are used in predictive analytics,
such as forecasting patient readmission risks by augmenting
imbalanced datasets with synthetic samples, which improves model
accuracy in identifying high-risk individuals. This synthesis of
multimodal data supports tailored interventions, from precision
oncology to chronic disease management, fostering a shift toward
individualized care paradigms [278].

While GANs offer transformative potential, their deployment raises
ethical and operational challenges. Biases in training data can
propagate into synthetic outputs, potentially exacerbating health
disparities if underrepresented populations are excluded from datasets
[279]. For instance, GANSs trained on homogeneous data may fail to
generalize across diverse patient demographics, leading to inequitable
diagnostic outcomes. Moreover, the lack of standardized validation
frameworks for synthetic data poses risks in clinical adoption, as
inaccuracies could compromise patient safety. Regulatory bodies must
establish guidelines to ensure transparency, fairness, and
accountability in GAN applications. Collaborative efforts between
technologists, clinicians, and policymakers will be critical to harness
GANSs’ benefits while addressing ethical pitfalls, ensuring these tools
align with equitable and patient-centered healthcare goals [280]. These
impacts underscore GANs’ dual role as both a catalyst for innovation
and a subject of scrutiny, demanding balanced integration into
healthcare systems to maximize societal benefit.

10. Research Directions and Key Research Pathways

The redesign network architectures, adding new loss functions, and
creating alternative optimization algorithms are the three primary
strategies that recent research has suggested to overcome the
difficulties with GANs. As demonstrated by research such as in [37]
[39] [43] redesign network architectures seek to optimize the structure
of GANs. In works like [40] [44], new loss functions are put forth with
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the goal of enhancing output quality and training stability. To improve
convergence, various optimization methods adjust or regularize the
optimization procedure. Many creative approaches have been
developed to address the inherent difficulties of GANs as a result of
the increasing amount of study on the subject, opening the door for
more reliable and efficient models.

In addition, we also look at more general topics for further research to
expand on previous findings. In order to overcome frequent problems
including unstable training, disappearing gradients, and mode
collapse, a number of academics have suggested solutions, including
creating more resilient network designs, regularizing goals, improving
training techniques, and adjusting hyperparameters. However, because
these issues are intrinsically linked, these solutions frequently involve
trade-offs, especially between variety and image quality. In order to
develop more reliable and efficient GAN models for medical imaging
applications, future research will need to carefully weigh these trade-
offs.One potential path for study might be to focus on image quality
without suffering from the poor variety of images. In order to explore
more tractable formulations and to make training stable and
transparent, another important research path is to provide a theoretical
framework for managing problems in the training phase of GANSs. In
addition, it was shown to approach the creation of solutions with
algorithmic enhancements for improved performance rather than
better precision, as the majority of related works largely stressed the
achievement of state-of-the-art accuracy.

Complex geometric connections are often overlooked by current data
synthesis methods in medical imaging, which limits their use in
modalities like MRI, CT, and ultrasound where maintaining structural
integrity is essential. The next generation of GAN designs will
probably concentrate on incorporating sophisticated geometric
modeling skills in order to get beyond these restrictions. For example,
architectures such as Spatial GANs (SAGANs) and Geometric GANs
(GeoGANS) have demonstrated potential in producing data that more
closely resembles the anatomical structures and spatial connections
seen in actual medical imaging. In medical imaging, where even little
spatial irregularities can affect the validity of a diagnosis, these models
promote spatial consistency and continuity by utilizing spatial
attention processes and customized loss functions.

Furthermore, bidirectional mapping capabilities are introduced by
Bidirectional Generative Adversarial Networks (Bi-GANSs) and
Invertible Conditional GANs (IcGANSs), which enable high-quality
synthesis while maintaining geometric properties unique to the
anatomy of interest. In order to efficiently recreate genuine pictures
while synthesizing new ones, bi-GANS, for instance, use an encoder
network to build a shared latent space. This makes the model
extremely versatile for complicated tasks like multi-modal image
translation and alignment. In applications like MRI to PET translation,
where anatomical alignment is crucial, IcGANSs further improve this
by conditioning on certain geometric features, enabling fine control
over synthetic picture qualities.

Besides, by resolving issues with registration and alignment, models
such as Spatially-Conditioned GANs (SC-GANs) and Deformable
GANs offer an extra degree of refinement. The ability of SC-GANSs to
conditionally produce images in response to spatial limitations is
especially useful for registration tasks that call for the alignment of
structures across several imaging modalities. Conversely, deformable
GANs use deformable convolutional layers that adjust to the spatial
geometry of the input data, making them more useful for creating
pictures that need precise spatial distortion, such as in some forms of
elastography or ultrasound imaging.

GANs can better manage the many geometric properties and
correlations present in many medical imaging applications by merging
these specific designs. This makes them reliable tools for real-time
clinical applications that demand accuracy and spatial coherence, in
addition to increasing their potential for producing synthetic data.
These advancements open the door to more extensive GAN
applications, from robust synthetic training data that satisfies the
exacting validation requirements of medical imaging to realistic
anatomical simulations.

Although GANs were first created as entirely unsupervised models,
real-world applications have demonstrated that adding some labeled
input greatly improves the quality and control of their creation. This

method, which is frequently used with Semi-Supervised GAN (SS-
GAN) architectures, shows that even a small number of labels may
direct the model to produce outputs that are more precise and
significant. For example, by anchoring the model to these important
properties, a medical GAN might significantly increase the therapeutic
relevance and variety of the produced images by using a small number
of annotated photos of certain brain pathologies or anatomical
locations.

One well-known example is the Auxiliary Classifier GAN (AC-GAN),
which adds an auxiliary output to predict labels in addition to creating
images. Even with sparse labels, the generator may learn more focused
features with the aid of an auxiliary prediction, resulting in higher-
fidelity images that correspond to the designated classes. In a similar
vein, the Semi-Supervised GAN (SS-GAN) is an extension of
conventional GANSs that incorporates a discriminator that divides
images into labeled and unlabeled categories. This improves the
discriminator's capacity to differentiate between generated and
realistic images, thereby improving the quality of the generator. A
different strategy is the Label Propagation GAN (LP-GAN), which
propagates labels using pseudo-labeling techniques on a tiny labeled
set. This successfully amplifies the influence of limited labeled data
without having to pay the high costs of complete labeling.

Advanced models that can more adaptably and dynamically use both
labeled and unlabeled data are probably where GAN integration with
semi-supervised learning is headed. Examples of potential solutions
are Self-Training GANs and Few-Shot GANs, which allow models to
repeatedly refine themselves after self-generating labels based on the
labeled subset. Furthermore, Conditional GANs (cGANSs) may be used
in semi-supervised contexts to generate varied, realistic data that
generalizes effectively while conditioning on a restricted number of
labels for certain features. By improving model resilience and
lowering reliance on large labeled datasets, this semi-supervised
method may revolutionize the application of GANs in areas where
labels are expensive or hard to get, such as uncommon medical
ilnesses or highly specialized diagnostic imaging.

The use of GANs for text production is being investigated more and
more in the context of semi-automated medical report generation.
Attentional GANs and Transformer-based GANs are two models that
have the ability to provide thorough, diagnostically relevant image
reports. By using attention methods to rank disease-critical
information in the output text, these designs make sure that every
report stays focused on important diagnostic markers that are pertinent
to the particular imaging scenario.

In order to provide structured and contextually correct text outputs that
closely match physician standards, Attentional GANS, for instance,
can weigh the significance of characteristics associated with diseases
such as tumors, lesions, or fractures. Additionally, because
Transformer GANs can capture long-range dependencies within
complex medical narratives, they are especially well-suited for the
nuanced task of report generation. This is because they integrate
transformer layers, which are known for their strengths in sequence
modeling, and produce reports that reflect the coherence and detail of
documents authored by clinicians.

Looking toward the future, to improve these designs to satisfy clinical
requirements, cooperation between medical experts and Al
researchers is essential. Doctors' knowledge of data annotation and
clinically relevant feature selection is crucial, particularly when it
comes to spotting subtle imaging patterns that automated algorithms
could miss. Their participation guarantees that the attention
mechanisms of the GAN are adjusted to the most diagnostically
important characteristics, hence improving the quality of the reports
that are produced. By including physician input into model
improvement and diagnostic validation, this multidisciplinary synergy
might possibly revolutionize physician roles and maximize the effect
of GANs in medical imaging and report creation. As these
technologies advance, GAN-assisted reporting may help enable a
more accurate and efficient diagnostic process by lowering effort and
improving report accuracy and consistency.

Finding suitable measures to assess the consistency and quality of
samples produced by GANSs is, last but not least, a major difficulty.
Determining how to evaluate this realism is not simple, even though
many research use adversarial techniques to create realistic samples.
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It becomes challenging to compare various implementations in the
absence of uniform assessment criteria. Since various applications
necessitate distinct trade-offs between parameters like picture quality,
variety, and clinical relevance, a benchmarking framework is crucial.
Developing a set of training and evaluation criteria appropriate to the
intended application is essential to addressing this issue and
guaranteeing a fair and insightful evaluation of GAN performance.
Following are summarization the Key Research Pathways:
Geometric Consistency in Medical Data Synthesis

Current GANSs often fail to preserve complex anatomical geometries
in modalities like MRI, CT, and ultrasound, where structural integrity
directly impacts diagnostic validity. Emerging architectures address
this limitation by integrating spatial and geometric priors:

* Spatial Attention Mechanisms: Models like Spatial GANs
(SAGANS) use attention layers to enforce spatial coherence,
producing anatomically plausible structures.

*Bidirectional Mapping: Bi-GANs and Invertible cGANs (IcGANSs)
employ encoder-decoder frameworks to map between latent spaces
and image domains, preserving geometric fidelity during tasks like
MRI-to-PET translation.

» Deformable Convolutions: Deformable GANs adaptively adjust
kernel receptive fields to model tissue elasticity and distortions,
enabling applications in ultrasound and elastography.

These innovations enhance GANs’ ability to maintain spatial
relationships, making them viable for tasks requiring precise
alignment (e.g., multi-modal registration) and synthetic data
generation for rare pathologies.

Semi-Supervised Learning for Enhanced Generalization
Incorporating limited labeled data into GAN training has proven
effective for improving output controllability and clinical relevance:

* Auxiliary Classifiers (AC-GANs): By predicting labels during
generation, AC-GANs anchor outputs to clinically meaningful
features, such as tumor morphology.

*Self-Training Architectures: Few-shot and label-propagating GANs
(LP-GANSs) amplify small labeled datasets through pseudo-labeling,
reducing dependency on costly annotations.

* Hybrid Architectures: Transformer-GANs and attention-based
models (e.g., Attentional GANS) integrate sequence modeling for
tasks like automated report generation, prioritizing diagnostically
critical features through learned attention weights.

Future semi-supervised frameworks could enable dynamic label
refinement and domain adaptation, particularly for rare diseases or
specialized imaging protocols.

Standardized Evaluation and Clinical Validation

A major unresolved challenge is the lack of standardized metrics for
assessing GAN outputs in medical contexts. Current adversarial
metrics (e.g., Fréchet Inception Distance) often fail to capture
clinically relevant features. To address this:

* Domain-Specific Benchmarks: Develop task-specific evaluation
criteria (e.g., structural similarity index for MRI, lesion consistency
scores) co-designed with clinicians.

* Multi-Dimensional Assessment: Balance metrics across quality (e.g.,
SNR, resolution), diversity (e.g., coverage of anatomical variations),
and clinical utility (e.g., diagnostic accuracy of synthetic-augmented
datasets).

* Validation Pipelines: Implement rigorous human-in-the-loop
validation, where radiologists assess synthetic images and reports for
diagnostic plausibility.

Collaborative Roadmap for Clinical Translation

The next frontier lies in bridging Al innovation with clinical expertise:
*Clinician-Al Collaboration: Integrate physician insights into feature
selection, model training, and output validation to ensure outputs align
with diagnostic workflows.

*Regulatory Alignment: Establish guidelines for synthetic data usage
in training and validation, addressing ethical and regulatory concerns.
* Real-World Deployment: Optimize models for edge devices and
PACS integration, ensuring compatibility with existing clinical
infrastructure.

By addressing these challenges, GANs could revolutionize medical
imaging—from enabling low-cost synthetic training datasets to
assisting in real-time diagnostics and personalized treatment planning.

We can summarize these fsuture revolutionize to three main aspects:
1. Quality-Diversity Synergy: A critical goal is improving image
quality without sacrificing diversity. Current methods often prioritize
one at the expense of the other, limiting their clinical utility. Novel
architectures that decouple these objectives or introduce adaptive loss
functions could resolve this tension.

2. Theoretical Frameworks: Developing rigorous mathematical
frameworks to analyze GAN training dynamics (e.g., convergence
guarantees, equilibrium conditions) is essential for stabilizing training
and improving interpretability. Such frameworks could unify disparate
solutions and guide the design of more tractable optimization
landscapes.

3. Algorithmic Innovation Over Precision: While many studies focus
on achieving state-of-the-art accuracy, future efforts should emphasize
algorithmic robustness and computational efficiency. This shift would
better align with clinical workflows, where reliability and speed are
paramount.

11. Conclusion

Generative Adversarial Networks (GANs) have gained significant
popularity not only due to their ability to learn intricate, non-linear
mappings between latent and data spaces but also because they can
leverage large volumes of unlabeled image data, which are often
underutilized in deep representation learning. This review paper
provides an in-depth discussion on the various applications,
architectures, available brain imaging datasets, and unresolved
research challenges of GANSs in medical image processing for brain-
related disorders. Despite their potential, GANs are notoriously
difficult to train, with challenges such as instability, non-convergence,
and mode collapse posing substantial obstacles. Addressing these
issues should remain a focus of future research. Overcoming the
difficulties associated with GANs may be possible by designing more
efficient models through the adoption of suitable network
architectures, activation functions, and optimization strategies.
Although several GAN variants with distinct features have been
introduced, challenges remain. There is still significant room for
improving the theoretical foundations and methodologies behind GAN
training. Additionally, the growing capabilities of deep networks
present exciting opportunities for novel applications in brain imaging
research. Adversarial guidance, for instance, can assist in generating
images that more closely resemble real images in the target domain,
enhancing their potential for clinical applications in tasks such as
image synthesis or segmentation, where designing an efficient loss
function is particularly challenging. To achieve the consistency and
reliability required for GAN-based imaging techniques to be widely
adopted in clinical practice, continued research is essential.
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