

Journal of Pure & Applied Sciences
www.Suj.sebhau.edu.ly ISSN 2521-9200

 Received 10/04/2071 Revised 71/06/2071 Published online 71/06/2071

JOPAS Vol.16 No.2 2017 39

The Correlation between software difficulty and care chargeS
Ahmed Mohamed Ibrahim Alabbasi

Faculty of Technical Sciences ,Computer Department, Sebha University, Libya
Corresponding author: aammbbsi@gmail.com

ABSTRACT As software becomes more and more difficult due to increased number of module size, process
size, and dividing difficulty, software care prices are often on the increase. Consider a software such as

Windows 1 operating systems with 10 million Source lines of code (SLOC) and with 3000 designers [1], there
is no disbelief that such a large and complex software will require large amount of money, common and
environmental factors to keep it. It has been estimated that over 70% of the total costs of software
development process is spent on maintenance after the software has been distributed. This paper studies the
relationship between software complexity and maintenance cost, the reasons responsible for software
difficulty and why maintenance costs increase with software complexity. The results show that there is a
strong correlation between software complexity and maintenance costs. That is, as lines of code increase, the
software becomes more complex and more bugs may be presented, and therefore the cost of keeping software

rises.
Keywords:Software, Software Maintenance, Software Evolution, Maintenance Costs.

aammbbsi@gmail.com: للمراسلة

110SLOC3000

10

1. Introduction:
There is no disbelief that software is becoming

complex due to technological development,
organizational request, need for ease of use. The
first operating system that was produced is the
batch operating systems in the late 1940s. These
operating systems could only support a limited
jobs being processed in groups. Ever since then,
operating systems have continued to become more

and more complex supporting networking, real-
time processing, multi-processing, multi-
programming, and a lot of other events. It is a
well-known fact that after the first release of
Windows Operating System (WOS) in the 1990s,
WOS has become more and more complex,
developing from Windows 3.0 to Windows 8. The
lines of code (LOC) have also increased due to the
fact that developers of WOS are responding to
customer demands, environmental factors. As a
result, the costs of maintaining the WOS have
also increased due to the increase in human work
needed to develop and maintain it as it grows from
one version to the next. This case is not atypical
to only WOS but to all other software that are in

use especially those in high demand such as

application software [1] [2].Maintenance plays an
important role in the life cycle of a software
product. It is therefore necessary to study the
connection between software complexity and
maintenance costs so as to know the factors
responsible for software complexity and why
complexity increases the costs of maintenance.

Therefore, there is need to estimate the costs of
maintaining software. [3] As noted in [4] [5], A
system that is more complex may be harder to
specify, harder to design, harder to implement,
harder to verify, harder to operate, risky to
change, and/or harder to predict its behavior.
Complexity affects not only human
understandability but also “machine
understandability”. Larger and complex software
projects require significant management control.
Also, the maintenance of large software systems
requires a large number of employees.Therefore,
management must find ways to reduce the costs
of software maintenance by ensuring that the

http://www.suj.sebhau.edu.ly/
aammbbsi@gmail.com%20
http://file.scirp.org/Html/1-1730107_51631.htm
aammbbsi@gmail.com

.Alabbasi The Correlation between software difficulty and care charges

JOPAS Vol.16 No.2 2017 40

right people are employed to keep them to avoid

more complication of the software.

2. Background of Software Maintenance
Software maintenance is defined by The Institute
of Electrical and Electronics Engineers (IEEE) as
the modification of a software product after
delivery to correct faults, to improve performance
or other attributes, or to adapt the product to a
modified environment. Software maintenance is
the general process of modifying a system after it
has been delivered to the organization or user
requesting the software. Therefore, software
maintenance and evolution are important
concepts in the software life cycle because
organizations are now completely dependent on
their software systems and have invested a lot of
money in these systems.

2.1. Software Complexity
The (IEEE) defines complexity as the degree to

which a system or component has a design or
implementation that is difficult to understand and
verify [6] . As seen from these definitions,
complexity is not necessarily measured on an
abstract scale, complexity is relative to the viewer,
what appears complex to one person might appear
simple to the other person. Complexity in software
is not entirely subjective because it can be

measured and since it can be measured, it has
some determined values. Therefore, the growth in
complexity of a system is the growth in risk.
The complexity of software increases as the size
increases. That is, as software grow in size, it
becomes necessary to determine the complexity.
Therefore, increased software complexity means
that maintenance and enhancement of projects
will take longer time to be completed, will costs
more, and will result in more errors[7].

2.2. Causes of Software Complexity
Several factors can be traced to the causes of
software complexity. These include:

2.2.1 Lack of documentation:
 Most software projects are lacking in
documentation, they are often incomplete or
insufficient for maintainers to fully understand
the software. Most often, the people that
understand the software usually leave or retire
from the organization without being replaced.
Also, sometimes, they die and their knowledge
dies with them. Thus software becomes
increasingly complex. What this simply means is
that documentation is an essential activity in
software development process as it helps
programmers to better understand the software

during analysis and design stages of maintenance

process [8].

2.2.2 Presence of dead code:
 The term dead code means unnecessary,
inoperative code that can be removed without
affecting program’s functionality. These include
functions and sub-programs that are never called,
properties that are never read or written, and
variables, constants and enumerators that are
never referenced and user-defined types that are
never used. These dead codes often increase the
size of software by increasing the Executable of
(EXE or DLL) file size by hundreds of kilobytes
thereby making it complex and therefore difficult

to maintain. Thus the older and larger the system

is, the more dead code in the system [9].
Dead code in a program often cause increased
memory utilization, slower execution of programs,
more code to read and maintain, increased effort
and time in trying to comprehend the code. The
effect of all these is that there will be increased in
complexity and costs of maintenance. Thus there
is need for programmers and software developers
to remove dead code from their software as much
as possible before releasing it to customers to help
future maintainability.

2.2.3 Presence of bugs/faults:
 Faults in a software program are often called
bugs. A software bug is failure or mistake in a
program that produces undesired or incorrect
results. It is an error that prevents the application
from functioning as it should. Software faults
manifest themselves only under particular

conditions. However, a single software fault can
give rise to system errors or failures. This may
happen until the bug has been identified and
corrected.
 According to a study conducted by the US
Department of Commerce, in a typical software
development project, 80% of the cost of software
development is spent on identifying and correcting

software faults [10] .
 A huge time and money is often spent to verify
that a system is fault free. Figure 1 shows the
costs of fixing bugs in a typical software life cycle.
As seen in the figure, the cost of fixing bugs in the
maintenance stage appears to be much higher
than all the other stages. Therefore there is need
to properly develop software by having good
design and ensuring that the software is well
tested to remove bugs as much as possible before
the software is released to the market or
customers to reduce maintenance cost.
However, these days, several tools and techniques
have been developed to help automatically find
bugs
.

Figure 1. Costs of fixing bugs [5] .

2.2.4 User’s changing requirements:
 Software users often demand for other
requirements when software has just been
delivered to them. They often ask the developer to
provide other functionalities that eventually make
the software to become complex at the end and
difficult to maintain.

http://file.scirp.org/Html/1-1730107_51631.htm#f2

.Alabbasi The Correlation between software difficulty and care charges

JOPAS Vol.16 No.2 2017 41

2.2.5 Bad design:
 Bad design can also lead to software complexity.
Software that is not properly designed can cause a
lot of wastages during development and
maintenance stages[3]. During the design phase,
there should be a breakdown of the design model
into smaller modules which is referred to as
detailed design. then the software can easily be
developed and will not be too complex for human
comprehension.

2.2.6 Environmental changes:
 Most often, Software developed for a particular
environment or organization when taken to
another environment or organization might

require some modifications to the software before
it can be used or adapted to that environment. In
trying to adapt the software to the new
environment, maintenance must be carried out.
However, this could lead to further complexity of
the software making it difficult for future
maintenance[11].

2.3. Factors Affecting Software Maintenance
Costs
Software maintenance costs are significantly
affected by software complexity, measured in
three dimensions: Program size Modularity, and
The use of branching.

2.3.1 Program size
It is a general belief that the more the size of a
program increases, the more the program
becomes more complex. Large systems require
more maintenance effort than do smaller systems.

This is because there is a greater learning curve
associated with larger systems, and larger
systems are more complex in terms of the variety
of functions they perform. less maintenance is

needed when less code is written. the length of the
source code is the main determinant of total cost
during maintenance as well as initial
development. Also, older systems are more
difficult to maintain than newer systems because
with usage and frequent changes to the older
software, they become less organized and less
understandable with staff turnover[1].

2.3.2 Modularity
Modularity is the degree to which system’s
components may be separated or recombined. for
large modules to be meaningful and useful in a
program, they must be broken down into smaller
modules called sub-modules.

 it is clear that there is no firm or organization

that has been able to solve the problem of
software complexity. even a firm with deep
expertise in software development, like Microsoft,
can still suffer from a complexity disaster
resulting from a system’s lack of modularity[9].

2.3.3 The use of branching
Branching plays a major role in the development
process of large software. The use of branching in
software development can have some negative
effects on the code by making the program more
complex. Furthermore, a build break on a branch
often affects the team working on that branch and
not on the entire development team. Branches are

meant to provide a level of isolation for
development teams to work on parts of the code
base without having to worry about affecting
others. Branches may introduce a false sense of
safety, as changes made in different branches will
eventually be merged together. increasing the
chances of introducing regression failures and
making it difficult to maintain the code base [8].

3. Case Study of Windows Operating Systems
Software
This section provide estimated costs for
development and maintenance for a large project
such as Microsoft WOS certain percentage of the
costs for each version of the software. As in data
in Table 1.

Table 1. Versions of Microsoft Windows
operating system[1].
As seen in Table 1, as these operating systems

evolve; source line of code SLOC increases ,so that
the costs of development and maintenance
through these versions will be on the rise. The
table also shows that in each release of Windows

version, the size of the development team is on the
increase. This is because as more functionalities
are needed by users, so there is pressure on the
software development team to release new
products that will meet user’s demands and in the
process of trying to meet deadlines, new
maintainers will be employed and the more people
are involved, the more bugs are introduced into
the software. Thus when the software is eventually
released to the user, there will be further need to
maintain the software since those latent errors
will start to manifest themselves with usage of the
software. Therefore, having a large and complex
program will eventually make the program more

Year
Released

Product
Version

Dev. Team Size SLOC
(Million)

Dev. Estimated
Costs (Billion US
Dollars)

 Maint
Estimated Costs
(Billion US

Dollars)

Jul-93 Windows NT
3.0

200 4-5 10 28

Aug-95 Windows ‘91 450 7-8 18 47
Jun-98 Windows ‘91 800 11-12 23 58
Feb-00 Windows

2000

Professional

1400 29+ 32 72

Oct-01 Windows XP 1800 45 40 86
Apr-03 Windows

Server 2003
2000 50 48 102

Nov-06 Windows
Vista

2500 56 60 128

Oct-09 Windows 7 2700 67 75 161
Oct-12 Windows 8 3000 80 83 192

.Alabbasi The Correlation between software difficulty and care charges

JOPAS Vol.16 No.2 2017 42

costly and difficult to maintain. This is graphically

shown in Figure 2.

Figure 2. Windows operating system and
estimated development
and maintenance costs.
5. Conclusions
On conclusions, The results shows that there is a

direct connection between software complexity
and maintenance costs. That is, as lines of code
increase, the software becomes more complex and
more bugs may be introduced, and hence the cost
of maintaining such software increases. The
estimated costs of software maintenance are high
enough to justify strong efforts on the part of
software managers to monitor and control

complexity.

References:
[1]- M.Glinz,(2003),"Estimating Software

Maintenance", Requirements Engineering
Research group, University of Zurich.

[2]- Lyu, M.R. (1996) Handbook on Software
Reliability Engineering. McGraw-Hill, USA and
IEEE Computer Society Press, Los Alamitos,
California, USA.

[3]- Ogheneovo, E.E. (2013) Software Maintenance
and Evolution: The Implication for Software
Development. West Africa Journal of
Industrial and Academic Research, 7, 34-42.

[4]- Banker, R.D., Datar, S.M., Kemerer, C.F. and
Zweig, D. (1993) Software Complexity and
Maintenance Costs. Communications of the
ACM, 36, 81-94

[5]- Grubb, P. and Takang, A.A. (2003) Software
Maintenance: Concepts and Practice. 2nd
Edition, World Scientific Publishing Company,
Singapore.

[6]- Guth, R.A. (2005) Code Red: battling Google,
Microsoft Changes How It Builds Software.
The Wall Journal, A1. Factiva, MIT Libraries,
Cambridge.

[7]- Shihab, E., Bird, C. and Zimmermann, T.

(2012) The Effects of Branching Strategies on

Software Quality. Proceedings of ESEM’72,
Lund, 17-22 September 2012, 301-310.

[8]- Appleton, B., Berazuk, S., Cabrera, R. and
Orenstein, R. (1998) Streamed Links:
Branching Patterns for Parallel Software
Development, 2002.

[9]- Mall, R. (2009) Fundamentals of Software
Engineering. 3rd Edition, PHI Learning Private
Ltd., New Delhi, 404-411.

[10]- Dvorak, D.L., Ed. (2016) NASA Study on
Flight Complexity Final Report, Systems and
Software Division, Jet Propulsion Laboratory,
California Institute of Technology.

[11]- R. Spiewak, K. McRitchie. (2014) "Using

Software Quality Methods to Reduce Cost and
Prevent Defects", 23-27 .

http://www.stsc.hill.af.mil/crosstalk/2008/12/index.html

