

مجلة العلوم البحثة والتطبيقية

Journal of Pure & Applied Sciences



www.Suj.sebhau.edu.ly ISSN 2521-9200

Received 26/04/2019 Revised 29/08/2019 Published online 11/12/2019

# ( $g^*$ -Pre Regular and $g^*$ -Pre Normal) –Cleavability

\*Ghazeel .Almahdi. Jalalah<sup>1</sup>, Nazha Emhimed Alhaj<sup>2</sup> <sup>1</sup>Department of Mathematics, Faculty of Education, Sirte University, Libya <sup>2</sup>Department of Mathematics, Faculty of Sciences, Sebha University, Libya \*Corresponding author: <u>gjellala@yahoo.com</u>

**Abstract** T. D. Rayanagoudar and P. G. Patil [8] introduced two new classes of spaces, called  $g^*$ -pre regular and  $g^*$ -pre normal spaces.

In this paper we studied the concept of cleavability over these spaces: ( $g^*$ -Pre Regular and  $g^*$ -Pre Normal) as following:

1- If  $\mathcal{P}$  is a class of topological spaces with certain properties and if X is cleavable over  $\mathcal{P}$ , then  $X \in \mathcal{P}$ .

**2-** If  $\mathcal{P}$  is a class of topological spaces with certain properties and if Y is cleavable over  $\mathcal{P}$ , then  $Y \in \mathcal{P}$ .

**Keywords:**,  $g^*p$  (pre)-irresolute M-pre-open (M-pre-closed) absolutely cleavability ,  $g^*p$  (pre)-irresolute, M-pre-open (M-pre-closed) absolutely double cleavability.

# قابلية انشقاق (انشطار) Cleavability (انشطار) هابلية انشقاق (انشطار)

\*غزيل المهدي جلاله<sup>1</sup> و نزهة امحمد الحاج<sup>2</sup> اقسم الرياضيات-كلية التربية-جامعة سرت، ليبيا قسم الرياضيات-كلية العلوم-جامعة سبها، ليبيا للمراسلة:<u>gjellala@yahoo.com</u>

فى هذا البحث درسنا حالة الانشقاق أو ( الانشطار)باستخدام دوال خاصة على بعض الفضاءات الطوبولوجية الخاصة :

:کالتالی ( $g^*$ -pre regular and  $g^*$ -pre normal spaces )

الدالة p فصل من الفضاءات الطبولوجية بخصائص معينة و كانت X قابلة للانشطار باستخدام الدالة -1

 $X \in \mathcal{P}$  فإن  $\mathcal{P}$  فإن  $(g^*p(\text{pre})\text{-irresolute}, M\text{-pre-open}(M\text{-preclosed}))$ 

\_\_إذا كان p فصل من الفضاءات الطبولوجية بخصائص معينة و كانت Y قابلة للانشطار باستخدام الدالة.

 $Y \in \mathcal{P}$  فإن  $\mathcal{P} \in \mathcal{P}$  (pre)-irresolute , M-pre-open(M- preclosed) الكلمات المفتاحية: الانشطار المطلقp(pre)-irresolute , M-pre-open(M- preclosed) و $p^*p$ 

الانشطار المطلق المضاعف(pre)-irresolute, M-pre-open(M-preclosed)

# **1- Introduction**

In 1985 Arhangl' Skii [1] introduced different types of cleavability (originally named splitability ) as following :

A topological space X is said to be cleavable over a class of spaces  $\mathcal{P}$  if for  $A \subset X$  there exists a continuous mapping  $f: X \to Y \in \mathcal{P}$  such that

 $f^{-1}f(A) = A$ , f(X) = Y. Throughout this paper, X and Y denote the topological spaces  $(X,\tau)$  and  $(Y,\sigma)$  respectively, Let A be a subset of the space X. The interior and closure of a set A in X are denoted by int(A)and cl(A)respectively. The complement of A is denoted by (X - A) or  $A^c$ .

# 2-Preliminaries:

**Definition 2.1.[8]** A subset A of a topological space  $(X,\tau)$  is called pre-open set if  $A \subseteq int(cl(A))$ .

The complement of pre-open set is called. preclosed set **Definition 2.2**. [7, 2] Let  $A \subseteq X$ . The intersection of all pre-closed sets containing A is called pre-closure of A and is denoted by pcl(A).

### Definition 2.3.

A subset A of a topological space  $(X, \tau)$  is called

1) g -closed [6] if  $cl(A) \subseteq G$  whenever  $A \subseteq G$  and G is open in  $(X, \tau)$ . The complement of g -closed set is called g -open.

2)  $g^*p$  -closed [5] if  $pcl(A) \subseteq G$  whenever  $A \subseteq G$  and G is g -open in  $(X,\tau)$ . The complement of  $g^*p$  - closed set is called  $g^*p$  -open.

#### Definition 2.4.

A map  $f: X \to Y$  is called :

1) *M*-pre-open (resp. *M*-pre-closed) **[3]** if f(V) is pre-open (resp. pre-closed) set in *Y* for every pre-open (resp. pre-closed) set *V* of *X*.

2)  $g^{*}p$  -irresolute [5] if  $f^{-1}(F)$  is  $g^{*}p$  -closed in X for every  $g^{*}p$  -closed set F in Y.

3) pre-irresolute [4] if  $f^{-1}(F)$  is pre-open in X for every pre-open set F in Y.

#### **Definition 3.5**.[8]

A space  $(X, \tau)$  is said to be  $g^*$ -pre regular (briefly  $g^*p$  -regular) if for every  $g^*p$  -closed set F and a point  $x \in F$ , there exist disjoint pre-open sets U and V such that  $F \subseteq U$  and  $x \in V$ .

#### **Definition 3.6[8]**

. A topological space  $(X, \tau)$  is said to be  $g^*$ -prenormal

 $(g^*p$  -normal) if for any pair of disjoint  $g^*p$  -closed sets A and B, there exist disjoint pre-open sets Uand V such that  $A \subseteq U$  and  $B \subseteq V$ .

# 3- $g^*$ -Pre Regular – cleavability

#### **Definition 3.1**

A topological space X is said to be absolutely  $g^{*}p$  irresolute, M-pre-open (resp-pre-closed) cleavable over a class of spaces  $\mathcal{P}$ , if

 $A \subset X$  and there exists an injective  $g^*p$  -irresolute, M-preopen(resp-pre closed) continuous mapping  $f: X \to Y \in \mathcal{P}$ , such that  $f^{-1}f(A) = A$ .

#### Definition 3.2

A topological space X is said to be absolutely preirresolute, M-preopen(resp-pre closed) cleavable over a class of spaces  $\mathcal{P}$ , if

 $A \subset X$  and there exists an injective pre-irresolute, M-preopen(resp-pre closed) continuous mapping  $f: X \to Y \in \mathcal{P}$ , such that  $f^{-1}f(A) = A$ .

#### Remark3.1

By  $g^*p$  -irresolute, M-preopen(resp-pre closed) cleavable ,we

mean that  $g^*p$  -irresolute, M-preopen (resp-M-pre closed) - continuous function  $f: X \to Y \in \mathcal{P}$  is an injective  $g^*p$  -irresolute, pre-open(pre-closed) respectively.

#### Remark3.2

By pre-irresolute, M-preopen(resp-pre closed) absolutely cleavable ,we

mean that pre-irresolute, M-preopen (resp-M-pre closed) function

 $f: X \to Y \in \mathcal{P}$  is an injective and pre-irresolute, M-preopen (M-pre-closed) respectively

#### **Theorem 3.1**.[8]

Let  $(X, \tau)$  be a topological space. Then the following statements are equivalent:

(i)  $(X,\tau)$  is  $g^*p$  -regular.

(ii) For each point  $x \in X$  and for each  $g^*p$  -open neighbourhood W of x, there exists a pre- open set U of x such that  $pcl(U) \subseteq W$ .

(iii) For each point X and for each  $g^*p$  -closed set **F** not containing x,

there exists a pre-open set V of x such that  $pcl(V) \cap F = \emptyset$ .

#### **Theorem 3. 2**.[8]

A topological space  $(X, \tau)$  is  $g^*p$  -regular if and only if for each  $g^*p$  -closed set F of  $(X, \tau)$  and each  $x \in F^c$ , there exist pre-open sets U and V of  $(X, \tau)$ such that  $x \in U$  and  $F \subseteq V$  and  $pcl(U) \cap pcl(U) = \emptyset$ .

#### Proposition 3.1.

Let space X be a pre-irresolute, M-pre-closed absolutely cleavable space over a class  $\mathcal{P}$  of  $g^*p$  regular spaces Y, then X is  $g^*p$  -regular spaces **Proof:** 

Let x be any point in X and a  $g^*p$  -closed subset F of X with

 $x \notin F$ , since X is pre-irresolute M-pre-closed, absolutely cleavable, so there exists an injective pre-irresolute M-pre-closed mapping  $f: X \to Y \in \mathcal{P}$ such that  $f^{-1}f(F) = F$ , and for every  $y \in Y$  there exists  $x \in X$  such that  $y = f(x) \Leftrightarrow f^{-1}(y) = x$ , since f is M-pre-closed map

so f(F) is a  $g^*p$  closed subset of **Y**, such that  $\mathbf{y} = f(\mathbf{x}) \notin f(F)$ .

Since **Y** is  $g^*p$  - regular, so there exist two preopen sets **G** and **H** of **Y** with  $\mathbf{y} = f(x) \in G$ ,  $f(F) \subset H, G \cap H = \emptyset$ , then  $f^{-1}(y) = x \in f^{-1}(G)$ 

 $f^{-1}(F) \subset f^{-1}(H)$  this implies that  $x \in f^{-1}(G)$  ,  $F \subset f^{-1}(H)$ 

, since f is a pre-irresolute , then  $f^{-1}(G)$ ,  $f^{-1}(H)$ are pre- open sets of X,  $f^{-1}(G) \cap f^{-1}(H) = f^{-1}(G \cap H) = f^{-1}(\emptyset) = \emptyset$ 

Therefore X is  $g^*p$  -regular space. Hence  $X \in \mathcal{P}$ **Proposition 3.2** 

Let X be a  $g^*p$ -regular space is a  $g^*p$ -irresolute and M-pre-open cleavable over a class  $\mathcal{P}$ , then Y is  $g^*p$ -regular, hence  $Y \in \mathcal{P}$ 

# Proof.:

suppose y be any point in Y and E be any  $g^*p$  closed subset of Y with  $y \in E$ , there exists  $x \in X$ with  $y = f(x) \Leftrightarrow f^{-1}(y) = x$ , and  $g^*p$  -irresolute and M- pre-open Injective continuous mapping  $f: X \to Y$  such that

 $\begin{aligned} f^{-1}f\big(f^{-1}(E) = f^{-1}(E)\big), & \text{since } f \text{ is a } \boldsymbol{g^*p} \text{ -irresolute} \\ \text{, then } f^{-1}(E) \text{ is } \boldsymbol{g^*p} \text{ - closed set in } X \text{ this implies} \\ & \text{that} f^{-1}(y) \notin f^{-1}(E), \text{ then} x \notin f^{-1}(E) \text{ in } X, \end{aligned}$ 

since X is a  $g^* p$ -regular space, so there exist pre-open sets U, V such that  $x \in U$  and  $f^{-1}(E) \subset V$ , this implies that  $f(x) = y \in f(U)$ , and  $ff^{-1}(E) \subset f(V)$ , this implies that  $E \subset f(V)$ , since fis M-pre-open and bijective, so f(U), f(V) are preopen sets of Y and  $f(U) \cap f(V) = f(U \cap V) =$ 

$$f(\emptyset) = \emptyset$$

Then Y is  $g^{p}$  -regular space .Hence  $Y \in \mathcal{P}$ .

#### 4- <sup>g</sup> Pre Normal – Cleavability Definition 4.1

A topological space X is said to be double preirresolute, M-pre -open (pre-closed) cleavable over Let  $E_1$ ,  $E_2$ 

a class of spaces  $\mathcal{P}$ , if for any subsets  $A \subset X$  and  $B \subset X$ , there exists a pre-irresolute, M-preopen (pre-closed) mapping  $f: X \to Y$  such that  $f^{-1}f(A) = A$  and  $f^{-1}f(B) = B$ 

# **Definition 3.2**

A topological space X is said to be double  $g^*p$  irresolute, M-pre -open (pre-closed) cleavable over a class of spaces  $\mathcal{P}$ , if for any subsets  $A \subset X$  and  $B \subset X$ , there exists a  $g^*p$  -irresolute, M-preopen (pre-closed) mapping  $f: X \to Y$  such that  $f^{-1}f(A) = A$  and  $f^{-1}f(B) = B$ . **Theorem 4.3** 

Let  $(X,\tau) be a topological space. Then the following statements$ 

are equivalent.

(i) (X,τ) is **g<sup>\*</sup>p** -normal.

(ii) For each  $g^*p$  -closed **F** and for each  $g^*p$  -open set **U** containing **F**, there exists a pre-open set **V** containing **F** such that  $pcl(V) \subseteq U$ .

(iii) For each pair of disjoint  $g^*p$  -closed sets A and B in  $(X, \tau)$ ,

there exists a pre-open set U containing A such that  $pcl(U) \cap B = \emptyset$ .

(iv) For each pair of disjoint  $g^*p$  -closed sets A and B in  $(X,\tau)$ , there exist a pre-open sets U and V such that  $A \subseteq U, B \subseteq V$  and  $pcl(A) \cap pcl(B) = \emptyset$ .

#### **Proposition 4.1**

Let X be a pre-irresolute, M-pre-closed, absolutely double cleavable space over a class  $\mathcal{P}$ of  $g^*p$  normal spaces, then X is normal.Hence  $X \in \mathcal{P}$ .

# **Proof**:

Suppose  $F_1, F_2$  be two disjoint closed  $\mathcal{G}^{\bullet}\mathcal{P}$  -closed sets of X, then there exists an injection preirresolute, M-pre-closed, mapping  $f: X \longrightarrow Y \in \mathcal{P}$  such that  $f^{-1}f(F_1) = F_1, f^{-1}f(F_2) = F_2$ . Since f is M-pre-closed, then ,  $f(F_1), f(F_2)$ , are two disjoint  $\mathcal{G}^{\bullet}\mathcal{P}$  closed sets of Y, since Y is  $\mathcal{G}^{\bullet}\mathcal{P}$  normal space, so there exist two pre- open sets U, V such that  $F_1 \subset f^{-1}(U), F_2 \subset f^{-1}(V)$ 

Since f is pre-irresolute then  $f^{-1}(U)$ ,  $f^{-1}(V)$ are pre- open sets of X and  $f^{-1}(U) \cap f^{-1}(V) = f^{-1}(U \cap V)$ 

 $V) = f^{-1}(\emptyset) = \emptyset$ 

Then X is a  $g^*p$  normal space .Hence  $X \in \mathcal{P}$ 

#### **Proposition 4.2**

Let X be  $g^{\bullet}p$  - normal space is a  $g^{\bullet}p$  -irresolute, , M-preopen absolutely double cleavable over a class of spaces Y, then Y is  $g^{\bullet}p$  - normal space. Let  $E_1, E_2$ , be disjoint  $g^*p$  - closed subset of Y, then there exists an injective  $g^*p$  -irresolute , M-preopen mapping  $f: X \to Y$  such that

$$\begin{split} f^{-1}f\{f^{-1}(E_1)\} &= f^{-1}(E_1), f^{-1}f\{f^{-1}(E_2)\} = f^{-1}(E_2) \\ \text{Since } f \text{ is } g^*p \text{ -irresolute ,so } f^{-1}(E_1), f^{-1}(E_2) \text{ are } \\ \text{disjoint } g^*p \text{ - closed sets of } X \text{ , since } X \text{ is } g^*p \text{ -} \\ \text{normal , so there exist pre- open sets } G, H \text{ such } \\ \text{that } f^{-1}(E_1) \subset G, f^{-1}(E_2) \subset H, G \cap H = \emptyset \text{ and } \\ ff^{-1}(E_1) \subset f(G), ff^{-1}(E_2) \subset f(H) \text{ this implies that } \\ E_1 \subset f(G), E_2 \subset f(H) \text{ , since } f \text{ is pre-open , then } \\ f(G) \cap f(H) = f(G \cap H) = \\ f(\emptyset) = \emptyset \\ \text{Therefore } Y \text{ is } g^*p \text{ - normal space . Hence} \end{split}$$

#### $Y \in \mathcal{P}$ . 5-conclusion:

In this paper we have studied and proved these cases:

**1)** If  $\mathcal{P}$  is a class of  $g^*p$  -regular spaces with certain properties and if X is pre-irresolute, M-pre-closed absolutely cleavable over  $\mathcal{P}$ , then  $X \in \mathcal{P}$ , also if  $\mathcal{P}$  is a class of  $g^*p$  -regular spaces with certain properties and if X is pre-irresolute, M-pre-closed spaces with certain properties and if X is a  $g^*p$  -irresolute, M-pre-open absolutely cleavable over  $\mathcal{P}$ , then  $Y \in \mathcal{P}$ .

**2)** If  $\mathcal{P}$  is a class of  $g^*p$  - normal spaces with certain properties and if X is a pre-irresolute, M-pre-closed, absolutely double cleavable over  $\mathcal{P}$ , then  $X \in \mathcal{P}$ , also If  $\mathcal{P}$  is a class of  $g^*p$  - normal spaces with certain properties and if X is a  $g^*p$  - irresolute, M-pre-open absolutely double cleavable over  $\mathcal{P}$ , then  $X \in \mathcal{P}$ .

#### References

- Arhangel'skii,A.V and Cammaroto,F ,On different types of cleavability of topological spaces , pointwise, closed ,open and pseudo open , Journal of Australian Math,Soc(1992).
- [2]- A.S.Mashhour, M.E.Abd El-Monsef and S.N. El-Deeb, On pre continuous and weak pre continuous mappings, Proc. Math. and Phys. Soc. Egypt, 53 (1982), 47-53.
- [3]- A.S.Mashhour, M.E.Abd El-Monsef and I.
  A.Hasanein, On pretopological spaces, Bull.
  Mathe. de la Soc. Math. de la R. S. de Roumanie, Tome 28 (76) Nr. 1 (1984).
- [4]- I. L. Reilly and M. K. Vamanamurthy, On acontinuity in topological spaces, Acta Math. Hungar. 45 (1985) No. 1-2, 27-32.
- [5]- M.K.R.S.Veerakumar, g\*-preclosed sets, Acta Ciencia Indica, Vol XXVIII M.No.1 (2002), 51-60
- [6]- N. Levine, Generalized closed sets in topology, Rend. Circ. Mat. Palermo, 19 (2) (1970), 89-96.
- [7]- S. N. El-Deeb, I. A. Hassanein and A. S. Mashhour, On pre-regular spaces, Bull. Mathe. de la Soc. Math. de la R. S. de Roumanie, Tome 27 (75) Nr. 4 (1983).