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Abstract Nonlinear regression is one of the most popular and widely used models in analysing the effect of 
explanatory variables on a response variable when the underling regression function is nonlinear. It has 
many applications in scientific research such as dose response studies conducted in agricultural sciences, 
toxicology and other biological sciences. Estimating the parameters of a nonlinear regression model is 
usually carried out by the least squares (LS. However, In the presence of outliers, even one single unusual 
value may have a large effect on the parameter estimates. The aim of this paper is to introduce the most 
commonly used methods as a better choice to the classical least squares. This includes M-estimator, MM-
estimator, CM-estimator, tau-estimator and mtl-estimator. Moreover, the target is to compare their practical 
performance under a variety of circumstances such as sample size, percentage of outliers and model 
formula. Results of Monte Carlo simulations using R software, indicated that the best performance has been 
achieved by MM followed by CM estimator for all possible percentages of outliers (10%, 20%, 30%, 40%) as 
well as all sample sizes (n=50, n=100, and n=150). Moreover, results approved that the LS estimator remains 
the best when there is no outlier in data. 
Keywords: robust estimator, nonlinear model, outliers, simulation. 
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1. Introduction 
Nonlinear models have been applied to a wide 
range of situations, even to finite population. Life 
is full of random phonemes that behave in a 
nonlinear manner, say for instance, growth from 
birth to maturity in human subjects typically is 
nonlinear in nature, characterized by rapid growth 
shortly after birth, pronounced growth during 
puberty, and a levelling off sometime before 
adulthood.; see, e.g., [1] and [2]. Estimation of the 
parameters of a nonlinear regression model is 
usually carried out by the method of least squares 
or the method of maximum likelihood, just as for 
linear regression models. Unlike linear regression, 
it is usually not possible to find analytical 

expressions for the least squares and maximum 
likelihood estimators for nonlinear regression 
models since the normal equations are not linear 
in this case and are, in general, difficult to solve.  
Instead, numerical search or iterative procedures 
must be used with both of these estimation 
procedures, requiring intensive computations. The 
iterative procedures usually require to starting 
values for the parameter estimates. The choice of 
the starting values is very important because a 
poor choice may result in a lengthy computation 
with many iterations. It may also lead to 
divergence, or to a convergence due to a local 
minimum. Therefore, good initial values will result 
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in fast computations with few iterations and if 
multiple minima exist, it will lead to a solution 
that is a minimum. Hence, we conclude that 
nonlinear regression is a hot and complex 
research area in which one can contribute 
specially when the classical assumptions are not 
satisfied such as the normality assumption and 
outlying observations.
 With the presence of outliers in the data, the 
ordinary least squares LS method provides 
misleading values for the parameters of the 
nonlinear regression, and predictions may no 
longer be reliable, see [3]. Outliers are those 
observations that deviate markedly from other 

members of the observations or data points which 
are unusually large or small from the majority of 
the observations. They are also called the 
abnormal data. Outliers can arise due to 
measurement or recording error, natural variation 
of the underlying distribution, or a sudden 
alteration in the operating system. One 
disadvantages of nonlinear least square with 
Gauss-Newton method is its sensitivity to the 
presence of even few outlying observations. As a 
result, the errors in the process of prediction and 
estimating as they amplify the variance of errors, 
leading to extended the length of confidence 
interval and reduced estimation efficiency. The 
proposed solutions for estimating the parameters 
of the nonlinear regression model in the presence 
of outliers is the use of robust estimators rather 
than the method of LS. In statistical literature, 
most robust linear regression techniques are 
successfully adopted for nonlinear setting, such 
as M-estimator, MM-estimator, Least Median of 
Squares (LMS), Least Trimmed Squares (LTS), See 
[4], [5], [6], [7] and [8]. So much comparisons had 
been conducted to compare the robust estimators 
in linear regression, see for example [9], [10], and 
[11]. However, Little work has been done in 
nonlinear regression. Hence, such simulation 
comparisons in nonlinear regression are required. 
This paper comes as an  extension of a previous 
study  by [12] in which only two robust estimators 
are compared. This shall contribute in presenting 
new simulation results to determine which robust 
estimator should be used when outliers are 
existing in data.  
The rest of this paper is organized in the following 
manner: Section 2 gives a brief review to the 
Gauss- Newton Method, M-estimator, MM-
estimator, CM-estimator, tau-estimator and mtl-
estimator. In section 3, simulation study is 
conducted. Conclusions are present in section 4. 

2. Methods and Models 
In this section we present brief theoretical 
descriptions of Gauss-Newton method for classical 
LS, M-estimator, MM-estimator, CM estimator, 
tau estimator and mtl estimator. 

2.1 The Gauss - Newton Method  
A nonlinear regression model can be written as 

𝑦𝑖 = 𝑓(𝑥𝑖 , 𝜃) + 𝜀𝑖        , 𝑖 = 1, . . . , 𝑛                   (1) 
To estimate the parameters of (1) using the Gauss 
– Newton method, a Taylor series expansion is 
used to approximate the nonlinear regression 
model with linear terms and then employs 
ordinary least squares to estimate the unknown 

parameters. Once the starting values for the 
parameters have been chosen, the mean 
responses 𝑓(𝑋; 𝜃) is approximated for the n cases 

by the linear terms in the Taylor series expansion 

around the starting values 𝜃𝑘
(0)

 , such as: 

𝑓(𝑥𝑖 , 𝜃) ≈ 

𝑓(𝑥𝑖 , 𝜃(0)) + ∑ [
𝜕𝑓(𝑥𝑖 , 𝜃)

𝜕𝜃𝑘
]

𝜃=𝜃(0)

(𝜃𝑘 − 𝜃𝑘
(0)

)            (2)

𝑝

𝑘=0

 

The Taylor approximation (2) becomes in this 
notation: 

𝑓(𝑥𝑖 , 𝜃) ≈ 𝑓𝑖
(0)

+ ∑ 𝐹𝑖𝑘
(0)

𝑝

𝑘=0

𝛽𝑘
(0)

                           (3) 

Therefore, by ordinary least squares we can 

estimate the parameters 𝛽(0): 

𝑏(0) = (𝐹(0)′
𝐹(0))−1𝐹(0)′

𝑌(0)                      (4)
𝜃(1) = 𝜃(0) + 𝑏(0)                                     

In general      𝜃(𝑎) = 𝜃(𝑎−1) + 𝑏(𝑎−1)                        (5)  
2.2 The M-Estimator 

The “M” in the term “M-estimator” stands for 
maximum-likelihood-type estimator [3]. This name 
stems from the fact that an M-estimator can be 
loosely interpreted as a maximum-likelihood 
estimator, albeit for an unknown, non-Gaussian 
model. To cope with the problem of outliers, 
Huber [3] introduced a class of the so-called M-
estimators, in which the sum of function 𝜌 of the 
residuals is minimized.  The estimated vector of 

the parameters 𝛽̂𝑀 estimated by an M-estimator is 

given by  

𝛽̂𝑀 = arg 𝑚𝑖𝑛𝛽 ∑ 𝜌 (
𝑟𝑖

𝜎
)

𝑛

𝑖=1
                         (6 ) 

A popular choice for 𝜎 is the median absolute 

deviation  
𝜎 = 𝑚𝑒𝑑𝑖𝑎𝑛|𝑟𝑖 − 𝑚𝑒𝑑𝑖𝑎𝑛(𝑟𝑖)|/0.6745 

Function 𝜌(.) must be even, nondecreasing for 
positive values, and less increasing than the 
square. However, it is simpler to differentiate 𝜌  
with respect to 𝛽 and solve for the root of the 
derivative. When this differentiation is applicable, 
the M-estimator is said to be of 𝜓-type. Let 𝜓 = 𝜌′ 

be the derivative of 𝜌, and define weights such as 

𝑤𝑖 = 𝜓(
𝑟𝑖

𝜎
)/𝑟𝑖, the estimates 𝛽̂𝑀 is obtained by 

solving the system of equations: 

∑ 𝑤𝑖
2𝑟𝑖

2 = 0  
𝑛

𝑖=1
                             (7) 

2.3 The MM-Estimator 
The “MM” in the term “MM-estimator” stands for 
the two stage maximum-likelihood estimator. The 
MM- estimator by [6] introduces the multi-stage 
estimator (MM-estimator). It is a combination of 
high breakdown and high efficiency. It can be 

obtained using a three-stage procedure. At first 

stage, an initial consistent estimate 𝛽̂0 with high 
breakdown point with possibly low normal 
efficiency is obtained. Yohai [6] suggests using the 
S-estimator for this stage. In the second stage, a 
robust M-estimator of scale parameter 𝜎 of the 

residuals based on the initial value is calculated. 

In the third stage, an M-estimator 𝛽̂  starting at 𝛽̂0  
is obtained. Huber or bi-square functions is 

typically used as the initial estimate 𝛽̂0. Let 𝜌0(𝑟) =

𝜌1 (
𝑟

𝑘0
) , 𝜌(𝑟) = 𝜌1 (

𝑟

𝑘1
), and assume that each of the 



A study on the performance of five robust nonlinear regression estimators                             Alsalem &  Altaher.  

JOPAS Vol.18 No.  4 2019                                                                                                                                                327 

𝜌𝑖 functions is bounded, 𝑖 = 0 and 1. The scale 

estimate 𝜎 satisfies the following equation: 
1

𝑛
∑ ρ0 (

𝑦𝑖 − 𝑓(𝑥𝑖 , 𝜃)

𝜎̂
)

𝑛

𝑖=1
= 0.5             (8) 

where 𝑘0 = 1.56 when the 𝜌 function is biweight. In 

this case the estimator has the asymptotic 
breakdown point (𝐵𝑃 = 0.5). 

2.4 The CM-Estimator 
Constrained M-estimators (CM-estimators) for the 
regression parameters β and the scale parameter 
𝜎 were introduced by Mendes and Tyler [13] The 
aim is to have robust regression estimators with 
high breakdown point and high asymptotic 
relative efficiency. The CM-estimates for β and 𝜎 

are defined as the global minimum of the objective 
function 

𝐿(𝛽, 𝜎) = 𝑎𝑣𝑒{𝑝(𝑟𝑖/𝜎)} + 𝑙𝑜𝑔𝜎             (9) 
over all 𝛽 ∈ 𝑅𝑝 and 𝜎 > 0 subject to 

𝑎𝑣𝑒{𝑝(𝑟𝑖/𝜎)} ≤ 𝜀 𝑝(∞)                   (10) 
where 𝜀 is a fixed number between 0 and 1, and 
ave stands for the arithmetic average. 
As shown in [13], the CM-estimators are 
regression and affine equivariant, and possess at 
the same time, the good local properties of the M-
estimators for regression and good global 
robustness properties of the regression S-
estimators. The breakdown point of the CM-
estimates is approximately min (𝜺,1- 𝜺) or 

approximately 0.5 when 𝜀 = 0.5. Also, when p is 
properly tuned the CM-estimates can have good 
local robustness properties. They are consistent, 
asymptotically normal and very efficient 
estimators. See [13] for more details 

2.5 The tau-Estimator 
A new class  of robust estimators; called  the 𝜏-
estimator is introduced by Yohai and Zamar [14]. 
The 𝜏-estimator possess simultaneously the 

following properties: (i) they are qualitatively 
robust, (ii) their breakdown point is 0.5, and (iii) 
they are highly efficient for regression models with 
normal errors. 
Let 𝑝1 and 𝑝2 be two function satisfying 
assumption of 𝜌 which defined in MM-estimator 
and let 𝑠𝑛 be the M-estimate of scale based on 𝑝1. 

Then given a sample 𝑢 = (𝑢1 , 𝑢2 , … , 𝑢𝑛), the scale 
estimate 𝜏𝑛 is defined by  

𝜏𝑛
2(𝑢) = 𝑠𝑛

2(𝑢)
1

𝑛
∑ 𝑝2

𝑛

𝑖=1

(
𝑢𝑖

𝑠𝑛(𝑢)
)                       (11) 

Clearly 𝜏𝑛 is scale equivariant, i.e., 
                             𝜏(𝜆𝑢) = |𝜆|𝜏(𝑢)               ∀    𝜆 ∈ ℝ.

If 𝑝1 = 𝑝2 we get 𝜏𝑛 = √𝑝 𝑠𝑛. If 𝑝2(𝑢) = 𝑢2 we get the 

sample standard deviation. The 𝜏-estimates for 

regression are defined by the value 𝜃 such that  

𝜏𝑛 (𝑟(𝜃)) = 𝑚𝑖𝑛𝜃  𝜏𝑛(𝑟(𝜃))                            (12) 

2.6 The mtl-Estimator 
Let X be a random variable having a probability 
density 𝑝(𝑥; 𝜃) which depends on an unknown 
parameter 𝜃, where both X and 𝜃 may be vector 
valued, and 𝑥1, 𝑥2 , … , 𝑥𝑛 be n independent 

realizations of X. 
The maximum likelihood (ML) estimator of 𝜃 is the 
value of 𝜃 that maximizes the likelihood function 

𝐿(𝜃; 𝑥1 , 𝑥2 , … , 𝑥𝑛) = ∏ 𝑝(𝑥𝑖; 𝜃)                        (13)

𝑛

𝑖=1

 

or, equivalently, the logarithm of the likelihood 
function

∑ ℓ(𝜃; 𝑥𝑖),                                               (14)

𝑛

𝑖=1

 

where  
ℓ(𝜃; 𝑥𝑖) = ln 𝑝( 𝑥𝑖; 𝜃)                                    (15) 

is a function of 𝜃 which represents the 
contribution of the ith observation to the log 

likelihood function (14). This method can be used 
irrespective of whether X and 𝜃 are scalar-or 
vector-valued. We shall refer to 𝐿(𝜃; 𝑥𝑖) = 𝑝(𝑥𝑖; 𝜃) 
and ℓ(𝜃; 𝑥𝑖) as the likelihood and the log likelihood 
curves, respectively, when considered as functions 
of 𝜃 for every 𝑥𝑖. The above robust methods have 

one aspect in common: each is based on some 
sort of trimming the observations (note that down 
weighting is a type of trimming). 
The method proposed here is to replace the log 
likelihood function by the trimmed log likelihood 
function  

∑ 𝑤𝑖ℓ(𝜃; 𝑥𝑖),                                         (16)

𝑏

𝑖=𝑎

 

where 𝑎 ≤ 𝑏, (𝑎, 𝑏) ∈ [1,2, … , 𝑛}, and 𝑤𝑖 ≥ 0 are 

weights. By maximizing (3.37), an estimator of 𝜃 
can be obtained. This estimator is denoted by 

𝜃(𝑎, 𝑏, 𝑤) indicating that it 
depends on a,b, and w, where w is a vector 
containing the weights 𝑤𝑖. Unless otherwise 
stated, we investigate the case 𝑤𝑖 = 1, 𝑎 ≤ 𝑖 ≤ 𝑏. In 

this case, the estimators are denoted by 𝜃(𝑎, 𝑏), for 
simplicity of notation. When a = 1 and b = n, (1, n) 
is clearly the maximum likelihood estimator (MTL) 
of 𝜃. When 𝑎 > 1 and 𝑏 < 𝑛, the estimator is based 
on trimming the log likelihood function. We 
therefore refer to the method as the maximum 

trimmed likelihood (MTL) method and to 𝜃(𝑎, 𝑏), as 

the maximum trimmed likelihood estimator 
(MTLE). 

3. Results and Discussion 
In this section we summarize and discus the 
numerical results from simulation study. 

3.1 Simulations setup 
Simulation is a technique for guiding the 
experiments of a model. Compared with analytical 
methods, simulation is easily understandable and 
highly realistic. In this study, all computations 
and graphics were carried out using the software 
package R. 

3.2 Models used in simulation 
3.2.1 Michaelis-Menten Model 

Michaelis-Menten model, used by [15] and [16], 
expresses the reaction velocity as a function of 
concentration of substrate as 

𝑦𝑖 =
𝛽0𝑥𝑖

𝛽1 + 𝑥𝑖
+ 𝜀𝑖                      

Where response variable 𝑦𝑖 is velocity and 
predictor variable 𝑥𝑖 is substrate; the parameter is 

𝛽0 the maximum reaction velocity and 𝛽1 denotes 
concentration of substrate. In this simulation the 
true parameter values are chosen to be  𝛽0 = 5 
and  𝛽1 = 1 as in [17]. However, different true 
parameters are possible as long as convergence 
occurs in optimization process.

3.2.2. Exponential Model 
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It is a two parameter model given by the following 
relationship 

𝑦𝑖 = 𝛽0 𝑒𝛽1𝑥𝑖 + 𝜀𝑖                                               
Where 𝛽0 , 𝛽1 are parameters, x is independent 
predictor, y response predictor, ε is random 

variable. Where 𝛽0 = 0.2, 𝛽1 = 0.3 are the true 
parameters (these values have been chosen 
arbitrary with the advantage of fast computations 
and the convergence occurs very quickly). 

3.2.3 Logistic Model 
It is a three parameter model given by the 
following relationship 

𝑦𝑖 =  
𝛽0

1 + 𝑒(𝛽1− log(𝑥𝑖)/𝛽2)
 + 𝜀𝑖                      

with 𝛽0 = 5, 𝛽1 = 1, 𝛽2 = 0.6 . These values have 
been chosen as in nlr package. 

3.2.4 Logarithm Model 
From the R package and using nlr Library, with 
the command nlrobj3 [[6]] we get the following 
model: 

𝑦𝑖 = 𝑙𝑜𝑔  ( 𝛽0 + 𝛽1𝑥𝑖  ) + 𝜀𝑖 

with 𝛽0 = 6.64, 𝛽1 = 0.369. These values have been 

chosen as in nlr package. 
3.3 Data generation 

The contaminated normal distribution a simple 
useful distribution that can be used to simulate 
outliers [16]. For each model the explanatory x is 
chosen uniformly within the range (1,10). We 
control the outlier percentage through the outlier 
generating model by [16] such as: 

           𝜀 ∶  (1 − 𝜏)𝑁(𝜇1, 𝜎1
2) + (𝜏)𝑁(𝜇2 , 𝜎2

2)  
Where the proportion (1 − 𝜏)% refers to the 
percentage of non-outlier data, while the 
proportion 𝜏% refers to percentage of outliers. For 

each sample size, 500 random data are generated 

with 𝜇1 = 0, 𝜎1
2 = 10, 𝜇2 = 0, 𝜎2

2 = 0.2.  
 

3.4 Comparison criterion 
The mean squared error (MSE) is used as a 
comparison criterion. The mean squared error is 
estimated by 

                          𝑀𝑆𝐸 =
∑ (𝑓̂𝑖−𝑓)2𝑚

𝑖=1

𝑚
 

where 𝑓𝑖 is the fitted values and 𝑓 the true 

function with m=500 (replication number for each 
model). 

3.5 Sample sizes and outliers percentages 
We have used three sample sizes (n=50,100,150), 
and four outlier percentages (10%,20%,30%,40%). 

4. Main findings 
Having examined Tables 1 to 4 carefully, we have 
noted many important features: The best 
performance has been achieved by the OLS-
estimator when there are no outliers in the 
simulated data (0%) for all possible of sample 

sizes (n=50, n=100, n=150) as well as for the four 
different models. An interesting feature to note is 
that the performance of the OLS estimator is the 
worst one for all possible percentages of outliers 
(10%, 20%, 30%, 40%) as well as all possible of 
sample sizes (n=50, n=100, and n=150) with the 
four different models. For all possible of 
percentages of outliers (10%, 20%, 30%, 40%) the 
robust MM-estimator outperforms the CM-
estimator, and they are both are superior to LS 
and other robust estimator in all cases.  
 
 
 
 

Table 1: Simulation results for first model with sample sizes (n=50,100,150) and outlier percentages 
(0%, 10%, 20%, 30% ,40%). 

N  0% 10% 20% 30% 40% 

 

OLS 0.00073 0.11074 4.11536 3.27919 0.39553 

M 0.00163 0.01101 0.01088 0.05132 0.00185 

MM 0.00265 0.00563 0.00056 0.00142 0.00189 

50 CM 0.00372 0.00635 0.00062 0.00685 0.01434 

 tau 0.003 0.01849 0.00208 0.00858 0.01379 

 mtl 0.01145 0.00991 0.00034 0.0129 0.0024 

 OLS 0.00242 0.35308 0.01755 0.30446 0.33077 

 M 0.0028 0.00051 0.00117 0.0087 0.01975 

 MM 0.00282 0.00091 0.00034 0.00164 0.00095 

100 CM 0.00549 0.0012 0.00029 0.00252 0.00181 

 tau 0.00269 0.00101 0.00051 0.00455 0.00181 

 mtl 0.03214 0.00184 0.00113 0.00422 0.00056 

 OLS 0.00179 0.16295 0.09501 0.04144 0.17088 

 M 0.00223 0.00023 0.0016 0.00358 0.01206 

 MM 0.0023 0.00051 0.00065 0.00053 0.00046 

150 CM 0.00448 0.00034 0.00093 0.00109 0.00107 

 tau 0.00278 0.00051 0.00182 0.00059 0.00139 

 mtl 0.00675 0.00067 0.00126 0.00174 0.00501 
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Table 2: Simulation results for second model with sample sizes (n=50,100,150) and outlier 
percentages (0%, 10%, 20%, 30% ,40%). 

N  0% 10% 20% 30% 40% 

 

OLS 3.32E-03 4.58E-01 8.23E-01 3.94E+00 2.06E+00 

M 4.51E-03 1.72E-03 2.32E-01 3.47E-01 1.34E+00 

MM 4.62E-03 2.60E-03 1.90E-02 8.06E-02 3.44E-02 

50 CM 7.95E-03 2.34E-03 1.85E-02 5.78E-02 3.35E-02 

 tau 5.02E-03 2.78E-03 2.65E-02 6.01E-02 2.88E-01 

 mtl 4.51E-03 5.13E-03 7.01E-03 6.73E-02 2.36E-01 

 OLS 2.95E-03 3.05E-01 1.36E-01 8.97E-01 1.56E+00 

 M 4.23E-03 3.46E-03 2.48E-03 1.79E-01 1.33E-01 

 MM 4.00E-03 2.50E-04 1.82E-02 6.48E-02 1.65E-01 

100 CM 6.59E-03 1.33E-03 1.70E-02 3.66E-03 1.51E-01 

 tau 3.86E-03 1.64E-03 2.75E-03 5.91E-03 1.60E-01 

 mtl 1.98E-02 7.95E-03 4.47E-03 2.54E-02 1.24E-01 

 OLS 1.42E-03 1.08E+00 2.27E-01 7.59E-01 1.31E+00 

 M 1.64E-03 4.15E-03 4.59E-02 2.23E-01 4.12E-02 

 MM 1.70E-03 1.75E-03 7.10E-03 4.14E-01 4.55E-01 

150 CM 2.27E-03 3.16E-03 6.07E-03 1.47E-02 5.82E-01 

 tau 1.58E-03 1.03E-03 2.28E-03 2.30E-02 5.81E-01 

 mtl 2.78E-03 2.59E-03 1.92E-02 1.35E-02 0.06191 

 
Table 3: Simulation results for third model with sample sizes (n=50,100,150) and outlier percentages 
(0%, 10%, 20%, 30% ,40%). 

N  0% 10% 20% 30% 40% 

 

OLS 5.30E-03 7.42E-01 6.52E-02 1.17E+00 4.38E-01 

M 6.00E-03 2.87E-03 3.46E-03 2.81E-02 1.39E-02 

MM 5.71E-03 4.88E-03 1.54E-03 1.90E-03 6.89E-03 

50 CM 1.53E-02 5.98E-03 1.10E-03 3.04E-03 4.48E-03 

 tau 5.46E-03 6.44E-03 3.70E-03 3.27E-03 4.39E-03 

 mtl 4.63E-02 1.04E-02 9.00E-03 6.75E-03 7.32E-03 

 OLS 6.20E-04 0.467033 2.16E-01 4.74E-01 9.04E-01 

 M 1.05E-03 0.004108 6.41E-03 5.37E-02 2.11E-02 

 MM 1.14E-03 0.001235 2.78E-03 1.10E-02 1.19E-02 

100 CM 2.29E-03 0.000928 2.25E-03 1.71E-03 1.36E-02 

 tau 1.09E-03 0.000792 2.24E-03 3.92E-03 1.38E-02 

 mtl 3.69E-03 0.002359 2.36E-03 6.15E-03 2.39E-02 

 OLS 0.001301 1.20E-01 3.84E-01 4.06E-02 8.12E-02 

 M 0.001427 7.70E-04 2.41E-03 3.50E-04 1.19E-03 

 MM 0.0016 1.10E-03 5.60E-04 9.30E-04 3.02E-02 

150 CM 0.002561 1.54E-03 6.80E-04 8.60E-04 2.22E-03 

 tau 0.001593 2.80E-03 2.58E-03 1.17E-03 1.70E-03 

 mtl 0.0085 3.04E-03 1.02E-02 4.14E-03 0.00678 

 
Table 4: Simulation results for fourth model with sample sizes (n=50,100,150) and outlier percentages 
(0%, 10%, 20%, 30% ,40%). 

N  0% 10% 20% 30% 40% 

 

OLS 2.10E-03 1.49E-01 7.36E-02 1.84E-02 2.32E-01 

M 2.30E-03 1.45E-03 8.60E-04 3.47E-03 1.93E-03 

MM 2.14E-03 1.16E-03 1.78E-03 2.81E-03 1.21E-03 

50 CM 2.35E-03 1.49E-03 1.30E-03 1.71E-03 1.67E-03 

 tau 2.30E-03 3.48E-03 6.18E-03 2.18E-03 1.42E-03 

 mtl 1.34E-02 3.67E-03 6.11E-03 1.70E-03 6.58E-03 

 OLS 3.50E-04 7.87E-02 9.31E-02 6.12E-02 7.79E-02 

 M 4.60E-04 7.90E-04 3.47E-03 2.00E-03 1.45E-02 

 MM 4.40E-04 3.80E-04 1.78E-03 1.65E-03 7.25E-03 

100 CM 5.30E-04 3.50E-04 1.71E-03 5.30E-04 1.90E-03 

 tau 5.40E-04 2.90E-04 2.47E-03 4.20E-04 1.84E-03 

 mtl 2.25E-03 5.60E-04 2.72E-03 1.12E-03 4.16E-03 

 OLS 3.00E-05 8.28E-02 2.00E-01 8.65E-02 4.05E-02 

 M 8.00E-05 1.11E-03 5.60E-04 2.13E-03 1.46E-02 

 MM 5.00E-05 5.10E-04 3.00E-05 1.06E-03 1.79E-03 

150 CM 6.00E-05 5.50E-04 7.00E-05 9.90E-04 1.97E-03 

 tau 4.00E-05 1.00E-03 2.00E-04 1.23E-03 1.98E-03 

 mtl 8.50E-04 1.00E-03 1.90E-04 4.90E-04 0.0029 

 
5. Conclusion  

In this paper the issue of robust nonlinear 
regression is considered. Five robust estimators 
are evaluated, namely M-estimator, MM-

estimator, CM-estimator, tau-estimator and mtl-
estimator using simulation study. It has been 
deduced that all these robust estimators are 
superior to classical least squares in the presence 
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of outliers. The best performance is achieved by 
MM-estimator followed by CM-estimator. For 
further investigation one can take into 
consideration the issue of outliers in X-direction, 
XY direction, in addition to apply these methods 
for real data.  
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