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Introduction 
In recent years, the literature on the oscillation 
theory of nonlinear differential equations is 
growing very fast following the publication of the 
work of Atkinson [2]. It is relatively a new field 
with interesting applications in real world life 
problems. In fact, many chemical and physical 
systems are modeled by nonlinear second order 
differential equations. For example, the study of 
the Emden-Fowler equation originates from earlier 
theories concerning gaseous dynamics in 
astrophysics around the turn of the century. For a 
discussion on the Emden-Fowler equation, we 
refer to the paper of Wong [20]. 
Here, we are concerned with the problem of 
oscillation of solutions of the following second 
order nonlinear differential equation 

(𝑟(𝑡)𝑥̇(𝑡))
⦁

+ 𝑞(𝑡)|𝑥(𝑡)|𝛾𝑠𝑖𝑔𝑛𝑥(𝑡) = 𝑜,    𝑡 ≥ 𝑡0        (I) 

where 𝑞  and 𝑟 are continuous functions on the 

interval [𝑡0 , ∞ ), 𝑡0 ≥ 𝑡 , 𝑟(𝑡) is positive function on 
the real line ℜ  and   𝛾 > 0 .  
Throughout this study, we restrict our attention 
only to the solution of the differential equation (I) 
which exists on some interval [𝑡0 , ∞ )  , 𝑡0 ≥ 0 

which may depends on a particular solution. It is 
worthy to notice that in the study of the oscillation 
nature of second order differential equations, the 
technique of integral averaging plays an important 
role, which goes back to the classical paper of 
Fite[8]. Also, one can see the paper of Kamenev 
[12], which involve the averaging criterion and its 
generalizations. For such averaging techniques 
related to this area, one can see Butler [5], Grace 
and Lalli [10], Kwong and Wong [11], Philos [17], 
Wong [20], Yan [22] and Yeh [23]. 

A regular solution of Eq. (I) which is defined for all 
large t  is called oscillatory if it has no last zero, 

otherwise, it is said to be nonoscillatory. Thus a 
nonoscillatory solution is eventually positive or 
negative. Consequently, equation (I) is called 
oscillatory if all its solutions are oscillatory. The 
technique of the proof of our theorems depends 
mainly on the assumption that there exists an 
nonoscillatory solution of the equation (I), which 
may be assumed to be positive and then come out 
with a contradiction with some of our hypotheses. 
Previously, in 1982, Kwong and Wong [11] studied 
the oscillation of the equation (I) with 𝑟(𝑡) = 1 and 
0 < 𝛾 < 1 and obtained some interesting criteria 

which extended by Philos [16].  
In view of the present development it will be of 
interest to improve the above mentioned works by 
using an averaging criterion  that introduced by 
Kamenev [11].  
For additional results on the oscillatory behavior 
of solutions of such equations, we choose to refer 
the reader to the papers of [4], [6], [7], [17-19], 
and the references contained therein. See also the 
monograph of Lakshmikantham et. al. [13], and 

the recent paper of Ahmed et. al. [1] which 

discussed some open problems in the oscillation 
theory of functional nonlinear differential 
equations. The purpose of this study is to derive 
some new conditions under which all solutions of 
the equation (I) are oscillatory. In particular, the 
results obtained here are for the sublinear case, 
that is, for 0 < 𝛾 < 1. In some sense, our results 
here extend and improve some of those available 
in the papers mentioned above. 
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Main Results 
In this section we shall state and prove some 
sufficient oscillation criteria of the solution of the 
equation (I). 
Theorem 2.1 Suppose that  
(1)  0 < 𝐴 ≤ 𝑟(𝑡) ≤ 𝐵,   𝑡 ≥ 𝑡0 ≥ 0 , 

 (2)   𝑟̇(𝑡) > 0,   𝑡 ≥ 𝑡0 ≥ 0 , 

(3) lim
𝑡→∞

𝑠𝑢𝑝 ∫ 𝑞(𝑠)𝑑𝑠
𝑡

𝑡0
= ∞ 

(4)  lim
𝑡→∞

𝑠𝑢𝑝 ∫ ∫ 𝑞(𝑢)𝑑𝑢𝑑𝑠
𝑡

𝑡0

𝑡

𝑡0
= ∞ 

Then the equation (I) is oscillatory when  0 < 𝛾 <
1 . 

Proof. Assume the contrary, then there exists a 
solution 𝑥(𝑡) which may be assumed to be positive 
on [𝑇1 , ∞ )  for some 𝑇1 ≥ 𝑡0 ≥ 0 . We distinguish 
three cases for the behavior of 𝑥̇(𝑡): 

(i) 𝑥̇(𝑡) is oscillatory on [𝑇1 , ∞ ). 
(ii)   𝑥̇(𝑡) > 0 on [𝑇2, ∞ )  for some 𝑇2 ≥

𝑇1. 

(iii) 𝑥̇(𝑡) < 0 on [𝑇2, ∞ )  for some 𝑇2 ≥
𝑇1. 

Suppose that case (i) holds; then there exists a 
sequence {𝑡}𝑛=1

∞  such that 𝑥̇(𝑡𝑛) = 0  and 𝑡 → ∞  as  
𝑛 → ∞ . Dividing (I) through by 𝑥𝛾(𝑡) and 

intergrating from 𝑡𝑘 to 𝑡 where 𝑘 is some integer, 
we obtain  

𝑟(𝑡)𝑥̇(𝑡)

𝑥𝛾(𝑡)
+ 𝛾 ∫

𝑟(𝑠)𝑥̇2(𝑠)

𝑥𝛾

𝑡

𝑡𝑘
𝑑𝑠 + ∫ 𝑞(𝑠)𝑑𝑠

𝑡

𝑡𝑘
= 0,                                              

(2.1) 

where  
𝑟(𝑡𝑘)𝑥̇(𝑡𝑘)

𝑥𝛾(𝑡𝑘)
= 0.  Now, from the condition (1) 

and the equation (2.1) we obtain that  
𝑟(𝑡)𝑥̇(𝑡)

𝑥𝛾(𝑡)
+ 𝛾𝐴 ∫ (

𝑥̇(𝑠)

𝑥𝛽(𝑠)
)

2𝑡

𝑡𝑘
𝑑𝑠 + ∫ 𝑞(𝑠)𝑑𝑠

𝑡

𝑡𝑘
≤ 0,                                        

(2.2) 

where  𝛽 =
(𝛾+1)

2
. Integration the inequality (2.2) 

once more from 𝑡𝑘 to 𝑡 as follows: 

∫ 𝑟(𝑠)
𝑥̇(𝑠)

𝑥𝛾(𝑠)

𝑡

𝑡𝑘
𝑑𝑠 + 𝛾𝐴 ∫ ∫ (

𝑥̇(𝑢)

𝑥𝛽(𝑢)
)

2
𝑑𝑢𝑑𝑠

𝑠

𝑡𝑘
+

𝑡

𝑡𝑘

∫ ∫ 𝑞(𝑢)𝑑𝑢𝑑𝑠
𝑠

𝑡𝑘

𝑡

𝑡𝑘
≤ 0                    (2.3) 

By condition (2), since 𝑟(𝑡) is non decreasing 
on[𝑡0 , ∞). So, by the Bonnet’s theorem [3], for any   

𝑡 ≥ 𝑡𝑘(𝑘 𝑖𝑠 𝑠𝑜𝑚𝑒 𝑖𝑛𝑡𝑒𝑔𝑒𝑟) , there exists 𝑡∗ ∈ [𝑡𝑘 , 𝑡] 
such that 

∫ 𝑟(𝑠)
𝑥̇(𝑠)

𝑥𝛾(𝑠)

𝑡

𝑡𝑘

𝑑𝑠 = 𝑟(𝑡) ∫
𝑥̇(𝑠)

𝑥𝛾(𝑠)

𝑡

𝑡∗

𝑑𝑠

=
𝑟(𝑡)

1 − 𝛾
[𝑥−𝛾+1(𝑡)

− 𝑥−𝛾+1(𝑡∗)]           
Substituting in the inequality (2.3), we obtain that  

𝑟(𝑡)
𝑥−𝛾+1(𝑡)

1−𝛾
+ 𝛾𝐴 ∫ ∫ (

𝑥̇(𝑢)

𝑥𝛽(𝑢)
)

2𝑠

𝑡𝑘
𝑑𝑢𝑑𝑠 +

𝑡

𝑡𝑘

∫ ∫ 𝑞(𝑢)
𝑠

𝑡𝑘
𝑑𝑢𝑑𝑠 ≤ 𝑟(𝑡)

𝑥−𝛾+1(𝑡∗)

1−𝛾
      

𝑡

𝑡𝑘
  (2.4) 

By condition (1), since 0 < 𝐴 ≤ 𝑟(𝑡) ≤ 𝐵, then, by 

substituting in the inequality (2.4) we obtain 
𝐴

1−𝛾
𝑥−𝛾+1(𝑡) + 𝛾𝐴 ∫ ∫ (

𝑥̇(𝑢)

𝑥𝛽(𝑢)
)

2𝑠

𝑡𝑘
𝑑𝑢𝑑𝑠 +

𝑡

𝑡𝑘

∫ ∫ 𝑞(𝑢)
𝑠

𝑡𝑘
𝑑𝑢𝑑𝑠 ≤ 𝐶1 

𝑡

𝑡𝑘
               (2.5) 

where  𝐶1 =
𝐵

1−𝛾
𝑥−𝛾+1(𝑡∗). Therefore (2.5) yields 

∫ ∫ 𝑞(𝑢)
𝑠

𝑡𝑘

𝑑𝑢𝑑𝑠 ≤ 𝐶1

𝑡

𝑡𝑘

 

Now, taking the upper limit as 𝑡 → ∞, we get  

lim
𝑡→∞

𝑠𝑢𝑏 ∫ ∫ 𝑞(𝑢)
𝑠

𝑡𝑘

𝑡

𝑡𝑘

𝑑𝑢𝑑𝑠 < ∞, 

which contradicts the condition  (4). Next, 
suppose that  𝑥̇(𝑡) > 0 𝑓𝑜𝑟 𝑡 ≥ 𝑇2 ≥ 𝑇1 . 
Dividing the equation (I) through by 𝑥𝛾(𝑡) and 
integrating from 𝑇2 ≥ 𝑇1 to t to obtain 

𝑟(𝑡)𝑥̇(𝑡)

𝑥𝛾(𝑡)
+ 𝛾 ∫ 𝑟(𝑠)

𝑥̇2(𝑠)

𝑥𝛾+1(𝑠)

𝑡

𝑇2
𝑑𝑠 + ∫ 𝑞(𝑠)𝑑𝑠

𝑡

𝑇2
= 𝐶2 ,                         

(2.6) 

where 𝐶2 =
𝑟(𝑇2)𝑥̇(𝑇2)

𝑥𝛾(𝑇2)
. From the condition (1) in the 

equation (2.6) we get  

𝐴
𝑥̇(𝑡)

𝑥𝛾(𝑡)
+ 𝛾𝐴 ∫

𝑥̇2(𝑠)

𝑥𝛾+1(𝑠)

𝑡

𝑇2
𝑑𝑠 + ∫ 𝑞(𝑠)

𝑡

𝑇2
𝑑𝑠 ≤ 𝐶2 .   (2.7)                            

Then, for all 𝑡 ≥ 𝑇2 we have 

∫ 𝑞(𝑠)𝑑𝑠
𝑡

𝑇2
≤ 𝐶2                        (2.8) 

By taking the upper limit as 𝑡 → ∞, we get 

lim
𝑡→∞

𝑠𝑢𝑝 ∫ 𝑞(𝑠)𝑑𝑠
𝑡

𝑇2
< ∞, 

which contradiction the condition (3). Finally, we 
assume that 𝑥̇(𝑡) < 0 𝑓𝑜𝑟 𝑡 ≥ 𝑇2 ≥ 𝑇1 . 
Then from the condition (1), we have 

𝑥̇(𝑡)𝑟(𝑡) ≥ 𝐵𝑥̇(𝑡) 
Thus, from the equation (2.6) we obtain  

𝐵
𝑥̇(𝑡)

𝑥𝛾(𝑡)
+ 𝛾𝐴 ∫ (

𝑥̇(𝑠)

𝑥𝛽(𝑠)
)

2𝑡

𝑇2
𝑑𝑠 + ∫ 𝑞(𝑠)

𝑡

𝑇2
𝑑𝑠 ≤ 𝐶2                          

(2.9) 

Since  𝛾𝐴 ∫ (
𝑥̇(𝑠)

𝑥𝛽(𝑠)
)

2𝑡

𝑇2
𝑑𝑠 > 0, then from the 

inequality (2.9) we obtain  

𝐵
𝑥1−𝛾(𝑠)

1−𝛾
|

𝑡
𝑇2

+ ∫ ∫ 𝑞(𝑢)
𝑆

𝑇2
𝑑𝑢𝑑𝑠 ≤ 𝐶2(𝑡 − 𝑇2)

𝑡

𝑇2
. 

Then, for all 𝑡 ≥ 𝑇2 we have 

𝐵
𝑥1−𝛾(𝑡)

1−𝛾
− 𝐵

𝑥1−𝛾(𝑇2)

1−𝛾
+ ∫ ∫ 𝑞(𝑢)

𝑠

𝑇2
𝑑𝑢𝑑𝑠 ≤

𝑡

𝑇2

𝐶2(𝑡 − 𝑇2), 
which implies that 

∫ ∫ 𝑞(𝑢)
𝑠

𝑇2

𝑑𝑢𝑑𝑠 ≤ 𝐶2(𝑡 − 𝑇2)
𝑡

𝑇2

+ 𝐵
𝑥1−𝛾(𝑇2)

1 − 𝛾
,      𝐶2 < 0 

Taking the upper limit as 𝑡 → ∞, we obtain 

lim
𝑡→∞

𝑠𝑢𝑏 ∫ ∫ 𝑞(𝑢)
𝑠

𝑇2
𝑑𝑢𝑑𝑠 = −∞

𝑡

𝑇2
, 

which again contradicts the condition (4). 
This completes the proof. 
Example 2.1: Consider the equation 

((2 +
𝑒𝑡

𝑒𝑡 + 1
) 𝑥̇(𝑡))

⦁

+ (1
+ 2 sin 𝑡)|𝑥(𝑡)|𝛾𝑠𝑖𝑔𝑛𝑥(𝑡)
= 0,      𝑡 ≥ 𝑡0 ≥ 0, 0 < 𝛾 < 1 

Note that 

(i) 2 < 𝑟(𝑡) = 2 +
𝑒𝑡

𝑒𝑡+1
< 3, 𝑡 ≥ 0 

(ii) 𝑟̇(𝑡) =
𝑒𝑡

(𝑒𝑡+1)2
> 0,          𝑡 ≥ 0 

(iii) lim
𝑡→∞

𝑠𝑢𝑝 ∫ 𝑞(𝑠)𝑑𝑠
𝑡

𝑡𝑜
= lim

𝑡→∞
𝑠𝑢𝑝 ∫ [1 +

𝑡

𝑡0

2 sin 𝑠]𝑑𝑠 = ∞ 

(iv) lim
𝑡→∞

𝑠𝑢𝑝 ∫ ∫ 𝑞(𝑢)
𝑡

𝑡0
𝑑𝑢𝑑𝑠 =

𝑡

𝑡0

lim
𝑡→∞

𝑠𝑢𝑏 ∫ [𝑠 − 2 cos 𝑠 − 𝑡0 +
𝑡

𝑡0

2 cos 𝑡0] 𝑑𝑠 = ∞ 
Hence, Theorem 2.1 ensures that the given 
equation is oscillatory for all 0 < 𝛾 < 1. 

Theorem 2.2: Suppose that conditions (1), (3) and 
(4) holds and that 
(5)   𝑟̇(𝑡) ≤ 0        𝑓𝑜𝑟    𝑡 ≥ 𝑡0   
Then the equation (I) is oscillatory for 0 < 𝛾 < 1 . 
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Proof. Assume the contrary, then there exists a 
solution 𝑥(𝑡) which may be assumed to be positive 

on [𝑇1 , ∞) for some  𝑇1 ≥ 𝑡0 ≥ 0 . As in the proof of 
Theorem 2.1, (case 1), we obtain  

∫ 𝑟(𝑠)
𝑥̇(𝑠)

𝑥𝛾(𝑠)

𝑡

𝑡𝑘

𝑑𝑠 + 𝛾𝐴 ∫ ∫ (
𝑥̇(𝑢)

𝑥𝛽(𝑢)
)

2

𝑑𝑢𝑑𝑠
𝑠

𝑡𝑘

𝑡

𝑡𝑘

+ ∫ ∫ 𝑞(𝑢)𝑑𝑢𝑑𝑠
𝑠

𝑡𝑘

𝑡

𝑡𝑘

≤ 0  

Now, by taking into account the condition (5), that 
is, 𝑟(𝑡)  is non-increasing on[𝑡0 , ∞), we conclude, 
from the Bonnet’s theorem [3], for any  𝑡 ≥
𝑡𝑘  (𝑘 𝑖𝑠 𝑠𝑜𝑚𝑒 𝑖𝑛𝑡𝑒𝑔𝑒𝑟) , there exists 𝛼𝑡 ∈ [𝑡𝑘 , 𝑡] such 

that 

∫ 𝑟(𝑠)
𝑥̇(𝑠)

𝑥𝛾(𝑠)

𝑡

𝑡𝑘
𝑑𝑠 = 𝑟(𝑡𝑘) ∫

𝑥̇(𝑠)

𝑥𝛾(𝑠)

𝛼𝑡

𝑡𝑘
𝑑𝑠 =

𝑟(𝑡𝑘)

1−𝛾
[𝑥−𝛾+1(𝛼𝑡) − 𝑥−𝛾+1(𝑡𝑘)].       (2.10) 

Using (2.10) in (2.3), we have 

𝑟(𝑡𝑘)
𝑥−𝛾+1(𝛼𝑡)

1−𝛾
+ 𝛾𝐴 ∫ ∫ (

𝑥̇(𝑢)

𝑥𝛽(𝑢)
)

2𝑠

𝑡𝑘
𝑑𝑢𝑑𝑠 +

𝑡

𝑡𝑘

∫ ∫ 𝑞(𝑢)𝑑𝑢
𝑠

𝑡𝑘
𝑑𝑠 ≤ 𝑟(𝑡𝑘)

𝑥−𝛾+1(𝑡𝑘)

1−𝛾

𝑡

𝑡𝑘
.     (2.11) 

Using the condition (1) in the inequality 
(2.4) we have  

𝐴

1−𝛾
𝑥−𝛾+1(𝛼𝑡) + 𝛾𝐴 ∫ ∫ (

𝑥̇(𝑢)

𝑥𝛽(𝑢)
)

2𝑠

𝑡𝑘
𝑑𝑢𝑑𝑠

𝑡

𝑡𝑘
+

∫ ∫ 𝑞(𝑢)𝑑𝑢𝑑𝑠
𝑠

𝑡𝑘
≤ 𝐶1

′ ,
𝑡

𝑡𝑘
                 (2.12) 

where  𝐶1
′ =

𝑟(𝑡𝑘)

1−𝛾
𝑥−𝛾+1(𝑡𝑘), and hence (2.12) 

yields  

∫ ∫ 𝑞(𝑢)𝑑𝑢𝑑𝑠
𝑠

𝑡𝑘
≤ 𝐶1

′𝑡

𝑡𝑘
    (2.13)                                                             

which contradicts the condition (4). The 
proofs of cases 2 and 3 are immediate 
consequences of cases 2 and 3 of 
Theorem 2.1 and so will be omitted. The 
proof is complete. 
Example 2.2: Consider the following 
differential equation 

[(8 + 𝑒−𝑡

(𝑒−𝑡 + 1)⁄ ) 𝑥̇(𝑡)]
⦁

+ (
1

2
− 3 sin 𝑡) |𝑥(𝑡)|𝛾𝑠𝑖𝑛𝑔(𝑡)

= 0, 𝑡 ≥ 𝑡0 ≥ 0,  
where 0 < 𝛾 < 1 

Note that  

(i) 8 < 𝑟(𝑡) = 8 +
𝑒−𝑡

𝑒−𝑡+1
< 9,  

(ii) 𝑟̇(𝑡) =
−𝑒−𝑡

(𝑒−𝑡+1)2
< 0 <   𝑓𝑜𝑟 𝑎𝑙𝑙   𝑡 ≥

𝑡𝑜 ≥ 0, 

(iii) lim
𝑡→∞

𝑠𝑢𝑝 ∫ 𝑞(𝑠)𝑑𝑠
𝑡

𝑡0
= lim

𝑡→∞
𝑠𝑢𝑝 ∫ (1

2⁄ −
𝑡

𝑡0

3 sin 𝑠)𝑑𝑠 = ∞ 

(iv) lim
𝑡→∞

𝑠𝑢𝑝 ∫ ∫ 𝑞(𝑢)𝑑𝑢𝑑𝑠
𝑡

𝑡0

𝑡

𝑡0
=

lim
𝑡→∞

𝑠𝑢𝑝 ∫ ∫ (
1

2
− 3 sin 𝑢) 𝑑𝑢𝑑𝑠

𝑡

𝑡0

𝑡

𝑡0
= ∞ 

Hence, by Theorem 2.2, we conclude that 
the given equation. 

Remark 2.1: Theorems 2.1 and 2.2 extend results 
of Wong [20], Onose [16] and Nasr [15]. 
Conclusion  
 In a conclusion, we established some oscillation 
theorems for a class of nonlinear differential 
equations. Several conditions for the oscillation of 
all solutions are obtained. These conditions 
extend and improve some of well known results in 
the literature. Some applications of the new 
results are listed. 
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