تقنية فعالة لتحسين جودة حدود الصورة الثنائية المضغوطة للكلمات العربية ذات منحني واحد مقفل

*على عبدالرحمن عكاشه¹ و مجدى فرج البريكى² و على عبدالقادر الثنوكى¹ و محمد نوري حسين1 1
1 قسم الهندسة الكهربائية والالكترونية-كلية العلوم الهندسية و الثقنية-جامعة سبها، ليييا
2 فسم الهندسة الكهربائية و الالكترونية-المعهد العالي للمهن الشاملة تامزاوة، ليييا للمر اسلة: ali.ukasha@sebhau.edu.ly
(الملخص ضغط الحدود (المنحنيات المققلة) يمثل تحدياً كبير اً في مجال معالجة الصور . في هذه الورقة، سيتم نقديم وتطوير طريقة شبه المنحرف لضغط حد الكلمات العربية ذات المنحني الو احد المقفل. وقد نم مقارنة هذه الخوارزمية المقترحة مـع الطرق القديمة الموجودة متل خوارزمية رامر (ذات جودة جيدة)، وخوارزمية المثلث (الاسرع) في هذا العمل. ونتّ معالجة الاحداثيات الكارنيزية للحد المدخل بحيث يتم تمثيل الحدود بواسطة مجموعة من الرؤوس المختارة لحافة الحد، في هذه الورقة يتم تنفيذ الفكرة الرئيسية للطريقة المحلة لضغط الحد. القياسات في طريقتتا هذه يتم حسابه باستخدام ثلاثة معايير إستتاداً إلى منوسط مربع الخطأ، نسبة الإشارة إلى الضوضاء و السر عة. ويقدر الوقت الحسابي الذي تستغرقه الطريقة المقترحة إعتماداً على عدد العمليات الحسابية المنجزة. ينم الحصول على النتائج التجريبية من حيث جودة الصورة ونسب الضغط و السرعة التي تكون مشجعة في طرح وجهات نظر أخرى ونتحدث هنا خاصة عن مجال نقريب الحد لضغط الكلمة العربية. المز ايا الرئيسية للخو ارزمية التي تم تحليلها هي في البساطة ولها أعداد صغيرة من العمليات الحسابية مقارنة بالخو ارزميات القديمة الموجودة، كما انها تظهر جودة أعلي من خوارزمية شبه المنحرف السابقة. حيث أن هذه الطريقة ملائمة للنطبيقات التى نحتاجها فى الزمن الحققي وذللك نسبة الى سر عتها العالية. الكلمات المفتّاحية: وصف الحد، ضغط الحد، نقريب المضلع، طرق رامر، المتلث، شبه المنحرف.

Effective technology to improve the quality of the compressed binary contour image of single-curved Arabic words

*Ali Abdrhman M Ukasha ${ }^{\text {a }}$, Majdi Farag Mohammed El Birekib, Ali Abdul-Qader Al-Shanokia, Muhammad Nuri Hussaina
a Department of Electrical and Electronic Engineering, Sebha University, Sebha, Libya
${ }^{\text {b }}$ Department of Electrical and Electronic Engineering, Higher Institute of Overall Professions,Tamazawa, Libya
*Corresponding author: ali.ukasha@sebhau.edu.ly
Abstract Contour compression (closed curves) is a major challenge in image processing. In this paper, a trapezoidal method will be introduced to compress the boundary of closed single-curved Arabic words. The improved Trapezoid algorithm has been compared with existing methods such as the Ramer algorithm (good quality) and the triangle algorithm (faster) in this work. The Cartesian coordinates of the input contour are processed so that the contour is represented by a set of vertices that selected for the edge of the contour. The measurements in this method are calculated using three criteria based on the mean square error, signal-tonoise ratio and speed. The calculation time of the proposed method is estimated based on the number of performed calculations. The experimental results are obtained in terms of image quality, compression ratio and speed which are encouraging to put forward other points of view. The main advantages of the analyzed algorithm are simplicity and have small numbers of calculations compared to existing algorithms, and they show higher quality than the previous trapezoid algorithm. This method is suitable for the applications where high speed is needed in the real time.
Keywords: Contour description, Contour compression, Polygon approximation, Ramer, Triangle, and Trapezoid Methods.

المقدمة

تتعلق بنقريب و / أو نتعيم المنحنيات. وبعد ذلك نم افتزراح العديد من الثتنيات النقريبية متعددة الأضلاع من قبل البحاث ويمكن تصنيفها إلى ثلاث فئات. ويشار إلى أول فئة على انها طريقة منتابعة منل [2]. ويشار إلى الفئة الثانية على انها طريقة تقسيم ودمج مثل ما هو الحال في [3]، [4]، [5]، [11]، و [12]؛ ويشار إلى الفئة الأخيرة بالكشف النقاط المهيمنة كما في

في هذا البحث سيتم استخدم الأسلوب المعروف باسم خطوة Single Step Parallel واحدة موازية لاستخلاص الحد (1] "SSPCE" Contour) (Extraction خو ارزميات كانت قد قدمت لتقريب المتعددة الأضلاع للحدود المستخلصة. حيث أن احد هذه الطرق التي تحل المشكلة لضغط الحد طريقة المجال الزمنى، والتي معظم الخوارزميات لها

الخو ازميتان اللتان تم تحليلهما في هذا العمل نستخدمان طريقة جديدة لاستخلاص الحد تدعي (SSPCE) مع هيكل نافذة تتكون من 3X3من البيكسلات. باستخدام البكسل المركزي يتم استخر اج معالم الكائن ويتم العثور على كل اتجاها ت حافات الحد المككنة الذي يربط البكسل المركزي مع احد البيكسلات المتبقية المحيطة

شكل1 : نقريب المنحني باستخدام طريقة شبه المنحرف المحسنة (Trapezoid I)

شكل 2: تقريب المنحني باستخدام طريقة شبه المنحرف المحسنة (Trapezoid II)
(Ramer Algorithm) خو ازمية رامر قدم رامر خوارزمية نستخدم أقصى مسافة للمنحنى من المضلع النقريبي كمعيار مناسب. و هي طريقة نكر ارية تبدأ بتجزئة أولية وتقسم القطعة عند النقطة الني لها أبعد مسافة من الجزء المقابل ما لم يكن خطأ النقريب أكثر من النفاوت المحدد مسبقا [3]. الخوارزمية تتتج مضلع مع عدد قليل من حواف لمنحنيات رقمية ثنائية الأبعاد اعتباطيا. ويقترب هذا الجزء من المنحنى بخط مسنقيم تربط طرفه الأولي و النهائي. إذا لم ينم الوفاء بطريقة مناسبة، يتم إنهاء قطاع المنحنى إلى قسمين عند نقطة المنحنى الأكثر بعدا عن الخط المسنقيم. وتكرر هذه الحلقة حتى يمكن نقريب كل جزء منحنى بو اسطة خط مسنقيم من خلا نقاط النهاية. وتفصل كل هذه القطاعات للمنحنى عندها تكون
[6]. تمثيل الحد المستخدم هنا هو الكارتيزي [7]. أما النمثيلات الأخرى مثل القطبية وترميز سلسلة فريمان فهي عادة مرغوبة في العديد من التطبيقات [8]. في هذه الورقة يتم عرض خوارزمية جديدة لضغط الحد وهي تعنبر تحسين لطريقة شبه منحرف القديمة، حيث وضعت هنا للمقارنة معها [9] و [10].

خوازمية شبه المنحرفة (Trapezoid I Algorithm)

 الخوارزمية المقترحة نتنمي إلى عائلة من الطرق متعددة الأضلاع للتنقريب. فكرة هذه الطريقة نتكون من تجزئة نقاط الحد للحصول على أثشكال شبه منحرفة (نقاط SP, B, C, EP). (SP) وتسمى النقاط الأولى و الأخيرة من كل قطاع نقطة البداية ونقطة اللناية (EP) على التو الي. الفكرة الاساسية التي نتاسب طريقة شبه المنحرف (المشار إليها هنا Trapezoid I) [9]؛ هي النسبة بين المسافة العمودية (dB) من النقطة B إلى الخط المسنقيم (SP -C) إلى المسافة العمودية (dC) من النقطة C إلى الخط المسنقيم (EP - B)، كما هو موضح في الشكل (1)، وتعرف بالمعادلة (1) [9] و [10]. $(d B / d C)<t h$حيث ان th هي قيمة العتبة المطبقة. تم استخدام الصيغة المثلثية لحساب هذه القيح. إذا كانت المعادلة (1) غبر محققة، يتم تخزين النقاط الثنانية و الثالثة والنهاية ويتم از احة نقطة البداية SP إلى نقطة النهاية EP من شبه منحرف، ثم يتم رسم قطعة جدبدة. و إلا يتم تخزين النقاط الثالثة و النهاية من شبه منحرف ويتم ازاحة نقطة البداية SP إلى نقطة النهاية EP. ثم يتم رسم قطعة جديدة. يتم تحديد رؤوس حافة المضلع اللنقريبي بواسطة هذه النقاط المخزنة. معبار الخو ارزمية المقترحة (نسمى هذه الطريقة الذي هو تحسين لطريقة شبه المنحرف ويشار اليها في هذه الورقة الي (Trapezoid II
(2) وكما هو موضح في الثكل (2). $(d B C / d C E P)<t h$

حيث ان dBC هي قيمة المسافة بين النقطتين B و C و ان dCEP تمثل المسافة بين النقطنين C و EP. يمكن تعديل فكرة تحليل كل من الخوارزميتين اعنمادا على أساليب تمثيل الحد. ويستخدم الحد مخططات نتفير السلسلة لتمثيل الحد لتحديد جميع الوصدلات الممكنة لكل من مخططات النوصيل 8 و 4 اتجاهات مثل الكارتبزي او التمثيل القطبي او النتثيل العام [8].

شكل 4: تقريب المنحني باستخدام خو ارزمية المثلث (Triangle)

ونقارن النسبة بين ارتفاع المثلث h وطول قاعدة المثلث b مـ
قيمة العتبة المعطاة بالمعادلة (4).

$$
\begin{equation*}
(h / b)<t h \tag{4}
\end{equation*}
$$

EP إذا كانت قيمة النسبة أصغر من العتبة، يتم تخزين النقطة من المثلث ويتم ازاحة النقطة SP إلى النقطة B ثم يتم رسم جزء جديد. وإلا يتم تخزين النقطة الثنانية (B) ويتم از احة النقطة SP إلى اللنطة B من المثلث. ثم يتم رسم جزء جديد. تحدد النقاط المخزنة كرؤوس حافة المضلع النتقريبي.

القياسات المطبقة
نسبة الضغط للطرق التي تم التطرق اليها نكون مقاسة بواسطة (5). المعادلة

$$
\begin{equation*}
C R=\frac{\left(L_{C C}-L_{A C}\right)}{L_{C C}} \cdot 100 \% \tag{5}
\end{equation*}
$$

حيث ان L $L_{C C}$ هي قيمة طول المنحني (نقاط) وان $L_{\text {تمثل }}$ نـ طول المتعدد الاضلاع النقريبي(نقاط). ويستخدم قياس جودة النقريب أثناء إجر اء النقريب معيار متوسط مربع الخطأ (MSE) ومعيار نسبة الإشارة إلى الضوضـاء
(SNR) من خلد العلافات (6) و (7) على النو الي.

$$
\begin{equation*}
M S E=\frac{1}{L_{C C}} \sum_{i=1}^{L_{C C}} d_{i}^{2} \tag{6}
\end{equation*}
$$

حيث ان ${ }_{i}$ هي قيمة المسافة العمودية بين النقطة i علي مقطع المنحني و الخط المستقيم بين كل اثثين من القمم المنعاقبة

من ذلك المقطع.

$$
S N R=-10 * \log _{10}\left(\frac{M S E}{V A R}\right)
$$

(7)

حيث ان VAR تمثل قيمة التباين للمنتالية المدخلة للحد. ويظهر التحليل والتجارب المنجزة أن نسبة الإشارة إلى الضوضـاء ينبغي أن تكون أكبر من 33 dB لبعض الحدود وأقل من هذه القيمة بالنسبة للحدود الاخري للحصول على النو افق المنوقع بين نسبة الضغط وجودة اعادة بناء الحد. في حالة كان مستوى العتبة عاليا، فانه سينت القضاء على تفاصيل
الحد و ان مسنوى النشوه لا يمكن قبوله.

النتائـج و المناقشثة

(الخو ارزمية المقترحة (شبه منحرف الثانية Trapezoid II) تعمل بشكل جيد للصور الثنائية الني لديها حد واحد مكتوبا باللغة العربية. للإطلاع على النتائج التجرييية يتم تحديد اربعة من الحدود للاختبار، و التي تظهر في الشكل (5). وترد في

رؤوس المضلع هي نلك التي تفي بفكرة نقريب المسافة القصوى. ويبين الثكل (3) هذه الفكرة لمنحني مغلق بواسطة تجزئة خطية باستخدام طريقة رامر • وينقس المنحني المغلق إلى نصفين (العلوي و السفلي). وتحسب المسافة العمودية لكل نقطة من الخط المسنقيم بين النقطنين 1 و 18 في الشكل (3) لكل جزء على حدة. ثم يتم تحديد المسافة القصوى ومقارنتها مع

قيمة العتبة بالمعادلة (3).

$$
\begin{equation*}
d_{\max }>t h \tag{3}
\end{equation*}
$$

وإذا تجاوزت هذه القيمة العتبة th ، فإننا نكسر الخط عند نقطة المسافة القصوى من الخط المسنقيم إلى جز أين جديدين (أي من النقطة 1 إلى النقطة 7 ومن النقطة 7 إلى النقطة 18 بالنسبة للنصف الأدنى ومن النقطة 18 إلى النقطة 28 ومن النقطة 28 إلى النقطة 1 للنصف الأعلى). الآن كرر هذه الخطوات مرة أخرى لخطين مسنقيمين جديدين حتى لا نوجد نقاط نتجاوز العتبة ثم يتم تخزين أرقام النقطة 1 و 7 و 18 و 28 في تسلسل نقاط الحد كذروات (كرؤوس) من حافة الحد النقربيي كما هو مبين في الشكل(3).

شكل 3 : نتريب المنحني باستخدام خوارزمية رامر (Ramer)
خوازمية المثلث (Triangle Algorithm) وتتألف فكرة هذه الطريقة من تجزئة نقاط الحد للحصول على شكل مثلثي (نقاط EP و B و SP) كما هو مبين في الشكل (4)

$$
\text { شككل } 7 \text { : نتائج حد كلمة 'علي‘ باستخدام طريقة شبه المنحرف }
$$

	MSE	SNR	CR [\%]	NO
1)	0.66	40.93	89.89	953
ب)	1.54	37.24	92.70	683
ج)	5.7920	31.50	95.22	440
د)	9.65	29.28	95.79	386

جدول 3: ييين نتائج المقارنة بين الطريقة السابقة و المحسنة

	لحد كامةّ 'على'			
	MSE	SNR	CR [\%]	NO
I) Trapezoid I (السابقة)	2.05	36.02	93.16	1001
ب) Trapezoid II (المحسنة)	2.01	36.10	93.26	629

شكل 8 : نتائج حد كلمة ’المعلم‘ باستخدام طريقة شبه المنحرف الممحسنة (Trapezoid II)

الشكل (6) بعض النتائج المختارة لحد كلمة’ المهمة' و النتائج ذات الصلة مبينة في الجدول (1)؛ حيث ان NO هو عدد العمليات الحسابية التي يتم تنفيذها مثل الجمع والضرب و القسمة، الخ. انها تعطى نسبة ضغط بقيمة أعلى مع جودة مقبولة. بعض النتائج المختارة للحدود المختبرة الاخري تظهر من الاشكال (6) إلى (9) (النتائج ذات الصلة نظهر من الجداول(2) إلى(7)).

(a
شكل 5: كلمات الحدود المخنبرة :1) ’المـهمة،، ب) 'على'، ج (المعلى‘، د) ’العسل‘

شكل 6: نتائج حد كلمة ’المهمة' باستخدام طريقة شبه المنحرف
المدحسنة (Trapezoid II)

	MSE	SNR	$C R[\%]$	NO
1)	0.93	39.51	89.84	953
ب)	1.95	36.28	92.66	683
()	5.34	31.90	95.20	440
د)	9.49	29.41	96.05	359

السابق.وتبين الاشكال(10) و (11) رسم للعلاقة بين متوسط مربع الخطاء و نسبة الاشـارة الى الضوضـاء ضد نسبة الضـط علي التو الي. ونظهر الرسومات أن SNR باستخدام الخو ارزمية المحسنة هو تقريبا نفس اداء طرق المثلث و شبه المنحرف السابقة لنسبة ضغط عالية للحدود. عدد العمليات باستخدام طرق رامر، المتلث و شبه منحرف السابقة هو أعلى بكثير مما كانت عليه في طريقة تحليل شبه المنحرف المحسنة للعديد من الأشكال المختلفة من الحدود. ومع ذلك، فإن SNR باستخدام خوارزمية رامر يعطي جودة نقارب أفضل بكثير من جميع الطرق المقارنة. ولكن الخوارزمية المقترحة المحسنة هي أسرع بكثير من غير ها من الطرق المقارنة.

شكل 10: مقارنة طريقتا شبه المنحرف السابقة و المحسنة في حدود نسبة الاشارة الي الضوضاء SNR ضد نسبة الضغط ‘لحدود كلمات: (العسل‘، ب) 'لمعلـ CR

شكل 9 : نتائج حد كلمة 'العسل‘ باستخدام طريقة شبه المنحرف
المدحسنة (Trapezoid II)

	جدول 6: يبين نتائج حد كامة' ('لعل'			
	MSE	SNR	CR [\%]	NO
1)	0.33	45.85	81.19	2645
ب)	0.95	41.22	89.37	1475
ج)	6.14	33.10	95.50	575
د)	7.37	32.30	96.11	494

	لحد كلمة 'العسل'			
	MSE	SNR	CR [\%]	NO
リ) Trapezoid I	1.52	39.16	91.96	1726
(السابقة)				
ب) Trapezoid II	1.32	39.76	92.23	1007

النتائج المعروضة في الأشكال(6 ، 7 ، 8 ، 8 ، 8 (المحسنة) الطريقة المقترحة (خوارزمية شبه المنحرف المحسنة) لديها قدرات ضغط جيدة. ويتبين أن نسبة الانضغاط لبعض أنو اع الحدود يمكن أن تكون أكبر من أو تساوي 96٪ كما هو مبين

في الثكل (6) و الجدول(1).
النتائج تظهر ان خوارزمية شبه المنحرف المقترحة المحسنة أسرع بكثير من طرق رامر، المثلث وشبه المنحرف

المنحرف السابقة بنحو 36٪ (كما هو مبين في الشكل (11)). وتعطي الطريقة المتترحة جودة أعلى بحوالي 0.2 ديسييل مقارنة مع سابقتها لضغط الحـود للكلمات العربية عندما تكون نسبة الضغط نتقرب من 94\% (كما هو مبين في الثكل (10)). نظر السرعة الطريقة العالية فان لها مستظبل واعد فى الالنطبيقات النتي تحتاج الزمن الحقيقي. للحصول على نسبة ضنط أعلى مع تشويه قليل الاههية في جودة إعادة بناء تركيب الحد؛ فانه يجب تحديد المستوى المقبول لجودة إعادة بناء تركيب الحدن وينبغي أن تحافظ قيمة العثبة على المستوى المقبول لجودة بناء الحد. وبالإضافة إلى ما ذكر فإن الخوارزمية اللقترحة لديها أيضا تعقيد منخفض.

المراجع
[1]- A. Dziech, W. S. Besbas, A. Nabout and H. A. Nour Eldin, Fast algorithm for closed contour extraction, Proc. of the 4th International Workshop on Systems, Signals and Image Processing, Poznań, Poland, 1997, pp. 203206.
[2]- J. Sklansky and V. Gonsalez, Fast polygonal approximation of digitized curves, Pattern Recognition, 1980, pp. 327-331.
[3]- U. Ramer, An iterative procedure for the Polygonal approximation of plane curves, Computer Graphic and Image Processing, Academic Press, 1972, pp. 244-256.
[4]- A. Dziech, A. Ukasha and R. Baran, Fast method for contour approximation and compression, WSEAS Transaction on communications,2006, pp. 49-56.
[5]- R. Baran, and A. Dziech, Tangent method and the other efficient methods of contour compression, WSEAS Transactions on Computers, 2005, pp. 805-813.
[6]- P. Zhu and P. M. Chirlian, On critical detection of digital shapes, IEEE Transaction on Pattern Analysis and Machine Intelligence, 1995, pp. 737-748.
[7]- B. G. Batchelor and S. G. Laing, Polar-vector representations of edges in Pictures, Electronics Letters, 1977, pp. 727-729.
[8]- A. K. Jain, Fundamentals of digital image processing, Englewood Cliffs, NJ: PrenticeHall, 1989.
[9]- A. Ukasha, A. Dziech, E. Elsherif and R. Baran, An efficient method of contour compression, International Conference on Visualization, Imaging and Image Processing (IASTED/VIIP), Cambridge, United Kingdom, 2009, pp. 213-218.
[10]- A. Ukasha, A New Method for Contour Approximation using Basic Ramer Idea, International Conference on Pattern Recognition and Computer (WASET/ICPRC) Dubai, United Arab Emirates, 2011.
[11]- A. Ukasha, An Adaptive-Triangle Method for Binary Image Contour Data Approximation, International Journal of Theoretical and

شثكل 11 : مقارنة طربقتا شبه المنحرف السـابقة و المحسنة في حدود عدد العمليات الحسابية NO ضد نسبة الضغط CR لحدو
 الخلاصة والاستنتاجات

في هذه الورقة، قدمنا مخطط جديد محسن لطريقة شبه المنحرف لضغط حدود منحني واحد مقفل للكلمات العربية. يتم تحسين طريقة شبه المنحرف والمشار اليها في هذا العمل ب Trapezoid (من قبل هذه الورقة و المشار اليها (Trapezoid I) (الذي يستفيد من السرعة العالية له. في هذا العمل، يتم مناقتشة بعض الطرق المكانية لضغط الحدود متل طريقة رامر المعروفة بجودتها العالية و طريقة المثلث المشهورة بسرعتها ومن ثم مقارنتها مع خوارزمية طريقة شبه المنحرف السابقة و المحسنة. نوفشت عيوب ومزايا الطريقة المحسنة بنوع من النفصيل. وخلصت هذه الار اسة إلى أن الطريقة المقترحة تعطي ضغطا أعلى للحدود مع بعض الفقدان الضئيل من جودة نقريب الحد ويمكن أن نكون نسبة الانضغاط التي تم الحصول عليها بو اسطة هذه الخو ارزمية الجديدة أكبر من أو نساوي 96٪ (كما هو مبين في الاشكال (8 و 9) مع نشويه ملحوظ واضحح لكنه مقبول. وأظهرت النتائج المقدمة أيضا أن الخوارزمية المقترحة لنقريب الحد أسر ع عدة مرات من طرق رامر، المثلث، شبه منحرف السابقة. وإن الطريقة المحنة أسر ع من طريقة شبه

Applied Information Technology, Vol. 81, No. 2, November 2015.
[12]- A. Ukasha and R. Albahi, An Efficient Methods Comparison for Arabic Words Contours Approximation, The First Scientific Symposium Of Electrical And Electronic Engineering (EEES), Misurata, Libya, May2016.

