

مجلة العلوم البحثة والتطبيقية

Journal of Pure & Applied Sciences

www.Suj.sebhau.edu.ly ISSN 2521-9200

Received 05/01/2018 Revised 02/02/2018 Published online 28/03/2018

*Ghazeel Almahdi Jalalah¹, Nazha Emhimed Alhaj²

¹Department of Mathematics, Faculty of Education, Sirte University, Libya. ²Department of Mathematics, Faculty of Sciences, Sebha University, Libya.

* Corresponding Author: naz.alhaj@sebhau.edu.ly

Abstract In this paper we studied the cleavability over these topological spaces: D- regular space, D - completely regular space, D_{σ} -completely regular space and weakly regular space as following:

If \mathcal{P} is a class of topological spaces with certain properties and if X is cleavable over \mathcal{P} then $X \in \mathcal{P}.also$ If \mathcal{P} is a

Class of topological spaces with certain properties and if Y is cleavable over \mathcal{P} then $Y \in \mathcal{P}$

 $\textbf{Keyword:} \ D \ - \ regular \ space \ , \ D \ - \ completely \ regular \ space \ , \ D_{\sigma} \ - \ completely \ regular \ space \ , \ weakly \ regular \ space, \ absolutely \ cleavable.$

انشقاق (انشطار) بعض انواع الفضاءات المنتظمة

 2 غزيل المهدى جلالة 1 و نزهة امحمد الحاج 2

 1 قسم الرياضيات – كلية التربية – جامعة سرت

2 قسم الرباضيات - كلية العلوم - جامعة سبها

naz.alhaj@sebhau.edu.ly:*المراسلة

الملخص في هذا البحث درسنا حالة الانشقاق (او الانشطار) على بعض الفضاءات الطوبولوجية

(D regular space, D - completely regular space, D_o -completely regular space and weakly regular space): كالتالى: (D regular space, D - completely regular space and weakly regular space) الإذا كان \mathcal{P} فصل من الفضاءات الطوبولوجية ذات خصائص معينة و كانت Y قابلة للأنشطار على \mathcal{P} فان \mathcal{P} فان \mathcal{P} فان \mathcal{P} فان على طفضاءات الطوبولوجية ذات خصائص معينة و كانت Y قابلة للأنشطار على \mathcal{P} فان \mathcal{P} فان على \mathcal{P} فان على \mathcal{P} فان على طفضاءات الطوبولوجية ذات خصائص معينة و كانت Y قابلة للأنشطار على \mathcal{P}

D - regular space , D - completely regular space , D_{σ} - completely regular space , weakly regular space , because it is space, absolutely cleavable.

Introduction

Different types of cleavability (originally named "splittability") of a topological space were introduced by Arhangl' Skii (1985) as following: A topological space X is said to be cleavable (or splittable) over a class of spaces $\mathcal P$ if for $A\subset X$ there exists a continuous mapping $f\colon X\to Y\in \mathcal P$ such that $f^{-1}f(A)=A$, f(X)=Y. Throughout this paper X, Y will always denote the topological spaces on which no separation axioms are assumed, unless otherwise mentioned. Let A be a subset of X , cl A and int A denote the closure and interior of A , respectively. Definitions and some properties of some regular spaces as D - regular space, D - completely regular space, D_{\sigma}-completely regular space and weakly regular space are introduced in [5],[6] .

Preliminaries

Now we recall some definitions which we needed in this paper.

Definition (1)

A topological space X is said to be absolutely cleavable over a class of spaces $\mathcal P$ if $A\subset X$ and there exists an injective continuous mapping $f\colon X\to Y\in \mathcal P$ such that $f^{-1}f(A)=A$.

Remark (1)

if $\mathcal P$ is the class of all spaces, we shall say that X is absolutely cleavable over $\mathcal P$. If f is an open ,closed ,perfect ,...(continuous) mapping , we shall say that X respectively open ,closed perfect absolutely cleavable over $\mathcal P$.

Note that if f is an injective continuous mapping of X into $Y \in \mathcal{P}$ then X is cleavable over \mathcal{P} and since the definition of cleavability depends on the subset A of X, thus we might say a space X is said to be absolutely cleavable over \mathcal{P} , then the cleavability over \mathcal{P} may regarded as generalization of continuous injection map onto $Y \in \mathcal{P}$.

Remark (2)

By an open [closed , perfect ,....] cleavable we mean that the continuous function $f\colon X \to Y$ is an injective open [closed , perfect ,] respectively

Definition (2)[5]

A topological space X is said to be D -regular if every point x of X has a neighborhood base consisting of open F_{σ} -sets

Definition (3)[5]

A topological space X is called weakly regular if every point x of $\,$ X has a neighborhood base consisting of F_{σ} -sets.

Definition (4)

A collection \mathfrak{B} of subsets of a space X is called an open Complementary system if \mathfrak{B} consists of open sets of X such that for every $B \in \mathfrak{B}$ there exists $B_1, B_2, \ldots \in B$ with $B = \bigcup \{X/B_i, i \in \mathbb{N}\}$

Definition (5)

A subset A of a space X is called a strongly open F_{σ} -set if there exists a countable open complementary system $\mathfrak{B}(A)$ with $A \in \mathfrak{B}(A)$).

JOPAS Vol.17 No. 1 2018 57

the complement of strongly open F_{σ} -set is called strongly closed G_{σ} -set.

Definition (6) [5]

A topological space X is said to be D -completely regular if it has a base of strongly open F_{σ} - sets of X can be separated by G_{σ} -sets.

Proposition

Let X be a closed absolutely cleavable space over a class of regular spaces , then $X \in \mathcal{P}$ **Proof:**

Let x be any point in X, and F a closed subset of X ,with $x \notin F$, since X is absolutely cleavable, there exists an injective continuous mapping $f: X \to Y \in \mathcal{P}$, such that $f^{-1}f(F) = F$, and for every $y \in Y$ there exists $x \in X$ such that $y = f(x) \Leftrightarrow$ $f^{-1}(y) = x .$

Hence f(F) is closed subset of Y and $f(x) \notin f(F)$.

Now Y is regular, then there exist two open sets G and H of Y with $f(x) \in G$, $f(F) \subset H$, $G \cap H = \phi$ so $x \in f^{-1}(G)$, $f^{-1}f(F) \subset f^{-1}(H)$ this implies that $x \in$ $f^{-1}(G)$, $F \subset f^{-1}(H)$, since f is continuous, then $f^{-1}(H)$ are open sets of X , and $f^{-1}(G) \cap f^{-1}(H) = f^{-1}(G \cap H) = f^{-1}(\phi) = \phi$ Therefore X is regular, then $X \in \mathcal{P}$.

Proposition (2)

Let X be a regular space is an open absolutely cleavable over a class of spaces , then $Y \in \mathcal{P}$.

Proof:

Suppose y be any point in Y, and E be any closed subset of Y with $y \notin E$ then there exists $x \in X$, with $y = f(x) \Leftrightarrow f^{-1}(y) = x$, and an open Injective $f{:}\: X \longrightarrow Y \in \mathcal{P}$ continuous mapping such that $f^{-1}f(f^{-1}(E)) = f^{-1}(E)$.

Since f continuous then $f^{-1}(E)$ is closed in X this means that $f^{-1}(y) \notin f^{-1}(E)$, so $x \notin f^{-1}(E)$ in X.

Since X is regular space, then there exist open sets U, V such that $x \in U$ and V this implies that $f(x) = y \in f(U)$, and $ff^{-1}(E) \subset$ f(V) implies that $E \subset f(V)$, since f is open , so f(U) , f(V) are open sets of Y and $f(U) \cap f(V) =$ $f(U\cap V)=f(\varphi)=\varphi.$

Hence Y is regular space and $Y \in \mathcal{P}$.

Proposition (3)

Let X be D -regular closed open cleavable space over a class of Spaces \mathcal{P} , then $Y \in \mathcal{P}$.

Suppose $y \in Y$ and a neighborhood V of Y y = $f(x) \Leftrightarrow f^{-1}(y) = x$ and an open closed continuous mapping $f: X \to Y$ such that $f^{-1}f(f^{-1}(V)) = f^{-1}(V)$, then for

 $x \in f^{-1}(V)$, $U = f^{-1}(V)$

is a neighborhood of x.

Since X is D-regular space, so there exists an open F_{σ} - set F such that $x \in F \subset U$,

since f is open then f(F) is an open F_{σ} - set in Y and $f(x) \in f(F) \subset f(U)$, this implies that $y \in f(F) \subset$ V. therefore Y is D-regular space. Hence $Y \in \mathcal{P}$.

Proposition (4)

Let X be a Hausdorff perfect cleavable space over a class of weakly regular spaces \mathcal{P} , then $X \in$ \mathcal{P}_{\bullet}

Let U be an open neighborhood of $x \in X$, there exists a perfect mapping $f: X \to Y$ such that

 $f^{-1}f(U) = U$, if $f^{-1}f(x) \subset U$ then exists an F_{σ} – set F in Y with

 $f(x) \in \inf F \subset F \subset Y/f(X/U)$

which implies that $f^{-1}(F)$ is an F_{σ} - set, such that

 $f^{-1}f(x) \in \operatorname{int} f^{-1}(F) \subset f^{-1}(F) \subset f^{-1}[Y/f(X/U)] \Rightarrow$ $x \in intf^{-1}(F) \subset f^{-1}(F) \subset U$.

Hence $X \in \mathcal{P}$

Definition (7)

A mapping $f: X \to Y$ is said to be Lindeloff –perfect if f is continuous, Closed and every

set of the form $f^{-1}(y)$ for $y \in Y$ is Lindeloff spaces.

Lemma (1)[5]

Let A and B be two disjoint subsets of a space X with B is closed , if A is a Lindeloff then there exists an F_{σ} - set F such that

 $A \subset \text{int } F \subset F \subset X/B$

proof:

Let A be closed and has a boundary

K = A/int A which is a Lindeloff space .then there exists countably many points $x_1, x_2, ...$ in K and F_{σ} sets F_1 , F_2 , ... such that $x_i \in \text{int } F_i$ and $K \subset \text{int } G \subset$ $G = \bigcup \{F_i | _{i \in \mathbb{N}}\} \subset X/B$

Therefore $F = A \cup G$ is an F_{σ} - set with

 $A \subset \text{int } F \subset F \subset X/B$

Proposition (5)

Let X be a weakly regular Lindeloff-perfect cleavable space over a class of spaces \mathcal{P} .then $Y \in$

Proof:

Let V be an open neighborhood of $y \in Y$.then there exists a Lindeloff perfect mapping $f: X \rightarrow Y$ such that $f^{-1}f\{f^{-1}(V)\} = f^{-1}(V)$, hence $f^{-1}(y)$ is Lindeloff subspace of the open set $f^{-1}(V)$.

By lemma (1) there exists an F_{σ} - set F such that $f^{-1}(y) \subset \text{int } F \subset F \subset f^{-1}(V)$

and since U = Y/f[X/int F] is open and

 $f(f^{-1}(y)) \subset f(int F) \subset f(F) \subset V$,

then $y \in int f(F) \subset f(F) \subset V$

Therefore Y is weakly regular.

hence $Y \in \mathcal{P}$.

Definition (8)

A subset A of a space X is called regular G_{σ} -set if A is an intersection of sequence of closed sets whose interiors contain A .

i-e $A = \bigcap_{n=1}^{\infty} F_n = \bigcap_{n=1}^{\infty} \operatorname{int} F_n$ where $\operatorname{int} F_n$ denotes the interior of F_n

The complement of regular G_{σ} -set is called a regular F_{σ} - set

Definition (9) [5]

A topological space X is called a D_{σ} -completely regular space if it has a base of regula F_{σ} - sets

Proposition (6)[5]

Every D_{σ} -completely regular space is regular

Let X be D_{σ} -completely regular space and let Fbe a closed subset of X and $x \notin F$ then $x \in X/F$ and X/F is open set in X , so there exists regular F_{σ} -

58

set U such that $x \in U \subset X/F$, so U is regular F_{σ} -set then $U = \bigcup_{i=1}^{\infty} V_i = \bigcup_{i=1}^{\infty} cl \ V_i$ where each V_i is an open set . Hence $x \in V_i \subset cl \ V_i \subset X/F$ which implies that V_i and $X/cl \ V_i$ are disjoint open sets containing x and F respectively.

Therefore X is regular space.

hence $X \in \mathcal{P}$

Proposition (7)

Let X be a D_σ -completely regular open closed cleavable space over a class of spaces . then $Y\in \mathcal{P}$

Proof:

Let $y \in Y$ and V be a neighborhood of y, there exists an open closed continuous mapping $f: X \to Y$ such that

 $f^{-1}f\{f^{-1}(V)\} = f^{-1}(V)$, then for

 $y=f(x) \Leftrightarrow x=f^{-1}(y)\,, U=f^{-1}(V)$ is a neighborhood of x. since X is D_{σ^-} completely regular space , then there exists a regular F_{σ^-} set F such that $x\in F\subset U$, since f is open closed then f(F) is a regular F_{σ} - set in Y with $f(x)\in f(F)\subset f(U)$

this implies that $y \in f(F) \subset f(U)$. Therefore Y is D_{σ^-} completely regular space. Hence $Y \in \mathcal{P}$

conclusion

In this paper we have studied and proved these cases:

1) If $\mathcal P$ is a class of egular space with certain properties and if X is absolutely cleavable over $\mathcal P$, then $X \in \mathcal P$, also if $\mathcal P$ is class of regular space with certain properties and if Y is absolutely cleavable over $\mathcal P$, then $Y \in \mathcal P$.

- 2) If $\mathcal P$ is a class of weakly regular space or with certain properties and if X is cleavable over $\mathcal P$, then $X\in \mathcal P$.
- 3) If $\mathcal P$ is a class of D- regular space or (weakly regular space , $D_\sigma-$ completely regular space) with certain properties and if Y is absolutely cleavable over $\mathcal P$, then $Y\in \mathcal P$.

References

- [1]- Arhangel'skii,A.V and Cammaroto,F ,On different types of cleavability of topological spaces , pointwise, closed ,open and pseudo open , Journal of Australian Math,Soc(1992).
- [2]- Arhangel'skii, A.V and Cammaroto, F., On cleavability and hereditary properties Houston journal of Mathematics , 20, (1994) .
- [3]- Cammaroto, F and Lj, Kocinac, Develoable spaces and cleavability Rediconti di Mathemathica, serie VII, vol,15, Roma (1995), 647-663.
- [4]- Cammaroto.F., Cleavability and divisibility over developale spaces. Comment. Math.Univ,Carolinae 37,4 (1996) 791-796.
- [5]- J.K.Kohli and D.Singh. Between regularity and complete regularity and a factorization of complete regularity. Seria: MATEMATICĂ Nr. 17(2007), pag. 125-134
- [6]- N.,Helderman: Developablity and some new regularity a xioms, Can .j,Math ,33(1981) ,641-883.

JOPAS Vol.17 No. 1 2018 59