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Abstract In this paper we will investigate the convergence of Chebyshev interpolation in terms of Chebyshev 
polynomials. In particular, if the function f (x) extends to an analytic function in a region bounded by an 
ellipse, then we may obtain an upper bound on the error of interpolation using zeros and extrema of 
Chebyshev polynomials.  
Keywords: Chebyshev polynomial, Chebyshev interpolation, Convergence rate. 

 

 

souad22008@yahoo.com

 

Introduction 
As known, the Chebyshev polynomial of the 

first kind of degree n  is defined as: 
Tn(x) = cos(n cos−1 x) = cos nθ,   (0.1) 
where x = cos θ, −1 ≤ x ≤ 1 , 0 ≤ θ ≤ π , and n 
is a non negative integer [2]. 

The Chebyshev polynomials Tn(x) satisfy 
|Tn(x)| ≤ 1. 
This follows from the bound  
−1 ≤ cos x ≤ 1,  
which leads to 
|Tn+1(x) −Tn−1(x)| ≤2.                 (0.2) 
The Chebyshev polynomial Tn(x) of degree n ≥ 
1 has n zeros on the interval [−1, 1]. The 
zeros 𝑥𝑗 are given by: 

𝑥𝑗=𝑐𝑜𝑠 (
(2𝑗−1)

2𝑛
)𝜋,  j=1,…n 

Moreover, the extrema, or points 𝑥𝑗 such that    

𝑇𝑛(𝑥𝑗)= (−1)𝑗 are given by: 

𝑥~𝑗=𝑐𝑜𝑠 (
𝑗𝜋

𝑛
),  j=1,…n 

All roots are real and lie in the interval [−𝟏,𝟏]. 
The extrema are preferable for interpolation 
in practical uses, because they include the 
boundary points. 
Theorem 0.1 [4] A function f (x) on [−1,1] that 

satisfies the Lipchitz continuity condition can be 
expanded as a Chebyshev series 

𝑓(𝑥) =
𝑎0

2
+∑ 𝑎𝑘

∞
𝑘=1 𝑇𝑘(x),          (0.3) 

which converges uniformly and absolutely on 
[−1,1] , where  

𝑎𝑘 = ∫
𝑓(𝑥)𝑇𝑘(𝑥)

√1−𝑥2

1

−1
𝑑𝑥, 𝑘 ≥ 1          (0.4) 

   The Chebyshev polynomials have interesting 
properties that make them a very attractive tool to 
minimize the maximum error in uniform 
approximation. 
1.Convergence Rate    
The convergence of Chebyshev series is 
determined by a property of the function 𝑓(𝑥). 
 In [4], Trefethen has shown that if the function 𝑓 

is smooth, then its Chebyshev expansion 

coefficients decrease rapidly. Two notions of 

smoothness were considered: an 𝑟th derivative 
with bounded variation, or analyticity in a 
neighborhood of     [−1,1]. 
 
Theorem1.1 [8,p.66] The truncation error 
when     approximating a function 𝑓(𝑥) in 
terms of Chebyshev polynomials satisfies  

|𝑓(𝑥) − 𝑓𝑛(𝑥)| ≤ ∑ 𝑎𝑘

∞

𝑘=𝑛+1

 

If all 𝑎𝑘 are rapidly decreasing, then the error is 
dominated by the leading term 𝑎𝑘+1𝑇𝑘+1. 
The coefficients 𝑎𝑘 for 𝑘 > 𝑛 + 1 are negligibly 
small, where the rest of the terms will be 
neglected if 𝑎𝑛+1 ≠ 0. 

Theorem 1.2 [4, p.51] If 𝑓, 𝑓′ ,… , 𝑓(𝑟−1) are 
absolutely continuous for r ≥ 0 on [−1,1], where 

the 𝑟th derivative 𝑓(𝑟) has bounded variation V 

= ‖𝑓(𝑟)‖, then the coefficients of the Chebyshev 
series satisfy the fallowing inequality 
 

|𝑎𝑘| ≤
2𝑉

𝜋𝑛𝑘(𝑘−1)…(𝑘−𝑟)
                        (1.5)    

𝑓𝑜𝑟𝑒𝑎𝑐ℎ𝑘 ≥ 𝑟 + 1. 
Theorem 1.3 [4, p.51] Let a function f be 
analytic on [−1, 1] and analytically continuable 
to the ellipse    Eρ:= {z ∈C : z =ρ (eiθ + e−iθ)/2 , θ 

∈[0, 2π]} in which |f (z)| ≤ M for some M . For 
all k ≥ 0 the Chebyshev coefficients ak of f 
exponentially decay as    k → ∞ and satisfying 
|ak| ≤ 2M ρ−k, ρ > 1.                  (1.6) 
Theorem 1.4 [4, p.53] If f is absolutely 
continuous for r ≥ 0 on [−1, 1], where the rth 
derivative f (r) has bounded variation V = 

‖𝑓(𝑟)‖,  then the Chebyshev truncation satisfies 

‖𝑓 − 𝑓𝑛‖ ≤
2𝑉

𝜋𝑟(𝑛−𝑟)𝑟
                 (1.7) 
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Theorem 1.5 [4, p.58] Let a function f be 
analytic on [−1, 1] and analyticall continuable to 
the open ellipse Eρ, in which |f| ≤ M for some M 
. Then the Chebyshev truncation error satisfies 

‖𝑓 − 𝑓𝑛‖ ≤
2𝑀𝜌−𝑛

𝜌−1
                       (1.8) 

2.Polynomial and Chebyshev 
interpolation 

An interpolating polynomial can be 
constructed easily using the Lagrange 
formula [1] 

𝑝(𝑥) = ∑ 𝑓𝑗𝐿𝐽
𝑛
𝑗=0 (x)                   (2.9) 

where the Lagrange polynomials basis 𝑳𝒋 is: 

𝐿𝑗(𝑥)=∏
𝑥−𝑥𝑘

𝑥𝑗−𝑥𝑘

𝑛
𝑘=0
𝑘≠𝑗

                            (2.10) 

𝑳𝒋are polynomials of degree n that have the 

property 

𝐿𝑗(𝑥𝑘) = {
1, 𝑖𝑓𝑗 = 𝑘,
0, 𝑖𝑓𝑗 ≠ 𝑘.

 

The Lagrange interpolation formula is 
useful for theoretical interest but not 
appropriate in practice [3]. Let us define  
𝐿(𝑥)=∏ (𝑥 − 𝑥𝑘)

𝑛
𝑘=0                        (2.11) 

If the interpolation at Chebyshev points or 
extrema ,then 
𝑳(𝒙)=𝑻𝒏or 𝑳(𝒙) = 𝑻𝒏+𝟏(𝒙) − 𝑻𝒏−𝟏(x)  
respectively.See also [4]  

Given a function f  that is interpolated at 
n + 1 points in term of Chebyshev 
polynomials and that satisfies the 
interpolation condition pn(xj)=f(xj), we have 
the following theorem: 
Theorem 2.1 [4] Let f (x) be a Lipschitz 
continuous function on [−1, 1], where 
𝑓(𝑥) = ∑ 𝑎𝑘

∞
𝑘=0 𝑇𝑘(x),                      (2.12) 

Then the function f (x) can be presented by 
interpolation in Chebyshev points as 
𝑝𝑛 = ∑ 𝑏𝑘

∞′′
𝑘=0 𝑇𝑘(x),                        (2.13) 

where   𝑏𝑘 =
2

𝑛
∑ 𝑓(𝑥𝑗)𝑇𝑘(𝑥𝑗),
𝑛
𝑗=0 𝑥~𝑗 = 𝑐𝑜𝑠 (

𝑗𝜋

𝑛
) .                                                   

and 
𝑝𝑛 = ∑ 𝑐𝑘

∞′′
𝑘=0 𝑇𝑘(x),                        (2.14) 

where   𝑐𝑘 =
2

𝑛+1
∑ 𝑓(𝑥𝑗)𝑇𝑘(𝑥𝑗),
𝑛
𝑗=0 𝑥𝑗 = 𝑐𝑜𝑠 (

(2𝑗−1)

2𝑛
)𝜋.     

Here ak are the exact coefficients, and bk 
and ck are coefficients of pn. The symbol ‘’ 

means that the first and last terms are 
halved. 
The coefficients of truncated Chebyshev 
series and Chebyshev interpolations can 
be obtained by means of orthogonality 
properties of Chebyshev polynomials for 
both continuous and discrete. Now, we 
discuss the relations between the 
coefficients ak , bk and ck. 
Theorem2.2 Let f(x) be a Lipschitz continuous 
function on [−1, 1] and let bk and ck be the 
coefficients of the Chebyshev interpolant 
defined in (2.13) and (2.14). Then and 
𝑏𝑘 = 𝑎𝑘 +∑ 𝑎2𝑚𝑛−𝑘 + 𝑎2𝑚𝑛+𝑘

∞
𝑚=1           (2.15) 

𝑐𝑘 = 𝑎𝑘 +∑ 𝑎2𝑚(𝑛+1)−𝑘 + 𝑎2𝑚(𝑛+1)+𝑘
∞
𝑚=1 (−1)𝑚     

(2.16) 
proof  By using (2.12) and (2.13) we have 
 

𝑏𝑘 =
2

𝑛
∑𝑓(𝑥𝑗)𝑇𝑘 =

2

𝑛
∑𝑎𝑘 ∑𝑐𝑜𝑠

𝑗𝑘𝜋

𝑛
𝑐𝑜𝑠

𝑗𝑝𝜋

𝑛

𝑛′′

𝑘=0

∞

𝑝=0

,

𝑛′′

𝑗=0

 

By the orthogonality relation 

∑𝑐𝑜𝑠
𝑗𝑘𝜋

𝑛
𝑐𝑜𝑠

𝑗𝑝𝜋

𝑛

𝑛

𝑗=0

= {

𝑛

2
, 𝑖𝑓𝑝 = 2𝑚𝑛 ± 𝑘,𝑚 = 1,2,

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

We have 

𝑇𝑘(𝑥𝑗) = 𝑐𝑜𝑠
(𝑘𝑗)𝜋

𝑛
=𝑐𝑜𝑠= 

                        = 𝑇2𝑚𝑛±𝑘(𝑥𝑗). 

Therefore, we have the following relation 
between the coefficients ak and bk 

𝑏𝑘 = 𝑎𝑘 + ∑ 𝑎2𝑚𝑛−𝑘 + 𝑎2𝑚𝑛+𝑘

∞

𝑚=1

 

Since the infinite sequence bk is semi-
periodic with period 2n and bk=b2n−k, only 

the first n+1 terms b0, b1, · · · , bn are unique. 
In case of Chebyshev zeros of the first kind, by the 
orthogonality relation  

∑𝑐𝑜𝑠
𝑗𝑘𝜋

𝑛
𝑐𝑜𝑠

𝑗𝑝𝜋

𝑛

𝑛

𝑗=0

= 

{
(−1)𝑚𝑛 + 1

2
, 𝑖𝑓𝑝 = 2𝑚𝑛± 𝑘,𝑚 = 1,2,…

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

And we have 
 

𝑇𝑘(𝑥𝑗) = 𝑐𝑜𝑠
(2𝑗−1)𝑘𝜋

2𝑛
= 

           = (−1)𝑚𝑐𝑜𝑠   
           = (−1)𝑚𝑇2𝑚(𝑛+1)±𝑘(𝑥𝑗)  

This comes from the fact that Chebyshev 
polynomials have the same values on n + 1 
points  

( Tk , T2n−k ,T2n+k , T4n−k ,T4n+k , · · · ). 
Theorem 2.4 [5] Assume that 𝑥𝑗, j=0,…,n are 

distinct points in [a,b] and that f(x) is a function in 
𝐶𝑛+1 [a,b]  and |𝑓𝑛+1|≤ M. Let  𝑝𝑛be a sequence of 

polynomial interpolating f. Then for each x 𝜖 
[a, b], there is  𝜁𝜖 (a, b) such that  
|𝑓(𝑥) − 𝑝𝑛(𝑥)| ≤         (2.17) 

The choice of Chebyshev points minimizes the 
terms ∏ (𝑥 − 𝑥𝑘)

𝑛
𝑘=0  on [-1,1]. 

This choice ensures uniform convergence for 
a Lipschitz continuous function f. This 
condition is more important than the 
condition of continuity of the function f.  
Theorem 2.5 Let f (x) be a continuous function 

on [a, b] and let pn(x) be interpolant polynomials 
of  f  at Chebyshev zeros. Then the error is 
given by 
 

‖𝑓 − 𝑝𝑛‖∞ ≤ ‖
2(𝑏−𝑎)𝑛+1

4𝑛+1(𝑛+1)!
‖
∞
‖𝑓𝑛+1(𝜁)‖∞         (2.18) 

Similarly, the error at Chebyshev extrema is 
given by: 

‖𝑓 − 𝑝𝑛‖∞ ≤ ‖
1

2𝑛−1(𝑛+1)!
‖
∞
‖𝑓𝑛+1(𝜁)‖∞          (2.19) 

Main result 
Now, we will investigate the interpolation 
convergence bound at zeros and extrema of 
Chebyshev polynomials: 
Theorem 2.6 Let f be a bounded analytic 
function such that |f (z)| ≤ M in the region 
bounded by an ellipse with foci ±1 and major 

semi-axis a=
𝜌+𝜌−1

2
 and minor semi-axis b= 

𝜌−𝜌−1

2
 

summing to ρ >1. Then 
 

n+1 
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‖𝑓 − 𝑝𝑛‖∞ ≤
2𝑀√𝜌2 + 𝜌−2

(
1
2
(𝜌 + 𝜌−1) − 1) (𝜌𝑛 − 𝜌−𝑛)

 

where pn(x) is the polynomial interpolant at 
Chebyshev zeros. 
proof Let Eρ be an ellipse enclosing the 
interval [−1, 1] in its interior and let f (z) be an 
analytic function within Eρ. Since the points 
are zeros of Chebyshev polynomials, then the 
error of the Lagrange interpolation for f (x) at 
these points can be expressed as 

𝑓 − 𝑝𝑛 =
𝑇𝑛(𝑥)

2𝜋𝑖
∫

𝑓(𝑧)

𝑇𝑛(𝑧)(𝑧−𝑥)𝐸𝜌
𝑑𝑧                      (2.20) 

Let 𝑙(𝐸𝜌) be the arc length of  𝐸𝜌 and 𝑀 =

𝑍∈𝐸𝜌
𝑚𝑎𝑥 |𝑓(𝑥)|. Then 𝑙(𝐸𝜌) is given by  

𝑙(𝐸𝜌) = ∫ |𝑧′(𝜃)|𝑑𝜃
2𝜋

0

 

since  

|𝑧′(𝜃)| = |
𝑖

2
(𝜌𝑒𝑖𝜃 − 𝜌𝑒−𝑖𝜃)| ≤

1

2
(𝜌 − 𝜌−1) 

We obtain the estimation; 

𝑙(𝐸𝜌) = 𝜋√𝜌2 + 𝜌−2 
For 𝑧𝜖𝐸𝜌, |𝑧 − 𝑥| is greater than or equal to the 

minimum distance from 𝐸𝜌 to the interval    [−1, 
1]. Thus for 𝑧𝜖𝐸𝜌 

|𝑧 − 𝑥| ≥ 𝑎 − 1 =
1

2
(𝜌 + 𝜌−1) − 1 = 

                2(
𝜌1 2⁄ −𝜌−1 2⁄

2
)
2

. 

To estimate |𝑇𝑛(𝑧)|, let 𝑧 =
1

2
(𝜌𝑖𝜃+𝜌−𝑖𝜃) Then we 

have  

𝑇𝑛(𝑧) =
1

2
(𝜌𝑛𝑒𝑖𝑛𝜃 + 𝜌−𝑛𝑒−𝑖𝑛𝜃). 

Thus  

𝑇𝑛(𝑧) =
1

2
[(𝜌𝑛 + 𝜌−𝑛)𝑐𝑜𝑠𝑛𝜃 + 𝑖(𝜌𝑛 − 𝜌−𝑛)𝑠𝑖𝑛𝑛𝜃] 

Then  

|𝑇𝑛(𝑧)| =
1

2
√𝜌2𝑛 + 𝜌−2𝑛 + 2𝑐𝑜𝑠2𝑛𝜃 

For 𝑐𝑜𝑠𝜃 = 1, we have  |𝑇𝑛(𝑥)| =
1

2
(𝜌𝑛 + 𝜌−𝑛), and for 

𝑐𝑜𝑠𝜃 = −1, we have  |𝑇𝑛(𝑥)| =
1

2
(𝜌𝑛 − 𝜌−𝑛). Then 

1

2
(𝜌𝑛 − 𝜌−𝑛) ≤ |𝑇𝑛(𝑥)| ≤

1

2
(𝜌𝑛 + 𝜌−𝑛). 

Therefore 

‖𝑓 − 𝑝𝑛‖∞ ≤
2𝑀√𝜌2 + 𝜌−2

(
1
2
(𝜌 + 𝜌−1) − 1) (𝜌𝑛 − 𝜌−𝑛)

 

We can also obtain a slightly different 
estimation: 
Theorem 2.8 Let f be a bounded analytic 
function such that |f (z)| ≤ M in the region 
bounded by an ellipse with foci ±1 and major 
and minor semi-axes summing to ρ >1. Then 

‖𝑓 − 𝑝𝑛‖∞ ≤
2𝑀√𝜌2 + 𝜌−2

(
1
2
(𝜌 + 𝜌−1) − 1) (𝜌 − 𝜌−1)(𝜌𝑛 − 𝜌−𝑛)

 

where pn(x) is the polynomial interpolant at 
Chebyshev extrema. 
proof In order to obtain the estimation we 
choose 
∅𝑛(𝑥) = 𝑇𝑛+1(𝑥) − 𝑇𝑛−1(x) 
The error formula for extrema is 
𝑓 − 𝑝𝑛

=
𝑇𝑛+1(𝑥) − 𝑇𝑛−1(𝑥)

2𝜋𝑖
∫

𝑓(𝑧)

[𝑇|𝑛 + 1(𝑥) − 𝑇𝑛−1(𝑥)](𝑧 − 𝑥)
𝑑𝑧

𝐸𝜌

 

Since ‖𝑇𝑛(𝑥)‖∞=1, we have that ‖∅𝑛(𝑥)‖∞ ≤ 2 and 

thus  

|𝑓 − 𝑝𝑛| ≤ |
2

𝜋
∫

𝑓(𝑧)

∅𝑛(𝑧)(𝑧 − 𝑥)𝐸𝜌

𝑑𝑧| 

Now,  in order to estimate 𝑇𝑛+1(𝑥) − 𝑇𝑛−1(x), we 
observe that 

𝑇𝑛+1(𝑥) − 𝑇𝑛−1(𝑥) = 
1

2
[(𝜌 − 𝜌−1)𝑐𝑜𝑠𝜃 + 𝑖(𝜌 + 𝜌−1)𝑠𝑖𝑛𝜃][(𝜌𝑛 − 𝜌−𝑛)𝑐𝑜𝑠𝑛𝜃

+ 𝑖(𝜌𝑛 + 𝜌−𝑛)𝑠𝑖𝑛𝑛𝜃] 
 Taking the absolute value, we obtain 

|𝑇𝑛+1(𝑥) − 𝑇𝑛−1(𝑥)| = 

√𝜌2 + 𝜌−2 − 2𝑐𝑜𝑠2𝑛𝜃√𝜌2𝑛 + 𝜌−2𝑛 − 2𝑐𝑜𝑠2𝑛𝜃 

Therefore, the lower bound is achieved when        
𝑐𝑜𝑠𝜃 = 1, and so 

|∅𝑛(𝑥)| =
1

2
(𝜌 − 𝜌−1)(𝜌𝑛−𝜌−𝑛) 

and the upper bound is achieved when 𝑐𝑜𝑠𝜃 =
−1, and so 

|∅𝑛(𝑥)| =
1

2
(𝜌 + 𝜌−1)(𝜌𝑛+𝜌−𝑛). 

Then 

‖𝑓 − 𝑝𝑛‖∞ ≤
2𝑀√𝜌2+𝜌−2

(
1

2
(𝜌+𝜌−1)−1)(𝜌−𝜌−1)(𝜌𝑛−𝜌−𝑛)

 , 𝜌 > 1. 

Finally we provide a simpler bound. 
 
Theorem 2.10 Let f (x) be an absolutely 
continuous function on [−1, 1], and let pn 
interpolates the function f (x) in term of 
Chebyshev polynomials. Then 

‖𝑓 − 𝑝𝑛‖ ≤ ∑ 𝑎𝑘
∞
𝑘=𝑛+1 =

4𝑉

𝜋𝑘𝑛(𝑛−1)…..(𝑛−𝑟+1)
 

Moreover, if the function f is an analytic for 
function which |f(z)|≤M in domain bounded 
by the ellipse with foci ± 1 and major and 
minor semi-axis add to ρ >1, then for n ≥0, 

‖𝑓 − 𝑝𝑛‖ ≤
4𝑀

(𝜌 − 1)𝜌−𝑛
 

proof We start as 

𝑓 − 𝑝𝑛=∑
𝑛−1
𝑘=0  -𝑏𝑘𝑇𝑘(𝑥) + (𝑎𝑛 −

𝑏𝑛

2
)𝑇𝑛(x) + 

∑ 𝑎𝑘𝑇𝑘(𝑥)
∞
𝑘=𝑛+1  

where ak , bk and ck are defined in (0.4), (2.15) 

and (2.16). 
There are three error terms in the above 
expression, the last term of which is a 
truncated error term. 
Therefore, since ‖𝑇𝑛(𝑥)‖∞=1, we have 

‖𝑓 − 𝑝𝑛‖ ≤ ∑|𝑎𝑘 − 𝑏𝑘|

𝑛−1

𝑘=0

‖𝑇𝑘‖∞ + |𝑎𝑛 −
𝑏𝑛
2
| ‖𝑇𝑛‖∞ 

+ ∑ |𝑎𝑘|

∞

𝑘=𝑛+1

‖𝑇𝑘‖∞ 

∑|𝑎𝑘 − 𝑏𝑘|

𝑛−1

𝑘=0

+ |𝑎𝑛 −
𝑏𝑛
2
| + ∑ |𝑎𝑘|

∞

𝑘=𝑛+1

 

The relation (2.15) yields 

∑ |𝑎𝑘 − 𝑏𝑘|
𝑛−1
𝑘=0 + |𝑎𝑛 −

𝑏𝑛

2
|≤∑ |𝑎𝑘|

∞
𝑘=𝑛+1  

Then, combining this with the above, we have 
 

∑|𝑎𝑘 − 𝑏𝑘|

𝑛−1

𝑘=0

+ |𝑎𝑛 −
𝑏𝑛
2
| + ∑ |𝑎𝑘|

∞

𝑘=𝑛+1

≤ 2 ∑ |𝑎𝑘|

∞

𝑘=𝑛+1

 

For Chebyshev zeros, by using (2.16) 
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‖𝑓 − 𝑝𝑛‖ ≤ ∑|𝑎𝑘 − 𝑐𝑘|

𝑛−1

𝑘=0

‖𝑇𝑘‖∞ + ∑ |𝑎𝑘|

∞

𝑘=𝑛+1

‖𝑇𝑘‖∞ ≤ 

≤ 2 ∑ |𝑎𝑘|

∞

𝑘=𝑛+1

 

 

≤∑|𝑎𝑘 − 𝑐𝑘|

𝑛

𝑘=0

+ ∑ |𝑎𝑘|

∞

𝑘=𝑛+1

≤ 2 ∑ |𝑎𝑘|

∞

𝑘=𝑛+1

 

From this and by the Theorem 1.2, we get 
 

‖𝑓 − 𝑝𝑛‖ ≤ ∑ |𝑎𝑘|

∞

𝑘=𝑛+1

≤ ∑
2𝑉

𝜋𝑘(𝑘 − 1)… (𝑘 − 𝑟)

∞

𝑘=𝑛+1

= 

 
2𝑉

𝜋𝑛(𝑛− 1)… (𝑛 − 𝑟)
 

And for an analytic function, by the Theorem 
1.3 
 

‖𝑓 − 𝑝𝑛‖ ≤ ∑ |𝑎𝑘|
∞
𝑘=𝑛+1 ≤ ∑

2𝑀

𝜌𝐾
∞
𝑘=𝑛+1 =

2𝑀

(𝜌−1)𝜌𝑛
. 

 
Conclusion: We investigated polynomial 
convergence rates for different classes of 
functions.  The result that obtained show 

that: For an r times differentiable function f 
with the   rth derivatives of bounded 
variation, the polynomial interpolant  𝑝𝑛 
with Chebyshev points in [-1,1] converges 
at an algebraic rate. For a function which 
is holomorphic and bounded in certain 
ellipse, the polynomial interpolant at 
Chebyshev points converges exponentially 
in the uniform norm.
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