المقاطع المعنية المتوفرة بالسوق الليبي وامكانية تركيبها محمد ابر اهيم اسوبيسي
 كلية العلوم الهندسية و والتقنية-جامعة سبها، لييّا
 m.mohammedasebhau.edu.ly للمر اسلة

اللمخص تم في هذا البعث يان اهية الاستغادة من تلك العناصر الععنية الصنيرة التي يصنعها مصنع حديد مصر انه بليييا التنوفرة

 تحمل الحمو لات الكييرة وتئي بالتطلبات الإشنائية. أن استخام العناصر المعنية له مجال واسع في المنشاءات سو اء في المناطق الباردة

 قضبان الربط بسسادة مقطع 40 مم، 15 مم وطول 559 مم وزاوية ميل مع العودوي مقارارها 40 درجة، الما الاسلوب الثاني فتّ تم

 لإنشاء عدد من طو ابق لا يزيد عن 3 عند تركيه بالطريقة الاوولى، يئما يمكن انشاء عدد من الطوابق لا يزيد عن أربعة عند استخام

الطربقة الثانية.
(الكلمات المفتامية: القاطع الفو لاذية- الاعدة المعنية- الانبعاج والثنل- السوق الليّي-- تعد الطو ابق.

The steel cross sections available in the Libyan shops and their using

Mohamed Ibrahim Iswisi
Lecturer in the faculty of Civil Engineering - Sebha University
Corresponding author: m. mohammedasebhau.edu.ly
Corresponding author: m.mohammed@sebhau.edu.ly

Abstract

In this research the demonstration of the importance of using small steel cross sections accomplished which fabricated in Libya; in Musrata steel factory where available in the Libyan markets. connection of sections by technical possibilities to obtain suitable dimensions; length, width, thickness to employ in the engineering structures. The connection of many elements used for obtaining sufficient ability to beer buckling, deflection and torsion. A study has been conducted on one of the steel profiles that available in the Libyan markets to illustrate the importance and opportunity of employment in the multiple story steel buildings. A large range of employing small cross sections by connecting them together to obtain cross sections has ability to gain the applied loads and satisfy engineering demands. Using of steel structure has large range in the constructions in the cold and hot countries. The focus is to obtain suitable procedure for the operation of thermal protection. Two deferent methods amplified in the designing to illustrate opportunity of obtaining amount of story from each method. A study conducted on the profile channel 140 * $60 * 16 \mathrm{Kg} / \mathrm{m}$ to determine the ability of bearing the loads and determine the amount of story may conduct by this profile. It is possible to combine two or more of the cross section to build multiple story building not increases than four stories according to selected dimensions, and that depends on the selected perfect manner of suitable combination of the column and the spaces between its components. Two methods conducted to combined the columns; the first method employs bars with area of cross section $40 \mathrm{~mm}, 15$ mm , and 559 mm length, and angle with 40 degree inclined with vertical axis. However the second method depends on the support of the column with plates, its width 265 mm , thickness 12 mm , and its length 400 mm . Accordingly, there is possibility to employ the small cross sections available in the Libyan markets to build multiple story buildings with enough capability. The collected cross section offers ability for using them

to build no more than three stories by using the first method. However it is possible to build no more four stories for using the second method.
$\underline{\text { Key words: Steel sections - steel columns - Buckling and torsion - Libyan market - multiple stories }}$
|لمقدمة Introduction

سيتم استخدام طريقتين مختلفتين في التصميم لتبيين امكانية
الحصول على عددمن الطو ابق من كل طريقة.

العناصر المتوفرة باللسوق الليبي وامكانية الاستفادة منها أن هذا البحث يلفت النظر الى امكانية استخدام العناصر المتوفرة بالسوق الليبي رغم صغر مقاطعها بحيث يتم ربطها مع بعضها البعض و انتاج عناصر كبيرة لتقاوم الاحمال الناتجة من تركيبات ومكونات المنشأ.
Channel 140*60*8 لبحث على أحد المقاطع المنوفرة في السوق الليبي الثالي: من المهم جداً الاستفادة من المقاطع المتوفرة، ولكن هذه الاستفادة يجب ان تتم وفق معايير التحليل والتصميم الانشائي. الاشكال المبينة التالية تظهر استخدام العناصر الفو لاذية في بعض المو اقع. فمنها الذي أظهر مقاومة عالية جداً. حيث نم نركيب

عمود من مقاطع معدنبة صغيرة للحصول على مقطع كبير .

تتعلق هذه الدراسة بالاستفادة من العناصر المتوفرة بالسوق الليبي مهما كانت امكانياتها لتصميم المنشاءات المعدنية المتعددة الطو ابق
أن المقاطع الفو لاذية المتعلقة بالمنشاءات المعدنية التي يصنعها مصنع حديد مصر اتة بليييا ذات أبعاد صغيرة، وذلك بسبب

تركيز المصنع على انتاج الحديد المستخدم لتسليح الخرسانة. أنه من المهج الاستفادة من تلك العناصر الصغيرة بعملية ربط العناصر بوضعية فنية للحصول على الابعاد المناسبة من حيث الطول والعرض و السمك لإستخدامها في المنشآت الهندسية . ومنها أيضاً نوظيفها لذات الغرض لتكون لديها القابلية الكبيرة لمقاومة الانبعاج و الانحر اف و الفتل. أن التصاميم الهندسية تعطي مجال كبير لإستخدام عناصر صغيرة يتم اتصـالها ببعض للحصول على مقاطع لها المقدرة على تحمل الحمو لات الكبيرة وتفي بالمنطلبات الإنشائية. سيتم في هذا البحث اجر اء دراسة على أحد المقاطع الفو لاذية المتوفرة بالسوق الليبي لاظهار مدى أهميتها وامكانية استخدامها في المنشاءات متعددة الطو ابق.

شكل (2) تركيب العناصر المعدنية للحصول على مقطع اكبر للعمود) قبل حدوث الانبعاج للعمود كله. ونوجد طريقتان لتشكيل الأعمدة المركبة:
1(Laced Columns). الأعمدة المربطة يمكن نربيط مقطعين نوع المجرى (حرف يو) أو مقطعين من نوع حرف آي للحصول على مقاطع كبيرة ذات مقاومة عالية للقوى المسلطة المراد من العنصر تحملها. في هذا البحث تم استخدام عمود بطول 6 متر مركب من مجرتين ليتحمل فوة

محورية مركزة.

شكل (1) انحناء صـافي في عمود مركب
اسلوب تصميم المقاطع الفولاذية عند استخدامها كأعمدة مركبة في بعض الاحيان يستلزم الأمر إلى استخدام أكثر من مقطع واحد لتتككيل عمود ذو مساحة مقطع كبيرة وبالتالي يجب تشكيل العمود بطريقة تجعل جميع مكوناته تعمل مع بعض لمقا ومة الانبعاج (التحنيب) للوصول للمقاومة المطلوبة للعمود. أنه يجب أن يكون من المعلوم أن تربيط عدة مقاطع معأ لا يمنع الانبعاج او يزيد من مقاو مته، إلا إذا ربطت المقاطع المكونة للعمود على مسافات تحد من التحنيب الموضعي(انبعاج أحد المقاطع المكونة
l $l_{b y}=0,7 L$, ، أما طول الانبعاج حول الدحور الرأسي
竍
(16 * 60 * 140c ،

وذلك بالاعتماد على خواص كل من المقطين المكون منهما العمود. ryy ${ }^{\text {ryy }}$ بتم حساب نصف قطر القصور الذاتي ثم يتم حساب نسبة النحافة للعمود المربط حسب شروط استناد العمود في مستويي الانبعاج.
جدول 1. بععاد وخصائص المقطع

a_{1}	e_{y}	r_{yy}	r_{xx}	I_{Yy}	I_{Xx}	t_{w}	$\mathrm{t}_{\mathrm{f}} \mathrm{mm}$	c	
mm	cm	cm	cm	cm^{4}	$\mathrm{~cm}^{4}$	mm		A	b
cm									
140	1.75	1.75	5.45	62.7	605	7	10	20.4	6

و هذه الحمولة يجب أن تكون أكبر من الحمولة المفروضة على . العنصر عند استخدام هذا العمود لإنشاء عدد من الطو ابق، يمكن حساب عدد تللك الطو ابق بعد حساب حمولة سقف وأعمدة كل طابق.

يجب اختبار مقطع العمود واختيار كل التفاصبل المتعلقة بقضبان الربط المستخدمة.镪 القوة المتوقع أن يتحملها مقطع العمود الو احد:
$F=A \times p_{c}=20.4 \times 10^{2} \times 115=234600 \mathrm{~N}=234.6 \mathrm{kN}$ (1.1)
$\frac{l_{X X}}{r_{X X}}=\frac{0.7 \times 6 \times 10^{3}}{54.5}=77.06$
تحسب الحمولة القصوى المسمو ح بها للمقطعين معاً :
$p=\frac{2 \times 20.4 \times 115 \times 10^{2}}{10^{3}}=469.2 \mathrm{kN}$

شكل (3) مكونات السقف
= $\frac{469.2}{100.42}=4$
ثم تختار مسافة بين المقطعين لا نزيد نسبة النحافة للعمود المركب حول المحور YY عن 77.6 يتم اختيار مسافة بمقار 40 cm من الحافة الخارجية للأول الى الحافة الخارجية للثاني. نتص المو اصفات على أن قيمة نصف قطر القصور الذاتي حول المحور YY ليس أصغر من نصف قطر العطالة حول المحور . XX فعند أخذ قضبان ربط بز اوية مقدار ها 40 درجة مع
محور العمود. يجب التحقق من أبعاد القضبان وحساب مقطعها اللازم.

تم أخذ سقف بأبعاد 16 م * 16 م فيكون الوزن 70000 كجم = 700 كيلو نيوتن للطابق الواحد لجميع الأعدة فعندما يكون عدد الأعمدة معلوم يتم توزيع هذه الحمولة على نلك الأعمدة.

فعند استخدام 18 عمود للطابق الو احد فتكون حمولة كل عمود
$N=\frac{1.4 \times 70000+1.4 \times 6 \times 100+1.6 \times 300 \times 16 \times 16}{18}=123.2 \mathrm{kN}$ (1.4)
= $\frac{469.2}{123.2}=3$
ويمكن حساب تأثبر تغير الحمولة الحية على المنشأ:
$N=\frac{1.4 \times 70000+1.4 \times 6 \times 100+1.6 \times 200 \times 16 \times 16}{18}$
$=\frac{1807.60}{18}=100.42 \mathrm{kN}$

Y

مقطع نوع مجرى
شكل (4) تركيب مقاطع صغيرة للحصول على مقطع أكبر بإسلوب التربيط تحسب نسبة النحافة للمجرى الواحدة بين عقدتين لمقارنتها بالشروط.
جدول 2. خصائص المقطع المركب

نسبة النحافة	نصف قطر القصور الذاتي mm	مساحة مقطع القضبان mm	نسبة النحافة للمجى الواحدة بين عقدتن	$r_{Y Y}$ mm	$\begin{gathered} \text { rxx } \\ m m \end{gathered}$	$\underset{I_{Y Y}}{ }$	$I_{x x}$
$129<140$	4.33	15*40	$37.2<50$	77.86	183.34	1.37×10^{8}	

العمود)، أما بالنسبة للعو ارض الداظلية فيجب أن تقسم العمود
إلى ثلاثة أجزاء متساوية على الأقل. 2. تحديد المسافة بين محاور العوارض

تحدد المسافة وفق الحالتين التاليتين: الحالة الأولى:
عن 0.8 من نسبة النحافة حول المحور YX الأعدة
 بحيث لا تزيد نسبة النحافة لأضعف مقطع من المقاطع اللعكونة للعمود عن dx 50 تختار المسافة بين محاور العوارض أو عن 0.7 من نسبة نحافة كامل العمود حول المحور xx.

الحالة الثانية:
عن 0.80 من نسبة النحافة حول المحور YY الأعمدة المقو اة بعوارض التي تزيد فيها نسبة النحافة حول الدحور بحيث لا تزيد نسبة النحافة لأضعف مقطع من المقاطع المكونة للعمود عن 40 d تختار المسافة بين محاور العوارض أو عن 0.6 من نسبة نحافة كامل العمود حول المحور الضعيف (حول المحور الذي يعطي عزم قصور ذاتي أصغر). 3. تصميم العو ارض تعادل 2.5 \% من القوة FsF تصمم العو ارض التتمل قوة قص وعزم انحناء الناتجتين من من قوة قص جانبية

يركب العوود الدعم بعوارض كما هو مبين في الثشكل الثالي:

Y

شكل (5) تركيب مقاطع صغيرة للحصول على مقطع أكبر بإسلوب النتعيم بالعو ارض المو اصفات المتبعة في تصميم هذا النوع من العمود: 1. تحديد شكل مقطع العمود

من المفضل أن يكون مقطعي العمود متماتلثن. يجب أن تكون العوارض عند نهايتي العمود متقابلتنين تماماً (على طرفي

أو تحسب من جدول خاص
حساب الحمولة القصوى التصميمية على العمود المركب:

$$
=2 \times 20.4 \times 1105=45084 \mathrm{~kg}=
$$

$$
\begin{equation*}
450.84 \mathrm{kN} \tag{2.5}
\end{equation*}
$$

جدول 3. بعض خصائص المقطع المركب

$f_{p b}$	λ	rxx	$I_{Y Y}$ $\mathrm{~mm}^{4}$
1105 $/ \mathrm{cm}^{2}$	32.7	183.2 mm	1.37×10^{8}

تصميم (لاعوارض:
،XX عن 0.8 من نسبة النحافة حول المحور YY الأعمدة اللقو اة بعو ارض التي لا نزيد فيها نسبة النحافة حول المحور $f_{p b}=0.8 \times \frac{600}{18.34}=26.17 \frac{\mathrm{~kg}}{\mathrm{~cm}^{2}}$
فعليه يتم تطبيق الحالة الثانية. X أكبر من 0.8 من نسبة النحافة حول المحور Y وبما أن نسبة النحافة حول المحور الحالة الثانية:
بحيث لا تزيد نسبة النحافة لأضعف مقطع من المقاطع المكونة للعمود عن d 40 تختار المسافة بين محاور العوارض أو عن 0.6 من نسبة نحافة كامل العمود حول المحور
الضعيف (حول المحور الذي يعطي عزم قصور ذاتي أصغر).

تعادل 2.5 \% من القوة Fsتصمم العو ارض لتتحمل فوة قص
وعزم انحناء الناتجتين من من فوة قص جانبية المحورية المسلطة على العمود(القص الأفقي): - و هذه العو ارض يجب أن نقاوم الآتي: 1. قوة قص بمقدار :

$$
\begin{equation*}
F_{s m}=\frac{F_{s \times d}}{n \times a} \tag{2.7}
\end{equation*}
$$

2. عزم انعطاف بمقدار :

$$
M=\frac{F_{s \times d}}{2 n}=\frac{2.5 \times 35}{2 \times 2}=21.9 \mathrm{kN} . \mathrm{cm}=2.19 \mathrm{kN} . \mathrm{m}
$$

حيث:

هي المسافة بين محوري عارضتين متتاليتين d a هي المسافة بين مركزي ثقل وسيلتي التثبيت المنقابلتنين
هي عدد مستويات العو ارض المتو ازية n

المحورية المسلطة على العمود. وهذه العو ارض يجب أن نقاوم
الآتي:

1. قوة قص بمقدار :

$$
\begin{equation*}
F_{s m}=\frac{F_{s \times d}}{n \times a} \tag{2.1}
\end{equation*}
$$

2. عزم انعطاف بمقدار :

$$
M=\frac{F_{s \times d}}{2 n}
$$

dهي المسافة بين محوري عارضتين متتاليتين a هي المسافة بين مركزي تقل وسيلتي التثبيت المنقابلتين هي عدد مستويات العو ارض المتو ازية
4. مو اصفات يجب مراعاتها عند تصميم العوارض:

أ. يجب أن لا يقل عرض عوارض النهاية عن البعد بين مركزي المقطعين المشكلين للعمود. أما العوارض الاضلاضية فيجب أن لا يقل عرضها عن 0.75 عرض عو ارض النهاية أو عن ضعف عرض جناح المقطع المشكل للعمود (أيهما أكبر) ب. الطول المكافئ للعارضة هو المسافة بين اللحامين الطرفيين المثبتين للعارضة. جـ. العو ارض المكونة من صفائح يجب أن لا بقل سمكها عن
0.02 من المسافة بين اللحامين الطرفيين المثبتين للعارضة. 5. لحام العوارض: أ. يجب أن لا يقل طول اللحام بإتجاه العارضة عن نصف

طول العارضة. ب. يجب أن يوضع ثلث طول اللحام (بإتجاه طول العمود) على الأقل على حافة العارضة. ويمكن تطبيق هذا الاسلوب لنفس مقطع العمود اعلاه واختيار كل التفاصبل المتعلقة بقضبان الربط المستخدمة. نور ع المجرى: 16 * 60 * 140c
234.6 kN تحسب الحمولة القصوى المسمو حبها للمقطعين معاً : $p=\frac{2 \times 20.4 \times 115 \times 10^{2}}{10^{3}}$

$$
\begin{equation*}
=469.2 \mathrm{kN} \tag{2.3}
\end{equation*}
$$

و هذه الحمولة يجب أن تكون أكبر من الحمولة المفروضة على
. العنصر
بنفس الكيفية يمكن حساب عدد الطو ابق بشكل تقريبي التي من انشائها بإستخدام هذا الاسلوب من التركيب، وذلك بعد حساب حمولة سقف وأعمدة كل طابق فيمكن انشاء عدد من الطو ابق لا

يزيد عن أربعة. يمكن حساب المو اصفات للمقطع كالتالي:
$f_{p b}=1300-0.06\left(\frac{l_{b}}{r}\right)^{2} \quad$ for St 37

فقد أعطى المقطع المدروس امكانية لاستخدامـه لانشاء عدد من طو ابق لا يزيد عن 3 عند تركيبه بالطريقة الاولى، بينما يمكن انشاء عدد من الطوابق لا يزيد عن أربعة عند استخام الطريقة الثانية.

> المراجع
[1]- المنشآت المعدنية - تصميم المنثآت الفو لاذية - الاكتور رامز رسلان - جامعة دمشق
[2]- الانشاءات المعدنية - الاكتور محمد غياث صائم الدهر
[3]-تصيم العناصر والوصلات الفو لاذية - الدكتور محمد
أيمن عبدالسلام و الاكتور محمد نزيه اليوش
[4]- المنشآت المعدنية - المعان الإنشائية - التحليل اللان -
الالكتور محمد نزيه اليوش و الدكنور محمد أيمن عبدالسلام
[5]- Structural steel work - Design to limit state theory Dennis Lam (School of Civil Engineering - The University of Leeds-Leeds UK)
[6]- Thien-Cheong Ang (School of Civil and Environmental Engineering - Nanyang Technological University. Singapore)
[7]- Sing-Ping Chiew (School of Civil and Environmental Engineering - Nanyang Technological University. Singapore)
[8]- Steel Structures - Practical design studies Second Edition - T.J. MacGinley Formerly Associate Professor
[9]- (School of Civil and Environmental Engineering - Nanyang Technological University. Singapore)
[10]- Structural Steelwork Calculations and Detailing - T.J. MacGinley

أن استخدام العناصر المعنية له مجال واسع في المنشاءات سواء في المناطق الباردة أو الحارة. ذلك ان التركيز يكون على الاجراء المناسب لعملية العزل الحراري. وأن دراسة قادمة ستكون حول المقارنة في النكلفة بين منشأ معدني متكامل وآخر خرساني بنفس عدد الطو ابق. الخلاصة و التوصيات
لتحديد مدى تحمله، ومن ثم تم حساب عدد الطو ابق التي
(جراء دراسة على المقطع يككن انثائها عند استخدام هذا النوع من الهقاطع. أن هذا النوع من المقاطع عند ربط مقطعين منه يمكن به انثشاء عدد من الطوابق لا يزيد عن أربعة طوابق، وذلك حسب الابعاد اللختارة. و يعتمد ذلك على الاسلوب الامتل في اختيار النزكيية المناسبة للعمود المركب والمسافات بين مكوناتها. تم استخام اسلوبين لتربيط العمود المركب؛ الاسلوب الأول تم فيه استخذام قضبان الربط بمساحة مقطع 40 مم، 15 مم وطول 559 مم وزاوية ميل مع العمودي مقار ها 40 درجة ، اما الاسلوب الثاني فقد تم فيه تدعيم العمود بعو ارض او او صفائح 12 وري للربط عرضها 265 مم وسكها 12 مم وطولها 400 مـ . وعليه فإنه بالإمكان الاستفادة من الصقاطع المتوفرة بالسوق الليبي في انشاء عدد من اللباني المتعددة الطو ابق بكفاءة عالية.
[15]- British standard Institution, 2009. (BS EN 1993-1-3:2006) and Eurocode (EN 1993-13:2006 (E)), London, BSI
[16]- Cherry, s., 1996. The stability of beams with buckled compression flanges. Thin-walled structures. 25 277-285.
[17]- Chu, X.,Ye. Z., Li, L., Kettle R., 2004. Buckling behaviour of cold-formed channel sections under uniformly distributed loads, Thin-Walled Structures. 43 531-542.
[18]- Chu, X., Rickard, J. \& Li, L., 2005. Influence of lateral restraint on lateral-torsional buckling of cold-formed steel purlins. ThinWalled Structures. 43 800-810.
[19]- Chu, X., Kettle R. \& Li, L., 2004. Lateraltorsion buckling analysis of partial-laterally restrained thin-walled channel-section beams. Journal of Constructional Steel Research. 60 1159-1175.
[11]- Al Nageim, H.\& MacGinley T. J., 2005. Steel structures, practical design studies. The 3rd Edition of this popular book now contains references to both Eurocodes and British Standards. [on line].
[12]- Ambrose J. E., 1997. Simplified design of steel structures. Seven Edition. Newyork. John wiley and Sons, INC. New York. based on the work of the late Harry Parker.
[13]- Ballio G. \& Mazolani F.M.,1983. Theory and design of steel structures. London. Champan and Hall, London and Newyork.
[14]- 13. Beale, R. G., Godely, M. H. R., \& Enjily, V., 2001. A theoretiacal and experimental investigation into cold-formed channel sections in bending with the unstiffend flanges in compression, computres and structures. 79. 2403-2411.

