Al g Aiag) o gal) Alna

Journal of Pure & Applied Sciences
www.Suj.sebhau.edu.ly ISSN 2521-9200
Received 15/11/2017 Revised 16/02/2018 Published online 30/06/2018

2 Do 2

A comparison of Several Bandwidth Selection Methods for Local Polynomial

Regression
*Alsaidi M. Altaher , Ali S. Ambark , Abdslam k. Suliman
Department of Statistics , faculty of Science,University of Sebha, Libya
*Corresponding author: als.altaher@sebhau.edu.ly

Abstract In local polynomial regression, choosing the smoothing parameter (bandwidth) is a crucial issue. A
too large value provide over smoothing. Conversely, a too small value gives a wiggly estimate which result in
under smoothing. However, the proper choice of bandwidth can be considered as a careful balance of these
principles. In this paper, intensive simulation experiments are carried out using R software to compare the
practical performance of several bandwidth selection methods, namely the Cross Validation (CV), Generalized
Cross Validation (GCV), and Adaptive (ADP).Within the context of these strategies of selecting the optimal
bandwidth(s), four different example-regression models have been used under different sample sizes and
kernel functions. Results showed that the (GCV) bandwidth selection criterion appears to give better (smaller)
estimates of MSE when the sample sizes (n) are small; with Gaussian kernel function. However, the (Adp)
bandwidth selection appears to give better (smaller) estimates of MSE when the sample sizes (n) are large
with Triweight 1 kernel function.
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Introduction

As one basic form of statistical inference,
regression analysis has been usually used in
discovering the relationship between one quantity
(called dependent variable) and one or more other
quantities (called explanatory variables). Non-
parametric regression eliminates all parametric
assumptions (i.e it comes to signify the absence of
the parameters in the regression model).There
exist many smoothing methods to obtaining non-
parametric function. Some of the most widely
used in the literature of the smoothing methods
are Kernel based smoothing, K-Nearest Neighbor,
Spline smoothing, Orthogonal series estimators
and Wavelet. Within the context of the Kernel-
based smoothing, there are many well-known
approaches namely: ( Nadaraya-Watson Estimator
[Nadaraya and Watson(1964)], Priestley-Chao
Estimator[Priestley and Chao(1972)], Gasser-
Muller Estimator[Gasser and Muller(1979)],
Locally Weighted  Scatter Plot Smoother
LOWESS|Cleveland (1979)] and Local Polynomial
Kernel Estimator[Fan and Gijbels(1995)]). In local
polynomial regression, the choice of bandwidth

(h) is considered to be the most sensitive topic.
One might ask how wide the local neighborhood
should be so that the local approximation is a
suitable one. If we take a very small bandwidth,
the modeling bias will be small since the number
of data points falling in this local neighborhood is
also small but the variance will be large. On other
hand, If we take a very large bandwidth creates a
large modeling bias depending on the underlying
function. This means that the bandwidth governs
the complexity of the model during the trade-off
between quantities of bias and variance (Fan and
Gijbels (1996)). An extensive literature addresses
this problematic subject, especially in the context
of nonparametric mean regression. The classical
techniques used for mean kernel smoothing, such
as cross-validation, plug in, rule-of-thumbs, and
bootstrap, also can be used (after adaptation) to
select the bandwidth for quintile regression. (For
more details, see Yu and Jones 1998; Zheng and
Yang 1998; Leung 2005. In this paper, we shall
compare the practical performance of several
bandwidth selection methods, namely the Cross
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Validation (CV),Generalized Cross Validation
(GCV), and Adaptive (ADP).Within the context of
these strategies of selecting the optimal
bandwidth(s), four different example-regression
models have been used under different sample
sizes and kernel functions.

Method and Material

Local Polynomial Regression: local polynomial
regression fits a weighted least squares
polynomial locally rather than a weighted average.
Thus the usual regression setup is as follows:

The response variables ;'S are modeled as
y,=0(x)+& 1=12..n

Where ¢, are i.i.d random errors from a unimodal
symmetric density Centered about O and the
g(x) is a continuous mean function with
continuous derivative. In the matrix notation, for
a particular point X, we can write

1 (XI_XO) ()(1_)(0)p Yi
O R R

1 (Xn _XO) (Xn - Xo)p Yn

w, O 0

w. 0

w, = o

0 0 W, ,

1 X =X

Here W :HK(—) where K is a kernel

function (usually a symmetric and has a bounded
support). Table 1 displays some poplar kernel
functions.

The symbol h isa positive constant referred to
as a bandwidth.

In this regard, the local polynomial regression
estimate of the mean function §(X) is the first

element of the ,5' i vector given by
5 T(yT 1/,T
ﬂi =el (XpWXXp,x) (Xpry)

B=LY
Where L is called smoothing matrix

el = (10,0,...,0)

Table (1) kernel functions

Kernel Formula Support
1 -
Gaussian K(u):—e 2 —o0o< U<+
\N27
35
Triweight K (U) = — (1—u?)? uf<1
32
1
Box K(u)== uj<1
2
Epanechnikov 3
K(u)==(1-u?) uj<1
(parabolic) 4
Bandwidth Selection
e Leave-One-Out Cross-Validation: Cross

validation is an important idea in regression. The
idea is to estimate the smoothing parameter by

minimizing cross validation score CV (h):

CV(h)= %Zn:(yi — G (Xi))2

i=1

Where § h-i means the smooth estimate for
smoothing parameter h and
data (Xl, ...... v Xilgs Xipgreeennns Xn) that “leaves out” X; .

Amazing shortcut formula for cross validation
score is

N 2
1Y — Vi
CV(hy==>| "
n i=1 1_|“
Where |ii is the i diagonal element in matrix

L

e Generalized Cross Validation: A minor variant
on cross validation is, so-called generalized cross
validation, which, of course, like most things
statisticians call “generalized,” isn't.

It replaces the |ii in the denominator with their

tr(L)/n

average giving

2

18] Y =Yg
GeV(hy==%| 12
=42 W

n

e Adaptive bandwidth: Adaptive bandwidth is
obtained by a similar procedure to the one
proposed by Fan and Gijbels (1995). The interval

is split into [1.5><n/(10><|og(n))] intervals, a

leave-one-out cross validation is performed in
each interval to obtain a local bandwidth. These
bandwidths are then smoothed to obtain the
bandwidth for each point in X.
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Experimental Work

Simulation Setup: The purpose of this simulation
is to compare the precision of three bandwidth
selection methods for local polynomial regression
(Leave-One-Out Cross-Validation ,Generalized
Cross Validation and Adaptive bandwidth).

To that end, we have used

Four different test functions,

Test function 1: g(X) = 206(_4(X_l)2)

Test function 2: g(X) =sin(2x) + 26 ¥ +0.3

Test function 3: ¢(X) = %sin(?’?ﬂx +1.25)

Test function 4:

g(x) =1+sin(x) + 2(cos(x) + 3sin(5x)

Three different
n=50,n=100,n =200

sample sizes

Four kernel functions (epanech, box, triweight,
gaussian).
Each simulation study involves 1000 repetitions.

MSE(@)=%§(g(xi)—@(xi»2

All computations have been carried out using the
R statistical package.

Discussion: Having conducted the simulation
runs, results of MSE have been tabulated in
Table 2, Table 3 Table 4, and Table 5 and we
have observed the following empirical findings:

In most cases Cross validation method performs
better than other to methods for small sample
sizes with Gaussian kernel function. However
Adaptive method performs better than other to
methods for large sample sizes or triweight
kernel function. In addition All three methods
perform differently with respect to kernel function.
However, the best estimate is often obtained with
Gaussian kernel function. The worst estimate is
observed when box kernel function is used.

The Mean Square Error

Table 2: simulation results of MSE for test functionl

n Method Epanech box triweight Gaussian
CVv 0.3885604 1.322681 0.2762529 0.1586460
50 Adp 0.3835315 1.313034 0.2766261 0.1585023
GCV 0.3931859 1.308724 0.2751616 0.1578063
Cv 0.1113023 15.5983826 1.76432933 0.3409894
100 Adp 0.1022484 0.5845154 0.09888788 0.5942468
GCV 0.1104038 15.3128563 1.76238672 0.3383542
Cv 4.519204 14.11726 0.51067595 0.2610333
200 Adp 2.651003 10.76982 0.09238398 0.3031902
GCV 4.505492 13.94645 0.50629880 0.2617503
Table 3: simulation results of MSE for test function 2
n Method epanech box triweight gaussian
CvV 0.9215217 1.036236 0.8822267 0.7852551
50 Adp 0.9185002 1.046121 0.8820987 0.7855062
GCV 0.9133377 1.045376 0.8777225 0.7849031
100 CvV 1.4032346 1.802942 0.9318802 0.8889426
Adp 0.9085951 1.334389 0.8020218 0.8567398
GCV 1.4067769 1.773179 0.9315370 0.8886935
200 Cv 0.9472898 1.088610 1.218585 0.9137279
Adp 0.8860952 0.965193 1.093466 0.8747591
GCV 0.9473895 1.090380 1.219794 0.9139164
Table 4: simulation results of MSE for test function 3
n Method Epanech box triweight Gaussian
CVv 1.094858 8.271399 1.436837 0.8029657
50 Adp 1.101221 8.247743 1.440555 0.8029069
GCV 1.086157 8.389363 1.399306 0.8026283
Cv 0.9293517 3.906464 1.2342131 0.8893607
100 Adp 0.8629295 3.093572 0.9647979 0.8605289
GCV 0.9264548 3.811529 1.2213032 0.8880302
CVv 0.9748502 1.1220330 0.9425849 0.9184896
200 Adp 0.8974806 0.9531895 0.8279044 0.8814559
GCV 0.9750830 1.1219109 0.9428955 0.9184919

JOPAS Vol17 No.1 2018




A comparison of Several Bandwidth Selection Methods for Local Polynomial Regression

Altaher et al.

Table 5: simulation results of MSE for test function 4

N Method epanech box triweight Gaussian
Cv 0.8978851 1.416605 0.9484048 0.7803267
50 Adp 0.8965303 1.412582 0.9502768 0.7797178
GCV 0.8827724 1.419494 0.9403477 0.7833331
100 Cv 0.9661152 1.0938644 0.8613612 0.8918565
Adp 0.8838907 0.9636717 0.7760621 0.8513759
GCV 0.9650178 1.0870621 0.8641446 0.8921334
200 Cv 0.9745632 1.584137 0.9537848 0.9397907
Adp 0.9011993 1.284437 0.8406634 0.8856389
GCV 0.9746647 1.589106 0.9537880 0.9400075

Conclusion: This paper considered the issue of
choosing the bandwidth for local polynomial
regression. Three methods have been investigated
(CV,GCV,Adp).Results showed that the (GCV)
bandwidth selection criterion appears to give
better (smaller) estimates of MSE when the sample
sizes (n) are small; with Gaussian kernel function.
However, the (Adp) bandwidth selection appears to
give better (smaller) estimates of MSE when the
sample sizes (n) are large with Triweight 1 kernel
function.In addition The best estimate is often
obtained with Gaussian kernel function. The
worst estimate is observed when box kernel
function is used.
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