
 
SEBHA UNIVERSITY CONFERENCE PROCEEDINGS, VOL.03 NO.  2  2024 

DOI: 10.51984/SUCP.V3I2.3409 
 

  

 

 وقائع مؤتمرات جامعة سبها 
 Sebha University Conference Proceedings  

Confrence Proceeeding homepage: http://www.sebhau.edu.ly/journal/CAS 

 

 

*Corresponding author: 

E-mail addresses: has.alkhadafe@sebhau.edu.ly ,(Z. Khalleefah) za.khalifa@sebhau.edu.ly ,( I. Nasir) ibr.nasir@sebhau.edu.ly    

Article History : Received 20 June 2024 - Received in revised form 24 September 2024 - Accepted 06 October 2024 

Improving Vehicle Identification Number Detection Accuracy with YOLOv5 and Histogram 

Equalization 

* Hasan Alkhadafe 1, Zahiyah Khalleefah2,  Ibrahim Nasir3 

1Department of Information Systems Faculty of Information Technology, Sebha University  

2Department of Artificial Intelligence, Sebha University  
3 Department of Electrical &Electronic Engineering, Sebha University 

  

Keywords: 

Grayscale 

Histogram Equalization 

Image Enhancement 

VIN 

YOLOv5 

 A B S T R A C T 

This study examines the effectiveness of different image preprocessing techniques for object 

detection models, using a dataset of VIN images from Roboflow. The dataset was segmented into 

training, validation, and testing subsets, encompassing a range of conditions such as noise, rain, 

varying lighting, and reflections. Model performance was evaluated through metrics including 

precision, recall, average precision (AP), mean average precision (mAP), error rate reduction, and 

frames per second (FPS).The baseline model, trained on the original dataset, achieved a precision of 

97.9% and a recall of 95.7%, with an mAP@0.5 of 99.1% but a lower mAP@0.5:0.95 of 62.3%. 

Applying Histogram Equalization (HE) resulted in improved recall but reduced precision, with 

mAP@0.5:0.95 values remaining comparable to the original dataset. The HE+RGB preprocessing 

showed minor performance changes, with inconsistent improvements in recall and precision. 

Adaptive Histogram Equalization (AHE) notably improved model performance, reaching a precision 

of 98.8% and recall of 99.6%, with mAP@0.5 and mAP@0.5:0.95 values of 74.3%, 77.0% 

respectively. The CLAHE preprocessing technique outperformed all others, achieving the highest 

precision (99.4%), recall (98.6%), and mAP@0.5:0.95 (75.2% in training, 77.9% in validation, and 

75.2% in testing), demonstrating the best balance of accuracy and generalization with minimal 

misclassifications. Overall, CLAHE emerged as the most effective preprocessing method, offering 

superior performance across all evaluation metrics. 

 . ومعادلة الرسم البياني YOLOv5تحسين دقة اكتشاف رقم تعريف المركبة باستخدام 

 3إبراهيم السنوس ي نصر و  2زاهية شحات جعراني خليفة و   1حسن صالح القذافي*

 جامعة سبها ،تكنولوجيا المعلوماتقسم نظم المعلومات كلية 1
 جامعة سبها ، قسم الذكاء الاصطناعي2
 جامعة سبها ، قسم الهندسة الكهربائية والالكترونية 3

                                                                                                                 

 الكلمات المفتاحية:   

 التدرج الرمادي

 تحسين الصور 

 معادلة الرسم البياني 
 VIN 

YOLOv5 

 الملخص 

باستخدام   الأجسام،  عن  الكشف  لنماذج  المختلفة  المسبقة  المعالجة  تقنيات  فعالية  الدراسة  هذه  تستعرض 

على   تحتوي  بيانات  المركبات  1145مجموعة  تعريف  لرقم  تقسيم  .Roboflow من (VIN) صورة  تم 

الضوضاء،  مجموعة   مثل  الظروف  من  مجموعة  وشملت  واختبار،  تحقق،  تدريب،  مجموعات  إلى  البيانات 

الأمطار، اختلافات الإضاءة، والانعكاسات. تم تقييم أداء النموذج من خلال مقاييس تشمل الدقة، الاسترجاع، 

المتوسطة العامة(AP) الدقة  المتوسطة  الدقة   ، (mAP)الثانية في  والإطارات  الأخطاء،  معدل  تقليل   ، 

(FPS).   قدرها دقة  الأصلية،  البيانات  مجموعة  على  تدريبه  تم  الذي  الأساس ي،  النموذج  % 97.9حقق 

كانت  mAP@0.5:0.95 % ولكن قيمة99.1قدرها   mAP@0.5 %، مع قيمة95.7واسترجاع قدره  
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إلى تحسين الاسترجاع ولكن مع تقليل الدقة،  (HE) %. أدى تطبيق تقنية التعديل الهيستوجرام62.3أقل عند  

قيم بقيت  تقنية mAP@0.5:0.95 حيث  أظهرت  الأصلية.  البيانات  بمجموعة   HE+RGB مشابهة 

أقل عامة  وقدرة  والدقة،  الاسترجاع  في  متسقة  غير  تحسينات  مع  الأداء،  في  طفيفة  التعديل   .تغييرات  حقق 

ا في أداء النموذج، حيث وصلت الدقة إلى  (AHE) الهيستوجرام التكيفي
ً
% والاسترجاع 98.8تحسينًا ملحوظ

فقد تفوقت على  CLAHE %. أما تقنية77.0% و74.3بلغت   mAP@0.5:0.95 %، مع قيم99.6إلى  

( دقة  أعلى  محققة  الأخرى،  التقنيات  )99.4جميع  واسترجاع  وقيم%98.6(   ،)% mAP@0.5:0.95 

% في الاختبار(، مما يظهر أفضل توازن بين الدقة والقدرة  75.2% في التحقق، و77.9% في التدريب،  75.2)

كأكثر تقنيات المعالجة المسبقة   CLAHE بوجه عام، برزت تقنية   .على التعميم مع الحد الأدنى من الأخطاء

 .فعالية، حيث قدمت أداءً ممتازًا عبر جميع مقاييس التقييم

1. Introduction   

Recent advancements in object detection models have revolutionized 

the field of computer vision, by enabling the development of 

sophisticated computer vision models capable of complex tasks such 

as object detection with high accuracy. One area where this technology 

has shown great potential is in the automotive industry, particularly in 

the identification of Vehicle for security, safety, and tracking 

purposes, A Vehicle Identification Number (VIN), stands as the 

unique and permanent alphanumeric code assigned to each motor 

vehicle during the manufacturing process. This 17-character identifier 

functions as the car's individual fingerprint, enabling the precise 

tracking and distinction of every unit produced. Notably, the VIN 

composition excludes the letters I, O, Q, and Z to eliminate any 

potential confusion that might arise between numerals and alphabetic 

characters[1]. YOLO (You Only Look Once) is a widely used object 

detection system in the fields of computer vision and image 

processing. YOLO is particularly known for its real-time capabilities, 

as it can detect objects in an image with both high accuracy and 

speed[2][3]. By leveraging YOLOv5, this model can accurately 

identify and extract VINs from images, providing a valuable tool for 

law enforcement, insurance companies, and other stakeholders in the 

automotive industry. However, one crucial aspect is the impact of pre-

processing techniques on model performance.  Histogram equalization 

is a widely used method to enhance the contrast of images, thereby 

improving object detection accuracy. This research aims to investigate 

the effects of applying histogram equalization to the Vehicle 

Identification Number (VIN) dataset before feeding it into YOLOv5. 

By comparing the performance metrics of YOLOv5 before and after 

the application of histogram equalization, we can gain insights into the 

potential benefits of this pre-processing technique. This study seeks to 

contribute valuable insights to the ongoing discourse on optimizing 

object detection models for improved accuracy and efficiency. 

2. RELATED WORKS 

• IMAGE ENHANCEMENT 

The image enhancement process focuses on elevating an image's 

visual quality, making it more aesthetically pleasing, or facilitating the 

extraction of valuable information. To achieve these goals, a diverse 

arsenal of techniques are employed, broadly categorized into two 

distinct approaches: spatial and frequency domain[4]. Spatial domain 

techniques work directly on the individual building blocks of an 

image, and its pixels, manipulating their values to achieve the desired 

visual improvements. Frequency domain techniques delve deeper, 

transforming the image into a different representation based on its 

fundamental frequencies. By manipulating these frequencies, targeted 

enhancements can be made to specific aspects of the image. This 

approach utilizes techniques like Fourier transforms.  Image 

enhancement offers a toolbox for addressing specific visual 

limitations, encompassing techniques like brightness and contrast 

adjustment, histogram equalization, noise reduction, sharpening, and 

color correction.  These methods find application not just in improving 

aesthetics but also in various fields like photography, medical 

imaging, satellite imaging, and video processing[5]. 

• Histogram equalization (HE)   

 Histogram equalization (HE) emerges as a prominent technique for 

contrast enhancement. HE operates by manipulating the distribution of 

pixel intensities within an image. This distribution aims to achieve a 

more uniform spread of pixel values across the entire spectrum of 

possible intensity levels[6]. In HE. This distribution is first obtained by 

computing the image's histogram, a graphical representation that depicts 

the frequency of occurrence for each pixel value[7]. Following, HE 

proceeds by applying a redistributing to the pixel values. This 

redistributing aims to achieve a more uniform distribution of these values 

across the entire spectrum of possible intensities. In essence, HE 

redistributes the pixel intensities within the image to create a more 

balanced representation[8]. The HE comprises two fundamental 

operations. Firstly, the cumulative distribution function (CDF) of the 

image's histogram is computed. Subsequently, the pixel values of the 

input image are mapped to a novel range leveraging the derived CDF[9]. 

HE is a versatile image enhancement technique applicable to both 

grayscale and color images. The HE formula is: The histogram of a 

digital image with intensity levels in the range [0, L-1] nk is the number 

of pixels in the image denoted by a matrix M×N, where M and N are the 

row and column dimension of the image.  

𝑃(𝑘) =
𝑛(𝑘)

𝑀 × 𝑁
, 𝑓𝑜𝑟 𝑘 = 0,1 … 𝐿 − 1 

Compute (CDF) of the normalized histogram with Formula. 
𝐶𝐷𝐹(𝑗) = 𝑆𝑈𝑀(𝑝(𝑘)), 𝑓𝑜𝑟 𝑘 = 0,1, … , 𝑗 

 𝑎𝑛𝑑 𝑗 = 0,1, … , 𝐿 − 1 

Compute the new intensity values for each pixel. 
𝑠 =  𝑟𝑜𝑢𝑛𝑑 (𝐿 −  1)  ×  𝐶𝐷𝐹(𝐼 ) 

 

The histogram equalization (HE) process involves substituting each 

pixel's original intensity value in the input image with its 

corresponding new intensity, as determined by the HE formula. This 

formula maps the original intensity values to novel values based on 

the cumulative distribution function of the image's histogram, thereby 

dispersing the intensity values across the full range of available 

intensities. Consequently, the output image exhibits enhanced global 

contrast. 

• Adaptive Histogram Equalization (AHE) 

Adaptive Histogram Equalization (AHE) is an enhancement technique 

derived from traditional histogram equalization, specifically designed 

to improve contrast in areas with low contrast or uneven illumination. 

Unlike standard histogram equalization, which applies a global 

transformation to the entire image, AHE operates locally. It divides 

the image into smaller, non-overlapping tiles and applies histogram 

equalization to each tile individually. This localized approach allows 

AHE to enhance contrast more effectively across various regions with 

different brightness levels or contrast [10]. In AHE, each tile's 

histogram is computed and used to adjust the pixel intensities based 

on the cumulative distribution function (CDF) of that region’s 

histogram. The tiles are then combined using interpolation, which 

ensures smooth transitions between adjacent regions [10]. This 

method significantly enhances local contrast, making it particularly 

useful for images where fine detail visibility is critical 

• Contrast Limited Adaptive Histogram Equalization 

(CLAHE) 

Contrast Limited Adaptive Histogram Equalization (CLAHE) was 

developed to address the problem of noise amplification in AHE by 

introducing a contrast-limiting mechanism. CLAHE limits the 
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amplification of contrast in homogeneous areas by clipping the 

histogram at a predefined threshold, redistributing the excess values 

across the intensity range [11]. This approach reduces the over-

enhancement of noise and produces more visually appealing results, 

making it particularly effective in medical imaging and low-light 

conditions [12][13]. 

CLAHE operates similarly to AHE, but with an added step to limit 

contrast: 

 

a. Divide the image into tiles as in AHE. 

b. Clip the histogram at a predefined threshold to limit noise 

amplification. 

c. Redistribute pixel intensities using the clipped histogram to 

compute the CDF for each tile. 

d. Map the pixel intensities and merge the tiles smoothly using 

bilinear interpolation. 

By capping the histogram, CLAHE ensures that the image’s contrast 

enhancement does not become excessive, while still improving local 

contrast. CLAHE’s ability to balance noise suppression with contrast 

enhancement has led to its widespread use in object detection models, 

such as YOLOv5, as it improves accuracy while mitigating the risk of 

false positives and negatives [14]. 

• You Only Look Once (YOLO) 

 The YOLO object detection algorithm has undergone a series of 

iterative developments, including version YOLOv1, YOLOv2, 

YOLOv3, and YOLOv4 [15]. These successive iterations have 

incorporated enhancements to the original algorithm, including 

increased accuracy, accelerated processing velocity, and enhanced 

capabilities for detecting small objects and managing occluded objects 

[16]. YOLOv5, was created by Ultralytics and launched by Glenn 

Jocher in 2020. Similar to earlier YOLO versions, YOLOv5 is built on 

the EfficientDet object detection framework and has a single-stage 

detector (SSD) architecture. YOLOv5's speed and accuracy are two 

major upgrades over earlier iterations. Because YOLOv5 uses a more 

effective backbone network and better training methods than its 

predecessors, it is faster and more accurate.  Because YOLOv5 can be 

trained on a smaller dataset and still achieve excellent accuracy, 

researchers and developers with limited data can use it more easily 

[17], [18]. There are various versions of YOLOv5, with variations in 

model size and performance: YOLOv5s, YOLOv5m, YOLOv5l, and 

YOLOv5x. The tiniest and fastest variant is YOLOv5s, and the most 

comprehensive and accurate version is called YOLOv5x [19], [20]. 

Studies have investigated YOLOv5's performance in various object 

detection tasks, highlighting its versatility across multiple domains. 

Research has shown encouraging results in detecting vehicle license 

plates [21], [22], and in Unmanned Aerial Vehicle (UAV) 

applications, where YOLOv5 effectively identifies objects from aerial 

perspectives [23]. 

3. METHODOLOGY 

• RESEARCH WORKFLOW AND EXPERIMENT 

SETTING 

 The experimental design involves partitioning the dataset into two 

groups: Dataset 1, comprising the original unprocessed images, and 

Dataset 2, containing the images enhanced using histogram 

equalization (HE) for image grayscale 8-bit, and Dataset 2, containing 

the images enhanced using histogram equalization (HE) for images 

RBG,  as outlined in the research workflow diagram (Figure 1a). The 

YOLOv5s object detection model was subsequently trained on both 

datasets and performance outcomes were analyzed for the 

comparative. The YOLOv5 architecture, as depicted in Figure 1(b), 

comprises four primary components: the input, the backbone, the neck, 

and the output. The backbone model's key responsibility is to extract 

salient features from the input image, leveraging fundamental building 

blocks such as Cross Stage Partial Networks (CSP) and Spatial 

Pyramid Pooling (SPP) to capture rich and critical attributes. The neck 

network employs feature pyramid architectures, including the Feature 

Pyramid Network (FPN) and the Path Aggregation Network (PANet), 

to enable the development of a robust feature pyramid that facilitates 

accurate object scaling and generalization.  

 
Figure 1 an overview of the system (a) Research workflow, (b) YOLOv5 
architecture. 
Table 1 outlines the training parameter values employed for the 

YOLOv5s model, including a batch size of 8 and 30 epochs, 

determined experimentally due to memory constraints. Reporting its 

inference speed on both CPU and GPU, as well as the number of 

parameters for an input image size of 256 x 256 pixels. YOLOv5s is 

the smallest variant of the YOLOv5 family, designed for faster 

inference and deployment on resource-constrained devices, featuring 

fewer layers and parameters compared to other variants.   

Table 1 YOLO v5 model training parameter values. 
Parameters YOLOv5s 

Size Of input Image        256                          

Epoch 
Batch 

         30 
         8 

4. EXPERIMENT RESULTS 

• Datasets 

The experiment utilized a dataset of 1145 VIN images obtained from 

Roboflow [24], a platform that provides tools for preparing and 

annotating datasets for computer vision model training, including data 

augmentation, labeling, and dataset management. The dataset was 

partitioned into training images, 222 validation images, and 116 test 

and quality images, all with a resolution of 256 x 265 pixels. The 

dataset comprised samples captured from diverse perspectives within 

the vehicle, exhibiting significant variability in pictorial conditions, 

including instances affected by noise, rain, divergent lighting, and 

differing levels of reflection, as shown in Figure 2.   

                         
Figure 2 Different VINs 

• EVALUATION CRITERIA 

The effectiveness of object detection algorithms is typically evaluated 

using metrics such as precision, recall, average precision (AP), mean 

average precision (mAP), model parameter count, floating-point 

operations (FLOPs), and frames per second (FPS)[25]. Average 

Precision (AP), also known as mean Average Precision (mAP), 

calculates the average detection precision across varying recall levels, 

while Intersection over Union (IoU) quantifies the degree of overlap 
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between predicted and ground truth bounding boxes[26]. The mAP0.5 

metric represents the mean average precision at an IoU threshold of 

0.5, and mAP0.5:0.95fih represents the mean average precision across 

a range of IoU thresholds from 0.5 to 0.95, providing a comprehensive 

assessment of the model's ability to accurately detect and localize 

objects.    

 
Figure 3 Intersection over Union (IoU) is follow: 

 a) The IoU is calculated by dividing the intersection of the two boxes by the 

union of the boxes; 
 b) Examples of three different IoU values for different box locations. 

5. MODEL SELECTION EXPERIMENTS 

In this section, present the experiments conducted to evaluate and 

select the optimal model for object detection using different image 

preprocessing techniques. In addition to precision, recall, mAP, and 

F1 score, we analyze Error Rate Reduction, and Frames per Second 

(FPS) to ensure that the selected model offers a balance between 

accuracy and computational efficiency.  

• Performance Evaluation Using Original Dataset 

The model trained on the original dataset serves as a baseline for our 

experiments. As shown in Table 2, the model achieved a training 

precision of 97.9% and recall of 95.7%, with a mAP@0.5 of 99.1%. 

However, the mAP@0.5:0.95 value was relatively low at 62.3%, 

indicating that the model’s generalization ability decreases as the IoU 

threshold increases. 

In the validation and testing stages Tables 3 and 4, similar trends were 

observed, with the mAP@0.5 hovering around 99.6% and 98.3%, but 

lower mAP@0.5:0.95 values 66.4% and 66.8%. The confusion matrix 

for the original dataset (Figure 4) reflects this, showing a small number 

of misclassifications, with 113 true positives, 5 false positives, and 3 

false negatives. This dataset served as a benchmark for evaluating the 

impact of image preprocessing techniques. 

• HE Dataset Performance 

When Histogram Equalization (HE) was applied, the model's recall 

improved slightly, as indicated by 96.3% recall during training and 

95.9% recall during validation. However, the precision dropped to 

95.1%, likely due to an increase in false positives, as seen in the 

confusion matrix Figure 5, where 116 true positives and 5 false 

positives were recorded. Despite the improved recall, the 

mAP@0.5:0.95 values 61.1%, 65.5%, and 62.9% for training, 

validation, and testing remained close to those of the original dataset. 

These results suggest that while HE improves the model's ability to 

correctly identify true positives, its overall generalization to more 

stringent IoU thresholds remains limited. 

• HE+RGB Dataset Performance 

The addition of RGB channels to the Histogram Equalization 

preprocessing technique (HE+RGB) resulted in mixed performance 

improvements. While the training recall was relatively high at 94.2%, 

the confusion matrix Figure 6 shows that the model struggled with a 

slightly higher number of false negatives and false positives, resulting 

in 111 true positives, 5 false negatives, and 5 false positives. 

The precision remained at 95.1% during training and 95.9% during 

validation, similar to the HE dataset. However, the generalization 

capability of the model was somewhat reduced, as indicated by the 

lower mAP@0.5:0.95 scores of 59.1%, 63.3%, and 62.9% across the 

datasets. These results suggest that adding the RGB channels did not 

significantly improve the model’s performance compared to HE alone. 

• AHE Dataset Performance 

The model trained on the AHE dataset showed a marked improvement 

in recall, precision, and generalization. As illustrated by the confusion 

matrix Figure 8, the model made only 2 false classifications out of the 

entire dataset, with 103 true positives and 1 false negative. 

The AHE dataset consistently produced strong performance across all 

evaluation metrics, with precision reaching 98.8% and recall peaking 

at 99.6% during training. The mAP@0.5:0.95 values were 

significantly higher than previous datasets, reaching 74.3% during 

training, 77% during validation, and 73.1% during testing. This dataset 

exhibited a more robust ability to generalize at higher IoU thresholds, 

making AHE a highly effective preprocessing method. 

• CLAHE Dataset Performance 

The CLAHE dataset outperformed all other datasets across every 

evaluation metric. As demonstrated by the confusion matrix Figure 7, 

the model produced 104 true positives, with only 2 false negatives and 

0 false positives. These minimal misclassifications are reflected in the 

high precision (P%) and recall (R%) values, which reached 99.4% and 

98.6% during training, and 99% and 98.6% during testing. In addition 

to the high precision and recall, the model trained on the CLAHE 

dataset achieved the highest mAP@0.5:0.95 values, reaching 75.2%, 

77.9%, and 75.2% across training, validation, and testing, 

respectively. These results indicate that the CLAHE dataset not only 

improved the detection of true positives but also minimized false 

positives and false negatives, making it the best-performing dataset 

across all experiments. 

Table 2 shown result training 

dataset P% 
R% mAP@0.

5% 

mAP0@0.5:0.95

% 

F1 

score 

Original 97.9  95.7 99.1 62.3 97 

HE 95.1 95.7 98.1 61.1 96 

HE+ RGB 96.3 94.2 97.7 59.1 95 

AHE 98.8 99.6 99.5 74.3 99.2 
CLAHE 99.4 98.6 99.5 75.2 99.55 

 

Table 3  shown result validation 

dataset P% 
R% mAP@0.

5% 

mAP0@0.5:0.95

% 

F1 

score 

Original 97.7 95.5 99.6 66.4 97 
HE 95.1 96.4 97.6 65.5 96 

HE+ RGB 95.9 94.6 96.8 63.3 95 

AHE 98.8 99.6 99.5 77 99.2 
CLAHE 99.4 99.6 99.5 77.9 99.5 

Table 4  shown result test 

dataset P% 
R% mAP@0.

5% 

mAP0@0.5:0.95

% 

F1 

score 

Original 96.8 96.6 98.3 66.8 97 

HE 95.9 1 99.2 69.1 98 
HE+ RGB 94.9 95.7 97.4 62.9 95 

AHE 97.1 98.1 98.9 73.1 97.6 

CLAHE 99 98.6 99.4 75.2 98.8 

 
Figure 4 original dataset 

 
Figure 5 HE+ dataset 
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Figure 6 HE+RGB datasets 

 
Figure 7 CLAHE dataset 

 
Figure 8 AHE dataset 

• Error Rate Reduction         

Error Rate Reduction (ERR) is a key metric that quantifies the 

improvement in prediction accuracy by comparing the error rate of a 

new model to that of a baseline model (in this case, the model trained 

on the original dataset). The error rate is the proportion of incorrect 

predictions (both false positives and false negatives) to the total 

predictions. The formula for Error Rate Reduction is defined as: 

𝐸𝑅𝑅 =
𝐸𝑟𝑟𝑜𝑟 𝑅𝑎𝑡𝑒𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 − 𝐸𝑟𝑟𝑜𝑟 𝑅𝑎𝑡𝑒𝑛𝑒𝑤

𝐸𝑟𝑟𝑜𝑟 𝑅𝑎𝑡𝑒𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒

× 100 

The Error Rate (ER) itself is computed as: 

 

𝐸𝑅 =
𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
 

Table 5 result Error Rate Reduction 
dataset Error Rate Reduction 

Original Baseline (0%) 
HE 37.52% 

HE+RGB -24.96% 

AHE 57.19% 
CLAHE 71.41% 

As shown in the table above, CLAHE achieved the highest error rate 

reduction of 71.4% compared to the original dataset, highlighting its 

ability to minimize incorrect classifications. The AHE dataset also 

showed a significant reduction in error rate at 57.19%, confirming its 

robustness in improving model predictions. In contrast, the HE and 

HE+RGB datasets offered more modest error rate reductions. 

• Frames Per Second (FPS) Evaluation 

Frames Per Second (FPS) measures how quickly the model processes 

frames, which is essential for deployment in time-sensitive 

applications.  

Table 6 illustrates the FPS performance for each dataset. 
dataset Frames Per Second 

Original 3.09 

HE 3.08 

HE+RGB 210 

AHE 3.16 

CLAHE 3.20 

 

While CLAHE and AHE datasets demonstrated notable improvements 

in detection accuracy and mAP values, they also resulted in slightly 

lower FPS due to the increased computational complexity associated 

with these preprocessing techniques. Specifically, the CLAHE model 

achieved an average FPS of 3.02, while the AHE model had an average 

FPS of 3.28. In comparison, the ORIGINAL dataset maintained the 

highest FPS at 3.22, with HE and RGB models having average FPS 

values of 3.26 and 3.22, respectively. The trade-off between FPS and 

detection accuracy is evident, as more sophisticated preprocessing 

methods typically incur additional computational overhead. Despite 

this, the CLAHE dataset provides the best overall balance, offering the 

highest detection accuracy with only a moderate reduction in FPS. 

Consequently, for applications where detection performance is crucial, 

CLAHE is the preferred choice, whereas AHE, HE, and RGB models 

offer a compromise between speed and accuracy. Based on the results 

of these experiments, CLAHE remains the optimal choice for image 

preprocessing in the YOLOv5 object detection model, as it achieved 

the best results across multiple key metrics, including Error Rate 

Reduction, IoU Improvement, and mAP@0.5:0.95. Several studies 

have also corroborated CLAHE's effectiveness in improving object 

detection results, particularly in applications requiring enhanced 

contrast, such as medical imaging and autonomous driving [12], [27]. 

Furthermore, recent research on integrating CLAHE with YOLOv5 

demonstrates that this combination yields significant improvements in 

precision, recall, and error rate, making it highly effective for object 

detection tasks [14][28]. While it offers slightly lower FPS than other 

preprocessing methods, its improvements in precision, recall, and 

error rate make it the superior choice for applications prioritizing 

detection accuracy. AHE also showed strong performance, 

particularly in IoU and recall, but did not surpass CLAHE in precision 

or FPS. Despite offering faster processing speeds, both the HE and 

HE+RGB datasets lagged behind CLAHE and AHE in terms of error 

rate reduction and IoU improvement, confirming that more 

sophisticated preprocessing methods result in better overall 

performance. 
6. Conclusion 

This research paper proposes an automated approach to Vehicle 

Identification Number (VIN) detection using advanced image 

preprocessing techniques and object detection models. Through the 

evaluation of various preprocessing methods—including Histogram 

Equalization (HE), HE+RGB, Adaptive Histogram Equalization 

(AHE), and CLAHE—using a dataset of 1145 VIN images, the study 

highlights key findings in optimizing detection performance. 

The baseline model trained on the original dataset achieved robust 

precision and recall but showed limited generalization at higher 

Intersection over Union IoU thresholds. Techniques like HE and 

HE+RGB demonstrated improvements in recall but at the cost of 

reduced precision and generalization capability. In contrast, AHE 

offered significant advancements, with improved precision and recall 

and better performance across various IoU thresholds. Nonetheless, 

CLAHE emerged as the most effective preprocessing method, 

delivering the highest precision (99.4%), recall (98.6%), and mean 

average precision (mAP@0.5:0.95) values. CLAHE not only 

enhanced detection accuracy but also minimized misclassifications, 

proving to be the optimal choice for VIN recognition. These results 

underscore the importance of selecting suitable preprocessing 

techniques to achieve a balance between accuracy and generalization 

in object detection tasks. The superior performance of CLAHE 

demonstrates its potential for practical applications in VIN 

identification and similar fields, offering a robust solution for 

improving detection accuracy under diverse conditions. 
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