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Bi-topological space

Bi-topological spaces, a generalization of traditional topological spaces, provide a rich framework for

studying the interplay between two distinct topologies defined on a single set. In a bi-topological space,
open sets and neighborhoods are characterized by two separate systems of open sets, offering a nuanced
understanding of continuity, convergence, and compactness properties. This abstract explores the
foundational concepts of bi-topological spaces, including their definition, basic properties, and key
theorems. Moreover, it discusses the significance of bi-topological spaces in various mathematical
contexts, highlighting their applications in fields such as functional analysis, differential equations, and
computer science. Through the lens of bi-topological spaces, these abstract illuminates the versatility
and relevance of this mathematical structure in both theoretical investigations and practical

applications.
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1. Introduction

Topology is a branch of mathematics concerned with properties of
spaces that are preserved under continuous deformations, such as
stretching or bending without tearing. A fundamental concept in
topology is the notion of a topological space, where a set is
equipped with a topology that specifies which subsets are
considered "open" and "closed." These open sets define the basic
idea of nearness or proximity within the space.

Classical topology, however, often deals with a single notion of
"open" and "closed" sets. Bi-topological spaces were initiated in
1963, by J. C. Kelly[1], offer a more general framework by
equipping a set with two independent topologies, denoted by T: and
12. This allows for exploring spaces where distinct concepts of
closeness or openness coexist.

Lots of researchers were led to investigate other possible ways for
defining properties in bi-soft topological spaces as [2], [3], [4], [5],
[6], [7], [8], [€]

2. Bi-topological Spaces: Definitions and Basic Concepts

Definition 2.1 [7]

A bi-topological space is the triplet (X, 7, 7,) where X is a
non-empty set, t; and 1, are two topologies on X.

Definition 2.2 [10]

A subset A of (X, t,,1,) is called

(i) T4T2 -openif Aet, Uy,

the complement of 7,7, -open set is called T, T, -closed set

(i) 7172 -open if A = Ai U Bi, where Ai € 7, and Bi € 15,

the complement of 7, , -open set is called T , -closed set.
Example 3.1.
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A subset S of X is called 7,7, -open if S=H U K such that

H e 7; and K € 1, and the complement of t,7,-open is 7, T, -
closed.

Definition 2.3 [5]

Let A be a subset of X. Then 7,7, /[ /Int (A) denotes the T, T, -
interior of A and is defined as the union of all z; 7, -open sets
contained in A.

71T, -int(A)= U {F: ACF and F is 7,7, -open set}

Example 2.1 [5]

Let X ={a,b,c}, 11 ={0, X, {{a}} and 12 = {@, X, {{b}}. The
sets in {0, X, {a}, {b}, {a, b}} are called 7, 7,- open and the sets
in {0, X, {b, ¢}, {a, c}, {c}} are called t112 closed.

Definition 2.4 [5]

Let (X, 74, 7,) be a bi-topological space. and let B < X. A point

x € X is called a T, T, -limit point for B if BN (U \{x}) #= @
for any 7, T, -open set U, containing x. The set of all 7,7, -limit
points of B denoted by (B") “1*2 and called the t;t, -derived set
of B.

Definition 2.5 [5]

Let A be a subset of X. Then t,7,-CI(A) denotes the ;T -
closure of A and is defined as the intersection of all t; 7,-closed
sets containing A.

71T, —cl(A) = N{F:AC Fand F is 1,1, — closed set} and
717, (A) € 11 —cl(A) and 1,7, -cl(A) S 15-cl(A).

Example 2.2 [2]

LetX ={a,b,c,d},t; = {X,p,{a}, {b}.{a, b}}, T, =
{X,p,{c},{a,c}}, and A = {a, d}, then (A")""2 = {d}.

Definition 2.6 [7]

Let (X, 14, 7,) be a bi-topological space, any cover F < t; U t, of
X is called T;75-0pen cover. Further, if every t;t,-open cover of
X possesses a finite subcover, then (X, 71, 7,) is called compact.
Definition 2.7 [8]

Let (X, 14, 7;) and (Y, p1, p2) be two bi-topological spaces, and let
fi(X,11,72) = (Y, p1, p2)be a map, then f is called continuous
(open, closed) if the maps f: (X,t;) - (Y, p; ) and f: (X,1,) =
(Y, p,) are continuous (open, closed).

Definition 2.8 [1]

Let (X, 14, 7,) and (Y, p1, p2) be two bi-topological spaces, and let
fiX,1,7) = (Y,p,p2) be a map, then f is called
homeomorphism if the maps f: (X,7,) = (Y,py)and f:
(X, t3) = (Y, p,) are homeomorphisms

Definition 2.9 [11]

A bi-topological space (X, t4,7,) is said to be connected if and
only if X cannot be expressed as the union of two non-empty
disjoint sets A and B such that A is 7,-open and B is. 7,-open. When
X can be so expressed, we write X = A \B and call this a
disconnection of X.

Definition 2.10 [12]

Let (X,71,7,) be a bi-topological space and let (x;)p-q =
{21, %2, e ,Xn, ..} be a sequence in X. We say (x,)n=1
converge to a point x € X if (x,)n=q COnverge to x in (X, ;) and
(xn)m=1 CcONverge to x in (X, 7).

Example 2.3 [12]

Let X = IN, and let (X, 74,7,) be a bi-topological space were

T, = {X,0}and 1, = {X,0,{2},{2,3},{2,3,4}, ... .. 1,

M1 ={1,2,3,........ }, then (n)y=; = 1, but (n);=, +» 2.
3. Separation Axioms in Bi-topological Spaces
Definition 3.1 [12]

A bi-topological space (X, 74,7,) is called Tospace if Vx,y € X
with x # y then 3U €S UT such that x € Uy ¢
Uandx ¢ U,y € U.

Definition 3.2 [12]

A bi-topological space (X, t4,7,) iscalled Tispaceif Vx,y € X
with x # y then 3U €S and U € T such that x € U,y ¢
Uorx ¢ Uy € U.

Definition 3.3 [12]

A bi-topological space (X, t4,7,) iscalled T2spaceifvVx,y € X
with x # y then 3U €S,V €T such that x € U,y € V and
UnvV=g9

Let (X,t4,7,) and (Y, p1, po) be two bi-topological spaces and let
fi(X,11,72) = (Y, p1, p2) be amap, then f is called:

1) Pairwise

continuous (p-continuous for short) if f~* (V) € r; U

T, foranyV € p; Up,.

2) Pairwise  open
(p-open for short) if f(V) € p; Up, forany V € 7; U 75,.
3) Pairwise closed

(p-closed for short) if f(F) is p;p,-closed set in (Y, p1, p2)
for any 7, t,-closed set F in (X, 74, 75).

4) Pairwise
homeomorphism (p-homeomorphism for short) if f is a
bijective function and f, £~ are p-continuous.

Theorem 4.1. [12]

Let f:(X,t1,73) = (Y,p1,p2) be a continuous (open,
closed, homeomorphism), then f is p-continuous (p-open,
p-closed, p-homeomorphism).

5. Pairwise Separation Axioms in Bi-topological Spaces

Definition 5.1.  [7]

A bi-topological space (X, 11, 12) is said to be pair-wise To if, for
each pair of distinct points of X, there is a t1 -open set or a 12-
open set containing one of the points, but not the other.

Definition 5.2.  [6]

A bi-topological space (X, 7, 7,) is said to be pair-wise Tz, if
for each pair of distinct points x, y there exist U € t,,7, € Q
suchthatx; € U,x, gVandx U,y € V.

Definition 5.3. [7]

The bi-topological space (X, 7, t,) is said to be dually Hausdorff
(T2), if for any points x; €X, x, € X, x; # x, there exist
Giety, Gyetysuchthatx; ety,x,€7,,6, NG, = 0.

6. Conclusion

In conclusion, the paper aims to provide a powerful framework for
studying topological structures that arise in various mathematical
contexts. By considering two distinct topologies on a single set, bi-
topological spaces offer a nuanced understanding of the interplay
between different types of open sets and neighborhoods. This
allows for a more refined analysis of continuity, convergence, and
compactness properties than what is possible in traditional
topological spaces. Furthermore, the study of bi-topological spaces
has applications in diverse areas such as functional analysis,
differential equations, and computer science, making them a
valuable tool for both theoretical investigations and practical
applications. As research in this area continues to advance, the rich
structure and versatility of bi-topological spaces are likely to yield
further insights and discoveries in the broader field of mathematics.
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