

مجلة جامعة سبها Sebha University Journal

Journal homepage: https://sebhau.edu.ly/journal/index.php/CAS

ON BI-TOPOLOGICAL SPACE

*Aida Mohammed, Mabrok Omar

Department of Mathematics, Faculty of Science, Sabha University, Libya

 Keywords:
 ABSTRACT

 Bi-topological space
 Si-topological spaces, a generalization of traditional topological spaces, provide a rich framework for studying the interplay between two distinct topologies defined on a single set. In a bi-topological space, open sets and neighborhoods are characterized by two separate systems of open sets, offering a nuanced understanding of continuity, convergence, and compactness properties. This abstract explores the foundational concepts of bi-topological spaces, including their definition, basic properties, and key theorems. Moreover, it discusses the significance of bi-topological spaces in various mathematical contexts, highlighting their applications in fields such as functional analysis, differential equations, and computer science. Through the lens of bi-topological spaces, these abstract illuminates the versatility and relevance of this mathematical structure in both theoretical investigations and practical applications.

 Bi-topological space of this mathematical structure in both theoretical investigations and practical applications.

قسم الرياضيات، كلية العلوم، جامعة سبها، ليبيا

لملخص	الكلمات المفتاحية:
لفضاءات التوبولوجية الثنائية هي تعميم للفضاءات التوبولوجية التقليدية، وتوفر إطارًا غنيًا لدراسة التفاعل بين الفضاء التبولوجي الثنائي	الفضاء التبولوجي الثنائي
لموبولوجيتين مختلفتين معرفتَين على مجموعة واحدة. في فضاء توبولوجي ثنائي، يتم تعريف المجموعات المفتوحة	
التوبولوجي بواسطة نظامين منفصلين للمجموعات المفتوحة، مما يوفر فهمًا دقيقًا لخصائص الاستمرارية والتقارب	
الامتداد. يستكشف هذا الملخص المفاهيم الأساسية للفضاءات التوبولوجية الثنائية، بما في ذلك تعريفها وخصائصها	
لأساسية والنظريات الرئيسية. علاوة على ذلك، يناقش أهمية الفضاءات التوبولوجية الثنائية في مختلف السياقات	
لرباضية، مع تسليط الضوء على تطبيقاتها في مجالات مثل التحليل الوظيفي والمعادلات التفاضلية وعلوم الكمبيوتر. من	
فلال عدسة الفضاءات التوبولوجية الثنائية، يسلط هذا الملخص الضوء على تنوع وأهمية هذا البناء الرياضي في كل من	
لبحوث النظرية والتطبيقات العملية.	

1. Introduction

Topology is a branch of mathematics concerned with properties of spaces that are preserved under continuous deformations, such as stretching or bending without tearing. A fundamental concept in topology is the notion of a topological space, where a set is equipped with a topology that specifies which subsets are considered "open" and "closed." These open sets define the basic idea of nearness or proximity within the space.

Classical topology, however, often deals with a single notion of "open" and "closed" sets. Bi-topological spaces were initiated in 1963, by J. C. Kelly[1], offer a more general framework by equipping a set with two independent topologies, denoted by τ_1 and τ_2 . This allows for exploring spaces where distinct concepts of closeness or openness coexist.

Lots of researchers were led to investigate other possible ways for defining properties in bi-soft topological spaces as [2], [3], [4], [5], [6], [7], [8], [9]

2. Bi-topological Spaces: Definitions and Basic Concepts Definition 2.1 [7] A bi-topological space is the triplet (X, τ_1, τ_2) where X is a non-empty set, τ_1 and τ_2 are two topologies on X. Definition 2.2 [10] A subset A of (X, τ_1, τ_2) is called (i) $\tau_1 \tau_2$ -open if $A \in \tau_1 \cup \tau_2$, the complement of $\tau_1 \tau_2$ -open set is called $\underline{\tau_1 \tau_2}$ -closed set (ii) $\tau_1 \tau_2$ -open if $A = A_i \cup B_i$, where $A_i \in \tau_1$ and $B_i \in \tau_2$, the complement of $\tau_{1,2}$ -open set is called $\underline{\tau_{1,2}}$ -closed set. Example 3.1.

^{*}Corresponding author.

E-mail addresses: ai.lamin@sebhau.ly, (M. Omar)alm.omar@sebhau.ly

Article History : Received 30 January 2024 - Received in revised form 13 May 2024 - Accepted 25 May 2024

A subset S of X is called $\tau_1 \tau_2$ -open if S = H U K such that $H \in \tau_1$ and $K \in \tau_2$ and the complement of $\tau_1 \tau_2$ -open is $\tau_1 \tau_2$ closed. **Definition 2.3** [5]

Let A be a subset of X. Then $\tau_1 \tau_2 \square \square$ Int (A) denotes the $\tau_1 \tau_2$ **interior** of A and is defined as the union of all $\tau_1 \tau_2$ -open sets contained in A.

 $\tau_1 \tau_2$ -int(A)= U {F: A \subseteq F and F is $\tau_1 \tau_2$ -open set} Example 2.1 151

Let $X = \{a, b, c\}, \tau_1 = \{\emptyset, X, \{\{a\}\} \text{ and } \tau_2 = \{\emptyset, X, \{\{b\}\}\}.$ The sets in $\{\emptyset, X, \{a\}, \{b\}, \{a, b\}\}$ are called $\tau_1 \tau_2$ - open and the sets in $\{\emptyset, X, \{b, c\}, \{a, c\}, \{c\}\}$ are called $\tau_1 \tau_2$ closed. **Definition 2.4** 151

Let (X, τ_1, τ_2) be a bi-topological space. and let $B \subseteq X$. A point $x \in X$ is called a $\tau_1 \tau_2$ -limit point for *B* if $B \cap (U_x \setminus \{x\}) \neq \emptyset$ for any $\tau_1 \tau_2$ -open set U_x containing x. The set of all $\tau_1 \tau_2$ -limit points of B denoted by $(B')^{\tau_1\tau_2}$ and called the $\tau_1\tau_2$ -derived set of B.

Definition 2.5

Let A be a subset of X. Then $\tau_1 \tau_2$ -Cl(A) denotes the $\underline{\tau_1 \tau_2}$ -**<u>closure</u>** of A and is defined as the intersection of all $\tau_1 \tau_2$ -closed sets containing A.

[5]

 $\tau_1 \tau_2 - cl(A) = \bigcap \{F: A \subseteq F \text{ and } F \text{ is } \tau_1 \tau_2 - closed \text{ set} \}$ and $\tau_1 \tau_2(A) \subseteq \tau_1 - cl(A) \text{ and } \tau_1 \tau_2 - cl(A) \subseteq \tau_2 - cl(A).$ Example 2.2 [2] Let $X = \{a, b, c, d\}, \tau_1 = \{X, \varphi, \{a\}, \{b\}, \{a, b\}\}, \tau_2 =$

 $\{X, \varphi, \{c\}, \{a, c\}\}$, and $A = \{a, d\}$, then $(A')^{\tau_1 \tau_2} = \{d\}$. **Definition 2.6**

Let (X, τ_1, τ_2) be a bi-topological space, any cover $F \subseteq \tau_1 \cup \tau_2$ of X is called $\tau_1 \tau_2$ -open cover. Further, if every $\tau_1 \tau_2$ -open cover of X possesses a finite subcover, then (X, τ_1, τ_2) is called **compact. Definition 2.7** [8]

Let (X, τ_1, τ_2) and (Y, ρ_1, ρ_2) be two bi-topological spaces, and let $f:(X,\tau_1,\tau_2) \to (Y,\rho_1,\rho_2)$ be a map, then f is called **continuous** (open, closed) if the maps $f: (X, \tau_1) \to (Y, \rho_1)$ and $f: (X, \tau_2) \to$ (*Y*, ρ_2) are continuous (open, closed).

[1]

[12]

[12]

[12]

[2]

Definition 2.8

Let (X, τ_1, τ_2) and (Y, ρ_1, ρ_2) be two bi-topological spaces, and let $f:(X,\tau_1,\tau_2) \to (Y,\rho_1,\rho_2)$ be a map, then f is called **homeomorphism** if the maps $f: (X, \tau_1) \to (Y, \rho_1)$ and f: $(X, \tau_2) \rightarrow (Y, \rho_2)$ are homeomorphisms

Definition 2.9 [11] A bi-topological space (X, τ_1, τ_2) is said to be **connected** if and only if X cannot be expressed as the union of two non-empty disjoint sets A and B such that A is τ_1 -open and B is. τ_2 -open. When X can be so expressed, we write $X = A \setminus B$ and call this a disconnection of X.

Definition 2.10

Let (X, τ_1, τ_2) be a bi-topological space and let $(x_n)_{n=1}^{\infty} =$ $\{x_1, x_2, \dots, x_n, \dots\}$ be a sequence in X. We say $(x_n)_{n=1}^{\infty}$ converge to a point $x \in X$ if $(x_n)_{n=1}^{\infty}$ converge to x in (X, τ_1) and $(x_n)_{n=1}^{\infty}$ converge to x in (X, τ_2) .

Example 2.3

Let X = IN, and let (X, τ_1, τ_2) be a bi-topological space were

$$\tau_1 = \{X, \emptyset\} and \tau_2 = \{X, \emptyset, \{2\}, \{2,3\}, \{2,3,4\}, \dots, \},$$

 $(n)_{n=1}^{\infty} = \{1, 2, 3, \dots, ...\}, then (n)_{n=1}^{\infty} \to 1, but (n)_{n=1}^{\infty} \not \to 2.$

3. Separation Axioms in Bi-topological Spaces 12

Definition 3.1

A bi-topological space (X, τ_1, τ_2) is called **T**₀ space if $\forall x, y \in X$ with $x \neq y$ then $\exists U \in S \cup T$ such that $x \in U, y \notin I$ U and $x \notin U, y \in U$. [12]

Definition 3.2

A bi-topological space (X, τ_1, τ_2) is called **T**₁ space if $\forall x, y \in X$ with $x \neq y$ then $\exists U \in S$ and $U \in T$ such that $x \in U, y \notin I$ $U \text{ or } x \notin U, y \in U.$

Definition 3.3

A bi-topological space (X, τ_1, τ_2) is called **T**₂ space if $\forall x, y \in X$ with $x \neq y$ then $\exists U \in S, V \in T$ such that $x \in U, y \in V$ and $U \cap V = \phi$

4. Pairwise In Bi-topological Spaces **Definition 4.1**

Let (X, τ_1, τ_2) and (Y, ρ_1, ρ_2) be two bi-topological spaces and let $f: (X, \tau_1, \tau_2) \rightarrow (Y, \rho_1, \rho_2)$ be a map, then f is called: 1) Pairwise

continuous (p-continuous for short) if $f^{-1}(V) \in \tau_1 \cup$ τ_2 for any $V \in \rho_1 \cup \rho_2$.

1121

(p-open for short) if $f(V) \in \rho_1 \cup \rho_2$ for any $V \in \tau_1 \cup \tau_2$. 3) Pairwise closed

(p-closed for short) if f(F) is $\rho_1\rho_2$ -closed set in (Y, ρ_1, ρ_2) for any $\tau_1 \tau_2$ -closed set F in (X, τ_1, τ_2).

Pairwise 4)

homeomorphism (p-homeomorphism for short) if f is a bijective function and f, f^{-1} are p-continuous. Theor

Let $f: (X, \tau_1, \tau_2) \rightarrow (Y, \rho_1, \rho_2)$ be a continuous (open, closed, homeomorphism), then f is p-continuous (p-open, p-closed, p-homeomorphism).

5. Pairwise Separation Axioms in Bi-topological Spaces **Definition 5.1.** [7]

A bi-topological space (X, τ_1 , τ_2) is said to be **pair-wise T**⁰ if, for each pair of distinct points of X, there is a τ_1 -open set or a τ_2 open set containing one of the points, but not the other.

Definition 5.2. [6]

2)

A bi-topological space (X, τ_1, τ_2) is said to be **pair-wise T**₁, if for each pair of distinct points x, y there exist $U \in \tau_1, \tau_2 \in Q$ such that $x_1 \in U, x_2 \notin V$ and $x \notin U, y \in V$. **Definition 5.3.** [7]

The bi-topological space (X, τ_1, τ_2) is said to be **dually** <u>Hausdorff</u> (T₂), if for any points $x_1 \in X$, $x_2 \in X$, $x_1 \neq x_2$ there exist $G_1 \in \tau_1$, $G_2 \in \tau_2$ such that $x_1 \in \tau_1, x_2 \in \tau_2$, $G_1 \cap G_2 = \emptyset$.

6. Conclusion

In conclusion, the paper aims to provide a powerful framework for studying topological structures that arise in various mathematical contexts. By considering two distinct topologies on a single set, bitopological spaces offer a nuanced understanding of the interplay between different types of open sets and neighborhoods. This allows for a more refined analysis of continuity, convergence, and compactness properties than what is possible in traditional topological spaces. Furthermore, the study of bi-topological spaces has applications in diverse areas such as functional analysis, differential equations, and computer science, making them a valuable tool for both theoretical investigations and practical applications. As research in this area continues to advance, the rich structure and versatility of bi-topological spaces are likely to yield further insights and discoveries in the broader field of mathematics.

Acknowledgements. We are grateful to the reviewer for

several helpful suggestions for improvement in the article.

References

- [1]- J. Kelly, "Bitopological spaces," Proceedings of the London Mathematical Society, vol. 3, no. 1, pp. 71-89, 1963.
- [2]- K. A. Arwini and H. M. Almrtadi, "New pairwise separation axioms in bitopological spaces," World Sci News, no. 145, pp. 31-45, 2020.
- [3]- A. Mohammed and H. Hasan, "Soft Pre-Open Sets In Soft Bitopological Spaces," American Scientific Research Journal 2014, for Engineering, [Online]. Available: http://asrjetsjournal.org/
- [4]- betty ruffin garner, "BI-TOPOLOGICAL SPACES," 1971.
- [5]- M. L. Thivagar and R. Nirmala, "Another Form of Bitopological Generalized Functions," 2012.
- [6]- A. A. Ivanov, "Bitopological spaces," Journal of Soviet Mathematics, vol. 26, no. 1, pp. 1622-1636, 1984, doi: 10.1007/BF01106437.
- [7]- C. W. Patty, "Bitopological spaces," Duke Mathematical Journal, vol. 34, no. 3, pp. 387–391, 1967.
- [8]- M. J. Saegrove, "On bitopological spaces," 1971, [Online]. Available: https://lib.dr.iastate.edu/rtd
- [9]-W. Huh and Y. M. Park, "SOME PROPERTIES OF SPACES," BITOPOLOGICAL Pusan Kyongnam Mathematical Journal, vol. 2, pp. 33-44, 1986.

- [10]- Guzida Senel and Naim Cagman, "Soft Closed Sets on Soft Bitopological Space," *journal of new results in science*, no. 1304–7981, pp. 57–66, Mar. 2014, doi: 10.02.2013.
- [11]-W. J. Pervin, "Connectedness in Bitopological Spaces," *Indagationes Mathematicae (Proceedings)*, vol. 70, pp. 369– 372, 1967, doi: 10.1016/s1385-7258(67)50052-5.
- [12]- R. Roshmi and M. Hossain, "Properties of Separation Axioms in Bitopological Spaces," *Journal of Bangladesh Academy of Sciences*, vol. 43, no. 2, pp. 191–195, Mar. 2020, doi: 10.3329/jbas.v43i2.45740.