Development of Real Time System for Smoke and Fire Detection in Wide Areas Using Yolov8

Main Article Content

Emsaieb Geepalla
Karima Ahmed

Abstract

In an era marked by significant advancements in Artificial Intelligence (AI) and its diverse applications across various fields, including machine learning and computer vision, the domain of surveillance systems and safety measures has undergone a profound transformation. Amidst numerous natural disasters, fires emerge as one of the most devastating calamities, necessitating the utilization of AI capabilities to develop intelligent monitoring systems that bolster our defensive efforts against this disaster. This involves the early detection and notification of relevant authorities to prevent irreparable damages. Traditional fire detection devices, while yielding satisfactory results, exhibit diminished effectiveness in open or large areas and lack real-time detection capabilities. In response to these challenges, this study aims to develop an advanced real-time smoke and fire detection system specifically designed for wide deployment. Leveraging the capabilities of the YOLOv8 deep learning model, the study trained the most suitable versions of the proposed model (YOLOv8l, YOLOv8m) with varying hyperparameters on a dataset comprising 9756 images of various smoke and fire scenarios. The results demonstrate the models' capability to accurately detect fires and smoke, achieving commendable average precision rates while maintaining a delicate balance between precision and recall. Specifically, the YOLOv8l model achieved a mean average precision (mAP50) of 85.1% and an F1 score of 80%, while the YOLOv8m model achieved a mAP50 of 86% and an F1 score of 82%. These models exhibit promising results in real-time fire and smoke detection systems, indicating a new era of proactive measures for fire detection and prevention, deployable on unspecified specification surveillance cameras.

Article Details

How to Cite
Geepalla, E., & Ahmed, K. (2025). Development of Real Time System for Smoke and Fire Detection in Wide Areas Using Yolov8. Sebha University Conference Proceedings, 3(2), 579–586. https://doi.org/10.51984/sucp.v4i2.3342
Section
Confrence Proceeding

References

Chaudhary, M. T., & Piracha, A. (2021). Natural Disasters—Origins, Impacts, Management. Encyclopedia, 1 (4), 1101-1131.

Barmpoutis, P., Papaioannou, P., Dimitropoulos, K., & Grammalidis, N. (2020). A Review on Early Forest Fire Detection Systems Using Optical Remote Sensing. Sensors (Basel, Switzerland), 20 (22), 6442.

Vollmayer, D., & Gutman, M. (2019, November 26). Home fires spike over the holidays. What can you do to get out alive? ABC News.

Hall, S. (2023, October 31). Fire Loss in the United States. National Fire Protection Association.

Sun, J., Qi, W., Huang, Y., Xu, C., & Yang, W. (2023). Facing the Wildfire Spread Risk Challenge: Where Are We Now and Where Are We Going?, 6(6), 228.

Robinne, F.-N., Burns, J., Kant, P., Flannigan, M. D., Kleine, M., de Groot, B., & Wotton, D. M. (Eds.). (2018). Global fire challenges in a warming world: Summary note of a global expert workshop on fire and climate change, Vienna.

Sathishkumar, V. E., Cho, J., Subramanian, M., & Naren, O. S. (2023). Forest fire and smoke detection using deep learning-based learning without forgetting. Fire ecology, 19(1), 1-17.‏

Avazov, K., Mukhiddinov, M., Makhmudov, F., & Cho, Y. I. (2022). Fire Detection Method in Smart City Environments Using a Deep-Learning-Based Approach. Electronics, 11(1), 73.

Talaat, F. M., & ZainEldin, H. (2023). An improved fire detection approach based on YOLO-v8 for smart cities. Journal Title (italicized), Volume(Issue), Page Range.

An, L., Chen, L., & Hao, X. (2023). Indoor Fire Detection Algorithm Based on Second-Order Exponential Smoothing and Information Fusion. Information, 14(5), 258.

Saydirasulovich, S. N., Mukhiddinov, M., Djuraev, O., Abdusalomov, A., & Cho, Y.-I. (2023). An Improved Wildfire Smoke Detection Based on YOLOv8 and UAV Images.

Li, X., Vázquez-López, A., Sánchez Del Río Sáez, J., & Wang, D. Y. (2022). Recent advances on early-stage fire-warning systems: Mechanism, performance, and perspective. Nanomicro Letters, 14 (1), 197. Erratum in Nanomicro Letters, 14 (1), 226.

Truong, C. T., Nguyen, T. H., Vu, V. Q., Do, V. H., & Nguyen, D. T. (2023). Enhancing Fire Detection Technology: A UV-Based System Utilizing Fourier Spectrum Analysis for Reliable and Accurate Fire Detection. Applied Sciences, 13 (13), 7845.

Carta, F., Zidda, C., Putzu, M., Loru, D., Anedda, M., & Giusto, D. (2023). Advancements in Forest Fire Prevention: A Comprehensive Survey. Sensors, 23(14), 6635.

Yang, H., Wang, J., & Wang, J. (2023). Efficient Detection of Forest Fire Smoke in UAV Aerial Imagery Based on an Improved Yolov5 Model and Transfer Learning. Remote Sensing, 15(23), 5527.

Avazov, K., Jamil, M. K., Muminov, B., Abdusalomov, A. B., & Cho, Y.-I. (2023). Fire Detection and Notification Method in Ship Areas Using Deep Learning and Computer Vision Approaches. Sensors, 23(16), 7078.

Wang, Z., Wu, L., Li, T., & Shi, P. (2022). A smoke detection model based on improved YOLOv5. Mathematics, 10(7), 1190.

BEKKARI, L., & KADI, N. Détection D'incendie Et De Fumée A L'aide De L'apprentissage Par Transfert (Fire and Smoke Detection Using Transfer Learning (Doctoral dissertation, UNIVERSITY OF KASDI MERBAH OUARGLA).‏

Avazov, K., Jamil, M. K., Muminov, B., Abdusalomov, A. B., & Cho, Y. I. (2023). Fire detection and notification method in ship areas using deep learning and computer vision approaches. Sensors, 23(16), 7078.

Zhang, Z., Tan, L., & Tiong, R. L. K. (2024). Ship-Fire net: an improved YOLOv8 algorithm for ship fire detection. Sensors, 24(3), 727.‏

Hussain, M. (2023). YOLO-v1 to YOLO-v8, the Rise of YOLO and Its Complementary Nature toward Digital Manufacturing and Industrial Defect Detection. *Machines, 11*(7), 677.

Terven, J., Córdova-Esparza, D.-M., & Romero-González, J.-A. (2023). A Comprehensive Review of YOLO Architectures in Computer Vision: From YOLOv1 to YOLOv8 and YOLO-NAS. Machine Learning and Knowledge Extraction, 5(4), 1680-1716.

https://blog.roboflow.com/whats-new-in-yolov8/#what-is-yolov8.

https://learnopencv.com/ultralytics-yolov8/#YOLOv8-vs-YOLOv5.

Arregui Arias, A. B. (2023). Detección de cascos de seguridad en tiempo real mediante modelos de Deep Learning.

Efraimsson, A., & Lemón, E. (2022). Railway Fastener Fault Detection using YOLOv5.

Rozada Raneros, S. (2021). Estudio de la arquitectura YOLO para la detección de objetos mediante deep learning.‏

Taco Apolo, C. P. (2022). Aplicación de técnicas de aprendizaje de máquina para la detección de aglomeraciones de personas y comportamientos anómalos mediante segmentación semántica y redes convolucionales: Modelo de Redes Convolucionales basadas en regiones para la detección de aglomeraciones en videos aplicando segmentación semántica (Bachelor's thesis, Quito: EPN, 2022.).

Sánchez Pozo, J. J. (2022). Detección y Segmentación en Placas de Rayos X de Pinturas utilizando IA.‏

Arregui Arias, A. B. (2023). Detección de cascos de seguridad en tiempo real mediante modelos de Deep Learning.