

SEBHA UNIVERSITY JOURNAL OF PURE & APPLIED SCIENCES VOL.21 NO. 1 2022

DOI: 10.51984/JOPAS.V21I1.1413

 ة والتطبيقيةتجامعة سبها للعلوم البح مجلة
Sebha University Journal of Pure & Applied Sciences

Journal homepage: www.sebhau.edu.ly/journal/index.php/jopas

*Corresponding author:

E-mail addresses: alhadi.klaib@elmergib.edu.ly ,(R. Ihnissi) ragab000_abd@yahoo.com ,(A. Arbi) asarbi@elmergib.edu.ly

Article History : Received 11 November 2021 - Received in revised form 25 December 2021 - Accepted 01 January 2022

Developing an Editor for Drawing Class Diagram within WinCASE Framework

*Alhadi Klaiba, Ragab Ihnissib, Abdelrahman Arbic

aDepartment of Software Engineering, Faculty of Information Technology, Elmergib University, Libya
bDepartment of Computer Engineering, Faculty of Engineering-Regdalayn, Sabratha University, Libya
cDepartment of Electrical and Computer Engineering, Faculty of Engineering, Elmergib University, Libya

Keywords:

Software Engineering

CASE tools

UML

Class Diagram

WinCASE

 A B S T R A C T

Computer Aided Software Engineering (CASE) tools are significant for the software engineering

field. They provide great support to software developers. WinCASE tool is one of these tools.

Furthermore, dataflow Algebra is a methodology that used to describe a formal specification of a

system. Unified Modeling Language is a general purpose modlling language in the field of software

engineering. Class diagram is one of the UML diagrams which illustrates the system objects. This

paper aims to upgrade the WinCASE tool by implementing the Class diagram within the framework

of this tool. Therefore, this paper studied the previous work and the background of the WinCASE.

Subsequently, the class diagram was implemented into WinCASE framework; and then tested, and

evaluated successfuly as well. Consequently, the WinCASE has been provided with an editor for

drawing the class diagram.

 WinCASEتطوير محرر لرسم مخطط الكلاس وإدماجه في أداة

 3و عبدالرحمن العربي 2و رجب حنيش 1*الهادي علي كليب

 جامعة المرقب، ليبيا –المعلومات قسم هندسة البرمجيات، كلية تقنية1
 رقدالين، جامعة صبراته، ليبيا -قسم هندسة الحاسوب، كلية الهندسة 2
 جامعة المرقب، ليبيا –قسم الكهربائية و هندسة الحاسوب، كلية الهندسة 3

 الكلمات المفتاحية:

 هندسة البرمجيات

 CASE أدوات كيس

 لغة النمدجة الموحدة

 مخطط الكلاس

 . WinCASEأداة

 الملخص

(مهمة في مجال هندسة البرمجيات ،حيث أنها توفر دعما CASEتعتبر الأدوات المساعدة فيه مجال هندسة البرمجيات)

(هو DFAهي إحدى هذه الأدوات. بالإضافة لذلك فإن جبر تدفق البيانات) WinCASEكبيرا لمطوري البرمجيات. الأداة

(هي عبارة عن لغة نمذجة للأغراض العامة UMLنظام منهجية تستخدم لوصف نظم الحاسوب. لغة النمذجة الموحدة)

الموحدة (هو أحد مخططات لغة النمذجةClass Diagramووصف نمادج في مجال هندسة البرمجيات. مخطط الكلاس)

من خلال تنفيذ مخطط الكلاس وإدماجه في هذه WinCASEالتي توضح كائنات النظام. تهدف هذه الورقة إلى تطوير أداة

ا. وبالتالي ، تم تزويد الأداة. لذلك ، تم تنفيذ مخطط الكلاس وإدماجه في هذه الأداة ؛ ثم تم اختباره وتقييمه بنجاح أيض

WinCASE صل الدراس ي.بمحرر لرسم مخطط الف

Introduction:
Computer Aided Software Engineering (CASE) Tools are

considerably useful since they provide support for software

engineering. Thus, CASE tools have been developed quickly. They

also offer easy and flexible approaches for software developers to

build systems. Historically, these tools appeared in the 1980s.

However, they were developed rapidly, particularly in the first

decade. To summarize, these tools provide many advantages, such as

saving time, effort and money, as well as offering high reliability [1-

4]. WinCASE is one of the CASE tools. Initially, it was intended to

be a configurable CASE tool for experimental purposes [2, 5]. It has

been further developed several times over a while. First of all, it was

adapted for use of Parallel Communicating Sequential Code (PCSC)

methodology. Subsequently, DataFlow Algebra (DFA) methodology

was incorporated within WinCASE. Lastly, Sequence Diagrams in

UML notation were implemented within WinCASE[3, 6].

Essentially, DFA is a methodology used to describe a formal

specification of a system. This methodology was incorporated into

WinCASE. As a result, the specifications of DFA can be created

file:///C:/Users/DELL/Downloads/www.sebhau.edu.ly/journal/index.php/jopas
mailto:alhadi.klaib@elmergib.edu.ly
mailto:ragab000_abd@yahoo.com
mailto:asarbi@elmergib.edu.ly

Developing an Editor for Drawing Class Diagram within WinCASE Framework Klaib at el.

JOPAS Vol.21 No. 1 2022 2

automatically with this tool. In addition, UML is a standard language

of graphical notations. It is used for building and documenting the

artefacts of huge systems, particularly software systems[3, 4]. A class

diagrams in UML notation illustrate the types of system objects and

different types of static relationships that exist between these objects.

Furthermore, class diagrams illustrate the properties of classes, and

the restrictions that apply to the approach used to link objects[6-15].

Therefore, the main objective of this paper is to investigate the

possibility of developing the current DataFlow Algebra (DFA)

methodology within WinCASE framework by integrating the class

diagram (CDs) in UML notation within this framework [1, 3, 4, 7,

16-24]. Thus, a review for WinCASE framework needs to be carried

out in order to ensure the feasibility of extending and adapting the

existing system and repository to include the class diagram. In other

words, WinCASE tool needs to be enhanced to allow the new

diagram to work effectively.

To summarise, the remainder of this paper is organised as follows;

the the second section describes the mplementation of class diagram

within the WinCASE. Section three demonstrates the testing and

evaluation. Section four discusses the conclusion of this research.

Comparison with Related Work

The WinCASE was invented in the 1990s by Dr. Manson in the

Department of Computer Science at the University of Sheffield.

The WinCASE tool was intended to be a fully configurable CASE

tool for experimental purposes. As its name may suggest, it was

adapted very much towards providing a system that can be run under

a particular proprietary operating system. Basically, the WinCASE

system provides the function of constructing diagrams from objects

and abiding rules. The methodology in the WinCASE is a set of

diagrams that are visual components. Properties of methodology

objects are defined as separate components. This feature gives

WinCASE a great deal of flexibility since these properties can be

easily customised by a methodology engineer [3, 4]. Wyles

implemented the DFA methodology within WinCASE framework.

The repository of the WinCASE was expanded in order to integrate

the DataFlow Algebra. Thus, an editor for data flow diagrams was

also provided. Aida Manan implemented a state chart diagram within

the WinCASE framework in 2005. Di Liu studied the integration of

WinCASE tool into Eclipse. Joseph Czucha implemented the

development of diagram editors within the WinCASE framework.

Implementation

The basic development process was iterative, and it was found out

that this is a suitable approach to implementing the class diagram

with the smallest possible work stages. The approach was essentially

applied to the object packages. The advantage of this approach is that

it allows every small step in the work to be tested. It also minimises

the potential errors in the project and makes error detection an easy

task, and as a result the project goes smoothly.

1 Initialization of Class Diagram
First of all, the class diagram has been defined for the DFA

methodology by adding a fragment of code into the

DFAMethodology class. Consequently, any project file that is created

will contain automatically this diagram type. The code fragment for

defining the class diagram within the DFA is illustrated below.

As can be seen, this code indicates the location of the class that

defines this type of diagram. This class is the one called CLSDiagram.

It also provides the system with the type name of the diagram. The

next step passes this information to the Methodology class, which

creates this diagram and adds it to the repository. Thus, the system

will confirm this diagram and update itself where needed. Notice that

this fragment of code is vital to add a new diagram to the DFA

methodology as it sets up the basics of this diagram. In order to make

the class diagram available in the WinCASE system, a new project

file is created. Consequently, the Diagram menu is updated

automatically, so the New UML class item appeared in the Diagrams

menu. Figure 1 shows this menu.

Fig. 1: The diagrams menu including the Class Diagram

The UML Class item also appears automatically in the Choose

Diagram window, which pops up by the Open item in the Diagrams

menu to open an existing diagram. Figure 2 shows this window. To

summarise, by just defining the new type of diagram into

DFAMethodology class, the WinCASE system is updated

automatically where needed for every new project file.

Fig. 2: The choose diagram window includes the UML class

2 Open Project file
Having chosen a New UML class from the Diagrams menu, a small

window appears to provide a name for this diagram. Figure 3 shows

this window. In fact, this window is a generic one and it is invoked

by the method NewDiagramAction in the MainFrame class, so it

works with all kinds of diagrams within the WinCASE system.

Fig. 3: Entering a new diagram name

As soon as a new diagram is created or an existing one opened, the

sub window for drawing a class diagram pops up. It has the diagram

name and its extension to show the diagram type, as can be seen in

figure 4. This window also includes icons that invoke the creation of

class and association objects, as well as the navigation function.

Developing an Editor for Drawing Class Diagram within WinCASE Framework Klaib at el.

JOPAS Vol.21 No. 1 2022 3

Fig. 4: Class Diagram editor

3 CLSDiagram Class:

The CLSDiagram class is the main one and plays a vital role in this

research. This class was located in the CD package in order to match

the WinCASE structure. Essentially, this class was designed in a

similar way to the DFDDiagram class. This gives significant

advantages to this project and reduces the potential errors and also

provides consistency of the diagrams in the DFA methodology and

the repository.

In practice, the CLSDiagram class sets up the methodology objects

of the class diagram, namely the Object and the Association. This

class also sets up the connectivity among objects. Notice that the only

connection that needs to be set up in this project is Object to Object.

The getNameExtension method in this class returns the extension of

this type of diagram, which in this case is UMLClass. Therefore, the

repository can distinguish between the types of diagrams. Figure 5

shows the CLSDiagram class.

Fig. 5: CLSDiagram class

4 Class Object

In terms of the WinCASE structure, the class object is represented by

the Entity package. This package is the main storage for all classes

related with this object.

The main classes in this package are the EntityMethodologyObject,

EntityCustomiser and EntityMethodologyObjectBeanInfo. These

classes define and customise the class object. To start with the

EntityCustomiser class is an important class since it sets all the

properties of this object, which are the class name, five attributes and

five operations.

The class EntityMethodologyObjectBeanInfo works along with the

EntityCustomiser to customise this object. The

EntityMethodologyObject is the main class as it defines all the

properties and representations of this object by the constructor

method EntityMethodologyObject().

The NormalRepresentation class is also an important class as it is

responsible for representing all the properties and symbols of the

class object, such as the class box and the attributes. It also sets up

the connection points for connecting this object with associations.

There are four points which have been set around the object. This

class exists in the Representations.Normal package.

With regard to the locations, the class properties occupy the

Properties package within the Entity package. The symbols of an

object occupy the Symbols package in the Representation.Normal

package.

Essentially, the class symbols set the appearance and characteristics

of all components of this object. For instance, the DefaultSymbol

class sets the dimensions and other characteristics of a class box such

as the its colour. The other symbol classes play similar roles such as

setting the locations and the characteristics for the class name,

attributes, and operations. Having put these classes and functions

into practice, and opened or created a class diagram, the specified

window appears in the main window. Consequently, a class object

can be drawn by clicking the class icon and then clicking on the

required location in this window. Therefore, the Edit Properties

window appears in the screen and gets ready to enter the object

properties. Figure 6 -a shows this window. Notice that all the

properties of class object can be entered through this window. Having

entered these properties and clicked the Ok button, the class box

appears in the specified location. Figure 6- b shows an example of an

object appearance.

Fig, 6: Shows The Edit properties window, and a class object

sample

5 Association object

A package called Association is created to hold all the details about

this object. Essentially, this package includes the Properties and

Representations packages, as well as the AssociationCustomiser,

AssociationMethodologyObject and

AssociationMethodologyObjectBeanInfo classes. These classes are

similar to those existing in the Entity package that has been described

above.

The Properties package has the following classes:

 NameProperty class: this class defines the name of the

association object.

 StartMultiplicityProperty: this class defines the first part of the

multiplicity.

 EndMultiplicityProperty: this class defines the last part of the

multiplicity.

 DecompositionProperty: this class defines the decomposition of

a class object.

Figure 7-a illustrates the structure of these classes.

Fig. 7: The structure of the Classes of the properties and the

symbols of an Association object

The Representation package holds a package called Normal. The

function of this package is the normal representation. Furthermore,

the Normal package contains the NormalRepresentation class, which

sets up the connections of this association with class objects. It also

sets up all the symbols of this object such as the multiplicities and the

direction arrow. The Normal package also includes the Symbols

package. This package contains classes that define all the symbols of

this object as follows:

 LineSymbol class: this class basically sets up the drawing of

an association line.

 RootSymbol class: this class sets up the root of the association.

Developing an Editor for Drawing Class Diagram within WinCASE Framework Klaib at el.

JOPAS Vol.21 No. 1 2022 4

 DirectionSymbol class: this class initialises the direction

arrow, and also sets up its location.

 StartArrowSymbol class: it initialises an arrow head and

draws it at the beginning of an association line.

 EndArrowSymbol class: this class initialises an arrow head

and draws it at the end of an association line.

 StartMultiplicitySymbol class: this class defines the first

multiplicity part and fits it in the specified place.

 EndMultiplicitySymbol class: this class defines the end

multiplicity part and puts it at the end of an association line.

 NameSymbol class: this class defines the association name.

Figure 7-b shows the structure of these classes.

Having put all these classes in practice, and created class boxes, the

next step is to connect these boxes. This can be carried out by clicking

the association icon, and drawing the association line from the source

to the target classes. As soon as the association line is drawn, the

window of edit properties appears on the screen, and then all the

properties can be entered. Figure 8 shows this window.

Fig. 8: The Edit properties window for associations

The AssociationCustomiser class controls this window and

customises it. Notice that this window gives good flexibility to the

user since it was designed very well. In other words, the multiplicities

have been put in priorities. The high priority multiplicities have been

implemented in radio buttons, so that decreases the chance of errors.

The lower priority multiplicities can be entered by choosing the

custom value radio button and customising the multiplicity. Having

entered the association name and the required multiplicities and

finally pressed the Ok button, the association appears in the specified

location and connects the classes. Figure 9 shows an example of a

class diagram.

Fig. 9: An example of a class diagram in WinCASE

6 Change Object Properties

The change functions of the objects are available in the class diagram

editor. In fact, these functions are defined by the Diagram class

which is the base class for setting diagrams. They are generic

functions, so they are available for all diagrams in the DFA

methodology. The change task can be done by right clicking with the

mouse on the object. This will display the object popup menu. This

menu contains some items that depending on the type of the object.

The popup menu of the class object contains four items which allow

the user to change or delete this object. Figure 10 shows this popup

menu. The editing properties task can be carried out by selecting the

“Properties” item. Clicking this item will display the Edit Properties

dialogue window, and then all the properties of this object will be

available to be changed.

Fig. 10: The popup menu for changing a class object properties

Fig 11 The popup menu for changing an association object

The popup menu of the association object contains four items. Figure

11 shows this popup menu. The highest item is the “Delete” and it

performs the deletion of an association with all its properties. The

next two items down need to be ignored since they are not related

with the class diagram. The lowest item down is the “Properties”.

Selecting this item will display the Edit Properties dialogue window,

so all the properties of this object will be available to be changed.

To conclude, having implemented all these functions, the

requirements of this research have been met. Furthermore, the class

diagram editor has built including the main functions.

Testing and Evaluation
Testing the functions of drawing diagrams is the basic testing task for

this research, since the fundamental aim of this research is drawing a

diagram and there is no numerical or data outputs.

1 Testing and Development

One of the development process parts was testing. As soon as any

class or even sometimes a fragment of code was finished, it was

tested immediately. This was to ensure that it functioned properly.

This kind of testing was found very convenient in the nature of this

research. This technique facilitates in errors detection early.

2 Testing Tasks

a) General Testing

First of all, a general testing was undertaken which tested the main

functions that are related with the main menu in the main frame of

WinCASE. This testing task also ensured that the class diagram was

integrated successfully within the WinCASE system.

b) Testing the Diagram Editor: this stage covers the drawing

class diagram functions. The Objects and Associations were tested

accordingly. Tests were carried out on the Class as well.

3 Usability Testing: the usability testing was carried out to discover

how easy and flexible the task of drawing a class diagram. This can

be carried out by giving the system to a number of users and letting

them to draw diagrams. Subsequently, ask these users some questions

in order to discover any limitation and complexity in the task and to

catch any suggestion that may improve this research. The target

number of the users are forty one. These users should be familiar with

the UML diagram notations. These users were asked number of

questions in order to evaluate this class diagram editor. Table number

1 demonstrates these questions.

TABLE 1: Demonstrates the Questions of Usability Testing

No Questions

1 Is the software easy to use?

2 Does the software run quickly?

3 Is user interface is user friendly?

4 Are the menus easy to use?

5 Are the items clear?

6 Is the navigation in the menu smooth?

Developing an Editor for Drawing Class Diagram within WinCASE Framework Klaib at el.

JOPAS Vol.21 No. 1 2022 5

In general, the answers of these questions were almost positive and

the users were comfortable with the editor functionality. There is just

one limitation that was found during the testing stage. The limitation

is related to the popup menus of changing the class and association

objects. These two menus are generic since they are generated by the

base class diagram. These menus contain some items that not needed

in the class diagram and therefore they should be disabled.

Conclusion
The aim of this paper is to develop an editor for drawing class

diagram within the WinCASE framework.. Thus, the class diagram

was implemented and integrated into the WinCASE tool.

Consequently, the editor was tested and evaluated. As a result, the

editor of the WinCASE has an editor for drawing a class diagram. To

conclude, the contribution of this research was an improvement of

the WinCASE by integration the class diagram which very important

diagram for software engineers that will use this tool.

References

[1]- Fuggetta, A., A classification of CASE technology. Computer,

1993. 26(12): p. 25-38.

[2]- Denton, M., Implementing Sequence Diagrams within the

WinCASE Framework. BSc, University of Sheffield, 2003.

[3]- Klaib, A., Data Models and the Dataflow Algebra within

WinCASE, in MSc Dissertation 2004/2005, Sheffield University:

Sheffield University.

[4]- Oxspring, R. and G. Manson, Implementing a PCSC Tool within

the WinCASE Framework. 3rd Year Dissertation, Department

of Computer Science, University of Sheffield, 2000.

[5]- Cowling, T., Extending the Eclipse Version of WinCASE,

UNIVERSITY OF SHEFFIELD.

[6]- Cowling, A., Basic System and Subsystem Structures in the

Dataflow Algebra, 2008, Department of Computer Science

Research Report CS-08-12, University of Sheffield.

[7]- Fowler, M., UML distilled: a brief guide to the standard object

modeling language. 2004: Addison-Wesley Professional.

[8]- Podeswa, H., UML for the IT Business Analyst. 2009: Course

Technology Press.

[9]- Sommerville, I., Software engineering 9th Edition. ISBN-10,

2011. 137035152: p. 18.

[10]- Cowling, A., Properties of The Synchronous Merge Operation

in the Dataflow Algebra, 2009, Department of Computer

Science Research Report CS-09-07, University of Sheffield.

[11]- Cowling, A., A Revised Denotational Semantics for the

Dataflow Algebra, 2006, Department of Computer Science

Research Report CS-06-11, University of Sheffield.

[12]- Cowling, A., A simplified abstract syntax for the dataflow

algebra, 2002, Department of Computer Science Research

Report CS-02-09, University of Sheffield.

[13]- Cowling, A., Normal Forms in the Dataflow Algebra, 2007,

Department of Computer Science Research Report CS-07-11,

University of Sheffield.

[14]- 14. Cowling, A. and M. Nike, Dataflow Algebra Specifications

of Pipeline Structures. Sheffield University CS-97-17, 1997.

[15]- Cowling, A.J., Dataflow algebras as formal specifications of

data flows. 1995: University of Sheffield, Department of

Computer Science.

[16]- Cowling, A., Equality and Inequality in the Dataflow Algebra,

2008, Department of Computer Science Research Report CS-

08-03, University of Sheffield.

[17]- Cowling, A., Fundamental Compositionality Properties of

Systems in the Dataflow Algebra, 2010, Department of

Computer Science Research Report CS-10-03, University of

Sheffield.

[18]- Cowling, A.J. and M. Nike, Using dataflow algebra to analyse

the alternating bit protocol, in Software Engineering for

Parallel and Distributed Systems. 1996, Springer. p. 195-207.

[19]- Starr, L. and S.J. Foreword By-Mellor, Executable UML: how

to build class models. 2001: Prentice Hall PTR.

[20]- Klaib, A. and L. Joan, Investigation into indexing XML data

techniques. 2014.

[21]- Thomson, C.D., Linking Dataflow Algebra with the CaDiZ Tool.

The dissertation can be referred to as 3rd Year Dissertation,

Department of Computer Science, University of Sheffield, 2001.

[22]- Cowling, A., An Operational Semantics for the Dataflow

Algebra, 2004, Department of Computer Science Research

Report CS-04-16, University of Sheffield.

[23]- Cowling, A., Operations for Composing Subsystems in the

Dataflow Algebra, 2008, Department of Computer Science

Research Report CS-08-13, University of Sheffield.

[24]- Klaib, A.A., Integrating Class Diagram within The WinCASE

Tool. framework, 2021. 2(4): p. 9.

