SEBHA UNIVERSITY JOURNAL OF PURE & APPLIED SCIENCES VOL.21 No. 1 2022

DOI: 10.51984/10PAS.v2111.1413

(»‘% @gu,'“”")

Sebha University Journal of Pure & Applied Sciences

Journal homepage: www.sebhau.edu.ly/journal/index.php/jopas

ddedailly Ll pgdall Lows Aol dlme

Developing an Editor for Drawing Class Diagram within WinCASE Framework

*Alhadi Klaib?, Ragab Ihnissi®, Abdelrahman Arbi¢

aDepartment of Software Engineering, Faculty of Information Technology, Elmergib University, Libya
bDepartment of Computer Engineering, Faculty of Engineering-Regdalayn, Sabratha University, Libya
‘Department of Electrical and Computer Engineering, Faculty of Engineering, Elmergib University, Libya

Keywords:

ABSTRACT

Software Engineering
CASE tools

UML

Class Diagram
WinCASE

Computer Aided Software Engineering (CASE) tools are significant for the software engineering
field. They provide great support to software developers. WinCASE tool is one of these tools.
Furthermore, dataflow Algebra is a methodology that used to describe a formal specification of a
system. Unified Modeling Language is a general purpose modlling language in the field of software
engineering. Class diagram is one of the UML diagrams which illustrates the system objects. This
paper aims to upgrade the WinCASE tool by implementing the Class diagram within the framework
of this tool. Therefore, this paper studied the previous work and the background of the WinCASE.
Subsequently, the class diagram was implemented into WinCASE framework; and then tested, and
evaluated successfuly as well. Consequently, the WinCASE has been provided with an editor for
drawing the class diagram.

WINCASE 5151 § darLesly (odSI! Jalases ooyl) yoms yuglas

Sl e llaie 92 i ey 5ol e ol I
Ll el Bl —nloglall 2085 206 e tlima] Bt s
Lol o Znalar « 1B - oIl S csganlndl Bnntin s’

Letd eyl Anals — Bl 2 e gl Bactin 5 2Ly S0l o

Ao lial | LS

ol

Sl dwia
CASE usS =l
Susoll A el daS
SIS Lk

. WInCASE 3lsf

Less 895 Ll Cume Slimandl dwia Jlze G dage (CASE) cilizmo pdl duwnia Jlms 448 sucludl clgs¥l juaas
5a (DFA) Sbiladl 3805 az old Ui 28LsYL .clea¥l oda gam 2 WINCASE 51581 .culmandl 555kl 1S
Lalall o, e 2o das 230 e Bl (2 (UML) s sl 2o daill 48] cogaolind | ol o) et duzmqio pllss
Bugll dxdeal dad lhalaies usf g (Class Diagram) (ISOH Lalases . lizo il docia Jlze § g sles iy
s § 4zl I Lalases igats I (oo WINCASE 311 gkas) 2851 s.ia b allasll Sl g (&)
w0953 @3 « JUdlg Lyl 7 Ly danidiig o)lisl o3 @3 ¢ B1a¥1 s da 3 dxlesly LS Lalases duais @3«) B1aY

eyl Juaal) alases o) 50y WINCASE

Introduction:

Computer Aided Software Engineering (CASE) Tools are
considerably useful since they provide support for software
engineering. Thus, CASE tools have been developed quickly. They
also offer easy and flexible approaches for software developers to
build systems. Historically, these tools appeared in the 1980s.
However, they were developed rapidly, particularly in the first
decade. To summarize, these tools provide many advantages, such as
saving time, effort and money, as well as offering high reliability [1-
4]. WIinCASE is one of the CASE tools. Initially, it was intended to

be a configurable CASE tool for experimental purposes [2, 5]. It has
been further developed several times over a while. First of all, it was
adapted for use of Parallel Communicating Sequential Code (PCSC)
methodology. Subsequently, DataFlow Algebra (DFA) methodology
was incorporated within WinCASE. Lastly, Sequence Diagrams in
UML notation were implemented within WinCASE[3, 6].

Essentially, DFA is a methodology used to describe a formal
specification of a system. This methodology was incorporated into
WInCASE. As a result, the specifications of DFA can be created

*Corresponding author:

E-mail addresses: alhadi.klaib@elmergib.edu.ly ,(R. Ihnissi) ragab000_abd@yahoo.com ,(A. Arbi) asarbi@elmergib.edu.ly
Article History : Received 11 November 2021 - Received in revised form 25 December 2021 - Accepted 01 January 2022

file:///C:/Users/DELL/Downloads/www.sebhau.edu.ly/journal/index.php/jopas
mailto:alhadi.klaib@elmergib.edu.ly
mailto:ragab000_abd@yahoo.com
mailto:asarbi@elmergib.edu.ly

Developing an Editor for Drawing Class Diagram within WinCASE Framework

Klaib at el.

automatically with this tool. In addition, UML is a standard language
of graphical notations. It is used for building and documenting the
artefacts of huge systems, particularly software systems[3, 4]. A class
diagrams in UML notation illustrate the types of system objects and
different types of static relationships that exist between these objects.
Furthermore, class diagrams illustrate the properties of classes, and
the restrictions that apply to the approach used to link objects[6-15].
Therefore, the main objective of this paper is to investigate the
possibility of developing the current DataFlow Algebra (DFA)
methodology within WinCASE framework by integrating the class
diagram (CDs) in UML notation within this framework [1, 3, 4, 7,
16-24]. Thus, a review for WinCASE framework needs to be carried
out in order to ensure the feasibility of extending and adapting the
existing system and repository to include the class diagram. In other
words, WIinCASE tool needs to be enhanced to allow the new
diagram to work effectively.

To summarise, the remainder of this paper is organised as follows;
the the second section describes the mplementation of class diagram
within the WIinCASE. Section three demonstrates the testing and
evaluation. Section four discusses the conclusion of this research.

Comparison with Related Work

The WInCASE was invented in the 1990s by Dr. Manson in the
Department of Computer Science at the University of Sheffield.
The WInCASE tool was intended to be a fully configurable CASE
tool for experimental purposes. As its name may suggest, it was
adapted very much towards providing a system that can be run under
a particular proprietary operating system. Basically, the WinCASE
system provides the function of constructing diagrams from objects
and abiding rules. The methodology in the WIinCASE is a set of
diagrams that are visual components. Properties of methodology
objects are defined as separate components. This feature gives
WInCASE a great deal of flexibility since these properties can be
easily customised by a methodology engineer [3, 4]. Wyles
implemented the DFA methodology within WinCASE framework.
The repository of the WinCASE was expanded in order to integrate
the DataFlow Algebra. Thus, an editor for data flow diagrams was
also provided. Aida Manan implemented a state chart diagram within
the WinCASE framework in 2005. Di Liu studied the integration of
WInCASE tool into Eclipse. Joseph Czucha implemented the
development of diagram editors within the WinCASE framework.

Implementation

The basic development process was iterative, and it was found out
that this is a suitable approach to implementing the class diagram
with the smallest possible work stages. The approach was essentially
applied to the object packages. The advantage of this approach is that
it allows every small step in the work to be tested. It also minimises
the potential errors in the project and makes error detection an easy
task, and as a result the project goes smoothly.

1 Initialization of Class Diagram

First of all, the class diagram has been defined for the DFA
methodology by adding a fragment of code into the
DFAMethodology class. Consequently, any project file that is created
will contain automatically this diagram type. The code fragment for
defining the class diagram within the DFA is illustrated below.

// here where new kind of diagram can be defined
Class cdClass = Class.forName(suffix + "CD.CLSDiagram”);
addDiagramType("UML class", cdClass);

As can be seen, this code indicates the location of the class that

defines this type of diagram. This class is the one called CLSDiagram.

It also provides the system with the type name of the diagram. The
next step passes this information to the Methodology class, which
creates this diagram and adds it to the repository. Thus, the system
will confirm this diagram and update itself where needed. Notice that
this fragment of code is vital to add a new diagram to the DFA
methodology as it sets up the basics of this diagram. In order to make
the class diagram available in the WinCASE system, a new project
file is created. Consequently, the Diagram menu is updated

automatically, so the New UML class item appeared in the Diagrams
menu. Figure 1 shows this menu.

£ WinCASE v2.1

Project REELENH

Mew Data Flow
Mew Sequence
Mew UML class
Generate DFA

Fig. 1: The diagrams menu including the Class Diagram

The UML Class item also appears automatically in the Choose
Diagram window, which pops up by the Open item in the Diagrams
menu to open an existing diagram. Figure 2 shows this window. To
summarise, by just defining the new type of diagram into
DFAMethodology class, the WiIinCASE system is updated
automatically where needed for every new project file.

< Choose Diagram
|| Project
= || Diagramns

| Dt Flavay

] Sequence

=] UML class
] wewewy UMLClass
] dopdop UMLClass

Fig. 2: The choose diagram window includes the UML class

2 Open Project file

Having chosen a New UML class from the Diagrams menu, a small
window appears to provide a name for this diagram. Figure 3 shows
this window. In fact, this window is a generic one and it is invoked
by the method NewDiagramAction in the MainFrame class, so it
works with all kinds of diagrams within the WinCASE system.

Name Diagram

@ Please supply a name for the diagram:

[(a]4] [Cancel]

Fig. 3: Entering a new diagram name

As soon as a new diagram is created or an existing one opened, the
sub window for drawing a class diagram pops up. It has the diagram
name and its extension to show the diagram type, as can be seen in
figure 4. This window also includes icons that invoke the creation of
class and association objects, as well as the navigation function.

JOPAS Vol.21 No. 1 2022

Developing an Editor for Drawing Class Diagram within WinCASE Framework

Klaib at el.

EEX

= WinCASE v2.1

Project Diagrams Tools

+ Test.UMLClass

This icon is used to
create an association

L This icon is used to
create a class object
i

This icon is used to move
objects around the window

Fig. 4: Class Diagram editor

3 CLSDiagram Class:

The CLSDiagram class is the main one and plays a vital role in this
research. This class was located in the CD package in order to match
the WInCASE structure. Essentially, this class was designed in a
similar way to the DFDDiagram class. This gives significant
advantages to this project and reduces the potential errors and also
provides consistency of the diagrams in the DFA methodology and
the repository.

In practice, the CLSDiagram class sets up the methodology objects
of the class diagram, namely the Object and the Association. This
class also sets up the connectivity among objects. Notice that the only
connection that needs to be set up in this project is Object to Object.
The getNameExtension method in this class returns the extension of
this type of diagram, which in this case is UMLClass. Therefore, the
repository can distinguish between the types of diagrams. Figure 5
shows the CLSDiagram class.

CLSDiagram

+getValidTvpes() {...}

+ CLSDiagram(){...}

+zetPalette(){...}

+init(){...}

+getNameExtension(){...}
+pullThrough(IMethodologyObject) {...}

Fig. 5: CLSDiagram class

4 Class Object

In terms of the WinCASE structure, the class object is represented by
the Entity package. This package is the main storage for all classes
related with this object.

The main classes in this package are the EntityMethodologyObject,
EntityCustomiser and EntityMethodologyObjectBeaniInfo. These
classes define and customise the class object. To start with the
EntityCustomiser class is an important class since it sets all the
properties of this object, which are the class name, five attributes and
five operations.

The class EntityMethodologyObjectBeaninfo works along with the
EntityCustomiser to customise this object. The
EntityMethodologyObiject is the main class as it defines all the
properties and representations of this object by the constructor
method EntityMethodologyObject().

The NormalRepresentation class is also an important class as it is
responsible for representing all the properties and symbols of the
class object, such as the class box and the attributes. It also sets up
the connection points for connecting this object with associations.
There are four points which have been set around the object. This
class exists in the Representations.Normal package.

With regard to the locations, the class properties occupy the
Properties package within the Entity package. The symbols of an
object occupy the Symbols package in the Representation.Normal
package.

Essentially, the class symbols set the appearance and characteristics
of all components of this object. For instance, the DefaultSymbol
class sets the dimensions and other characteristics of a class box such

as the its colour. The other symbol classes play similar roles such as
setting the locations and the characteristics for the class name,
attributes, and operations. Having put these classes and functions
into practice, and opened or created a class diagram, the specified
window appears in the main window. Consequently, a class object
can be drawn by clicking the class icon and then clicking on the
required location in this window. Therefore, the Edit Properties
window appears in the screen and gets ready to enter the object
properties. Figure 6 -a shows this window. Notice that all the
properties of class object can be entered through this window. Having
entered these properties and clicked the Ok button, the class box
appears in the specified location. Figure 6- b shows an example of an
object appearance.

£ WinCASE v2.1

Project Diagrams Tooks
+ Test.UMLClass

The Class bame

[Attringes | RO —
T T e e —

[Eperations | 5

oparstions 1 operations 2 cperations X oparstions & operetions: 5 isPrepad

number
price
) carce |

dispatch
close

a) Edit properties window b) class object sample

Fig, 6: Shows The Edit properties window, and a class object
sample

5 Association object
A package called Association is created to hold all the details about
this object. Essentially, this package includes the Properties and
Representations packages, as well as the AssociationCustomiser,
AssociationMethodologyObject and
AssociationMethodologyObjectBeanInfo classes. These classes are
similar to those existing in the Entity package that has been described
above.
The Properties package has the following classes:
o NameProperty class: this class defines the name of the
association object.
o StartMultiplicityProperty: this class defines the first part of the
multiplicity.
o EndMultiplicityProperty: this class defines the last part of the
multiplicity.
o DecompositionProperty: this class defines the decomposition of
a class object.
Figure 7-a illustrates the structure of these classes.

= ##1 MethodologyObijects. Association. Representations. Normal. Symbols
+ ¢J] DetaultSymbol.java
4 1] DirectionSymbol.java
= {§3.DF A MethodologyObjects. Association. Properties + pf) EndarrowSymbol.java
+ pJ] DecompositionProperty.java +] EndassociationSymbol.java
p] EndAssociationProperty.java + ¢] LabelSymbol.java
3] NameProperty java +] LineSymbol.java
+] StartAssociationProperty.java + g NameSymbol java
+] RootSymbol java
+] StartArrowSymbol.java
+] StartAssociationSymbol java
a- the classes of the properties b- the classes of the symbols

Fig. 7: The structure of the Classes of the properties and the
symbols of an Association object

The Representation package holds a package called Normal. The
function of this package is the normal representation. Furthermore,
the Normal package contains the NormalRepresentation class, which
sets up the connections of this association with class objects. It also
sets up all the symbols of this object such as the multiplicities and the
direction arrow. The Normal package also includes the Symbols
package. This package contains classes that define all the symbols of
this object as follows:

. LineSymbol class: this class basically sets up the drawing of

an association line.
. RootSymbol class: this class sets up the root of the association.

JOPAS Vol.21 No. 1 2022

Developing an Editor for Drawing Class Diagram within WinCASE Framework

Klaib at el.

. DirectionSymbol class: this class initialises the direction
arrow, and also sets up its location.

. StartArrowSymbol class: it initialises an arrow head and
draws it at the beginning of an association line.

. EndArrowSymbol class: this class initialises an arrow head
and draws it at the end of an association line.

. StartMultiplicitySymbol class: this class defines the first
multiplicity part and fits it in the specified place.

3 EndMultiplicitySymbol class: this class defines the end
multiplicity part and puts it at the end of an association line.

. NameSymbol class: this class defines the association name.

Figure 7-b shows the structure of these classes.
Having put all these classes in practice, and created class boxes, the
next step is to connect these boxes. This can be carried out by clicking
the association icon, and drawing the association line from the source
to the target classes. As soon as the association line is drawn, the
window of edit properties appears on the screen, and then all the
properties can be entered. Figure 8 shows this window.

£ Edit Properties

[Assacistion Properties |
[Start Mutiplcity | [End Mutiplity]

Assocition Name: | class Ceone OF Q0.1 O Custom vale Qone OO0 O Custom value:
oK Cancel

Fig. 8: The Edit properties window for associations

The AssociationCustomiser class controls this window and
customises it. Notice that this window gives good flexibility to the
user since it was designed very well. In other words, the multiplicities
have been put in priorities. The high priority multiplicities have been
implemented in radio buttons, so that decreases the chance of errors.
The lower priority multiplicities can be entered by choosing the
custom value radio button and customising the multiplicity. Having
entered the association name and the required multiplicities and
finally pressed the Ok button, the association appears in the specified
location and connects the classes. Figure 9 shows an example of a
class diagram.

= WinCASE v2.1

Project Diagrams Tools

£ Test.UMLClass
O

[order | inlici [customer |
Class box Start multiplicity
DateRecieved — ame
isPrepaid End multiplicity address
number birthdate
price 1 oxder

..
dispatch » etCreditRating

close Association name ilF orMonth
criditLimit
Direction arrow
v

Fig. 9: An example of a class diagram in WinCASE

6 Change Object Properties

The change functions of the objects are available in the class diagram
editor. In fact, these functions are defined by the Diagram class
which is the base class for setting diagrams. They are generic
functions, so they are available for all diagrams in the DFA
methodology. The change task can be done by right clicking with the
mouse on the object. This will display the object popup menu. This
menu contains some items that depending on the type of the object.
The popup menu of the class object contains four items which allow
the user to change or delete this object. Figure 10 shows this popup
menu. The editing properties task can be carried out by selecting the
“Properties” item. Clicking this item will display the Edit Properties
dialogue window, and then all the properties of this object will be
available to be changed.

Delete
Deep Delete
[Definition...]

Properties

Fig. 10: The popup menu for changing a class object properties

Delete

Deep Delete

Properties

Fig 11 The popup menu for changing an association object

The popup menu of the association object contains four items. Figure
11 shows this popup menu. The highest item is the “Delete” and it
performs the deletion of an association with all its properties. The
next two items down need to be ignored since they are not related
with the class diagram. The lowest item down is the “Properties”.
Selecting this item will display the Edit Properties dialogue window,
so all the properties of this object will be available to be changed.

To conclude, having implemented all these functions, the
requirements of this research have been met. Furthermore, the class
diagram editor has built including the main functions.

Testing and Evaluation

Testing the functions of drawing diagrams is the basic testing task for
this research, since the fundamental aim of this research is drawing a
diagram and there is no numerical or data outputs.

1 Testing and Development

One of the development process parts was testing. As soon as any
class or even sometimes a fragment of code was finished, it was
tested immediately. This was to ensure that it functioned properly.
This kind of testing was found very convenient in the nature of this
research. This technique facilitates in errors detection early.

2 Testing Tasks

a) General Testing

First of all, a general testing was undertaken which tested the main
functions that are related with the main menu in the main frame of
WInCASE. This testing task also ensured that the class diagram was
integrated successfully within the WinCASE system.

b) Testing the Diagram Editor: this stage covers the drawing
class diagram functions. The Objects and Associations were tested
accordingly. Tests were carried out on the Class as well.

3 Usability Testing: the usability testing was carried out to discover
how easy and flexible the task of drawing a class diagram. This can
be carried out by giving the system to a number of users and letting
them to draw diagrams. Subsequently, ask these users some questions
in order to discover any limitation and complexity in the task and to
catch any suggestion that may improve this research. The target
number of the users are forty one. These users should be familiar with
the UML diagram notations. These users were asked number of
questions in order to evaluate this class diagram editor. Table number
1 demonstrates these questions.

TABLE 1: Demonstrates the Questions of Usability Testing
No Questions
Is the software easy to use?
Does the software run quickly?
Is user interface is user friendly?
Are the menus easy to use?
Are the items clear?
Is the navigation in the menu smooth?

DO WN P

JOPAS Vol.21 No. 1 2022

Developing an Editor for Drawing Class Diagram within WinCASE Framework

Klaib at el.

In general, the answers of these questions were almost positive and
the users were comfortable with the editor functionality. There is just
one limitation that was found during the testing stage. The limitation
is related to the popup menus of changing the class and association
objects. These two menus are generic since they are generated by the
base class diagram. These menus contain some items that not needed
in the class diagram and therefore they should be disabled.

Conclusion

The aim of this paper is to develop an editor for drawing class
diagram within the WinCASE framework.. Thus, the class diagram
was implemented and integrated into the WIinCASE tool.
Consequently, the editor was tested and evaluated. As a result, the
editor of the WinCASE has an editor for drawing a class diagram. To
conclude, the contribution of this research was an improvement of
the WIinCASE by integration the class diagram which very important
diagram for software engineers that will use this tool.

References

[1]- Fuggetta, A., A classification of CASE technology. Computer,
1993. 26(12): p. 25-38.

[2]- Denton, M., Implementing Sequence Diagrams within the
WinCASE Framework. BSc, University of Sheffield, 2003.

[3]- Klaib, A., Data Models and the Dataflow Algebra within

WinCASE, in MSc Dissertation 2004/2005, Sheffield University:

Sheffield University.

[4]- Oxspring, R. and G. Manson, Implementing a PCSC Tool within
the WinCASE Framework. 3rd Year Dissertation, Department
of Computer Science, University of Sheffield, 2000.

[5]- Cowling, T., Extending the Eclipse Version of WinCASE,
UNIVERSITY OF SHEFFIELD.

[6]- Cowling, A., Basic System and Subsystem Structures in the
Dataflow Algebra, 2008, Department of Computer Science
Research Report CS-08-12, University of Sheffield.

[7]- Fowler, M., UML distilled: a brief guide to the standard object
modeling language. 2004: Addison-Wesley Professional.

[8]- Podeswa, H., UML for the IT Business Analyst. 2009: Course
Technology Press.

[9]- Sommerville, 1., Software engineering 9th Edition. ISBN-10,
2011. 137035152: p. 18.

[10]-Cowling, A., Properties of The Synchronous Merge Operation
in the Dataflow Algebra, 2009, Department of Computer
Science Research Report CS-09-07, University of Sheffield.

[11]-Cowling, A., A Revised Denotational Semantics for the
Dataflow Algebra, 2006, Department of Computer Science
Research Report CS-06-11, University of Sheffield.

[12]-Cowling, A., A simplified abstract syntax for the dataflow
algebra, 2002, Department of Computer Science Research
Report CS-02-09, University of Sheffield.

[13]-Cowling, A., Normal Forms in the Dataflow Algebra, 2007,
Department of Computer Science Research Report CS-07-11,
University of Sheffield.

[14]-14. Cowling, A. and M. Nike, Dataflow Algebra Specifications
of Pipeline Structures. Sheffield University CS-97-17, 1997.

[15]-Cowling, A.J., Dataflow algebras as formal specifications of
data flows. 1995: University of Sheffield, Department of
Computer Science.

[16]-Cowling, A., Equality and Inequality in the Dataflow Algebra,
2008, Department of Computer Science Research Report CS-
08-03, University of Sheffield.

[17]-Cowling, A., Fundamental Compositionality Properties of
Systems in the Dataflow Algebra, 2010, Department of
Computer Science Research Report CS-10-03, University of
Sheffield.

[18]-Cowling, A.J. and M. Nike, Using dataflow algebra to analyse
the alternating bit protocol, in Software Engineering for
Parallel and Distributed Systems. 1996, Springer. p. 195-207.

[19]-Starr, L. and S.J. Foreword By-Mellor, Executable UML: how
to build class models. 2001: Prentice Hall PTR.

[20]-Klaib, A. and L. Joan, Investigation into indexing XML data
techniques. 2014.

[21]-Thomson, C.D., Linking Dataflow Algebra with the CaDiZ Tool.
The dissertation can be referred to as 3rd Year Dissertation,
Department of Computer Science, University of Sheffield, 2001.

[22]-Cowling, A., An Operational Semantics for the Dataflow
Algebra, 2004, Department of Computer Science Research
Report CS-04-16, University of Sheffield.

[23]-Cowling, A., Operations for Composing Subsystems in the
Dataflow Algebra, 2008, Department of Computer Science
Research Report CS-08-13, University of Sheffield.

[24]-Klaib, A.A., Integrating Class Diagram within The WinCASE
Tool. framework, 2021. 2(4): p. 9.

JOPAS Vol.21 No. 1 2022

