
 
SEBHA UNIVERSITY JOURNAL OF PURE & APPLIED SCIENCES  VOL.21 NO. 4 2022 

DOI: 10.51984/JOPAS.V21I4.2140 
 

  

 

ة والتطبيقيةتجامعة سبها للعلوم البح مجلة  
Sebha University Journal of Pure & Applied Sciences 

Journal homepage: www.sebhau.edu.ly/journal/index.php/jopas 

 

 

Corresponding author:  

E-mail addresses: al.aburas@uot.edu.ly  

Article History : Received 31  May 2022 - Received in revised form 01 September 2022 - Accepted 03 October 2022 

A Comparative Study of Automated Testing Tools for Spreadsheets 

Ali Aburas 

Department of Computer Science, Faculty of Science, University of Tripoli, Tripoli, Libya 
 

Keywords: 

Automated Tools 

End-user 

Errors 
Spreadsheets 
Testing 

 A B S T R A C T 

Organizations and industries use spreadsheet programs, such as MS Excel, for various tasks, such as 
accounting, financial calculations, and reporting. However, the number of spreadsheets that contain 

errors is very high. One primary reason is that different end-users develop spreadsheets without 
programming or software development training. Thus, researchers have proposed a variety of automated 
tools and techniques to support the end-users in finding and fixing errors in spreadsheets. The main 
objective of this paper is to study different automated tools in spreadsheet testing and classify them 
according to two criteria: how they work and the ability to find spreadsheet faults. For this purpose, we 
discuss various spreadsheet testing automated tools, techniques, and strategies. In addition, we highlight 
their performance and where they can be used so that they can be beneficial to both end-users and 
researchers. We then set out key directions for potential future works. 
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Introduction 
The flexibility afforded by spreadsheet programs allow end-users and 
many organizations to use spreadsheets for various purposes such as 

accounting, financial calculations, reporting, and decision supporting 
tasks [1]. Spreadsheet programs are one of the most well-known 
programming systems among end-user programmers. End-users can 
easily use them without requiring training in programming [2]. In 
general, end-users often write spreadsheet programs to support their 
work or for personal use, and they do not have a solid background in 
computer science [2]. For example, a teacher can create a spreadsheet 
file to calculate grades, track attendances, and class schedules during 
the school year. 

Since spreadsheets are, in most cases, created by end-users who are 
self-taught and have no education in software engineering, the error 

rate is assumed higher than in traditional software [3]. An experiment-
based study on spreadsheet development reports that more than 95% 
of spreadsheets contain at least one error [4]. The implications of the 
errors in a spreadsheet are severe, and the consequences could be very 
costly for organizations, e.g., massive financial loss or loss of 
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قطاعات المؤسسات والصناعات برامج جداول البيانات، مثلا ميكروسوفت اكسل، لمختلف المهام، مثلا تستخدم 

في المحاسبة والحسابات المالية وإعداد التقارير. ومع ذلك، فإن عدد جداول البيانات التي تحتوي على أخطاء 
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reputation*. To minimize these risks, it is essential to support end-users 
with appropriate methods and techniques to find and fix such faults. 
Testing is essential for ensuring the correctness of spreadsheets [5]. 
Testing can be performed either manually or automatically. Manual 
testing is time-consuming and requires more effort [6]. A study shows 

that end-users typically underestimate the required testing effort, 
generating tests that are largely manually and generally not 
comprehensive [7]. Due to the need to ensure spreadsheet quality, 
researchers have proposed various automated approaches to prevent, 
detect, and remove spreadsheet errors. 
This research intends to study and compare automated testing 
spreadsheet tools’ concepts, features, and errors detection ability. 
Furthermore, we will classify a set of automated spreadsheet testing 
tools and distribute them over the type of approaches for preventing, 

detecting, and correcting spreadsheet errors. The fundamental goal is 
to analyze the features supported by these automated spreadsheet 
testing tools that aid in minimizing the resources in creating and 
testing spreadsheet files and increasing efficiency for maintenance and 
reuse of spreadsheet files. 
The rest of this paper is organized as follows: Section II presents a 
variety of effective approaches for preventing, detecting and 
correcting spreadsheet errors. Then, Section III contains a full 

discussion of potential future works. Finally, a conclusion statement 
about the studied approaches is given. 

TYPES OF APPROACHES 
Spreadsheet programs like MS Excel lack any higher-level 
abstractions and include limited functionality to help end-users to 
create error-free spreadsheets that implement complex models. As a 
result, end-users make errors when creating or reusing complex 
spreadsheet files. Researchers have developed different approaches 

that engage various software engineering activities to support end-
users in the error detection and fault localization process. These 
approaches are generally focused on preventing, detecting, and 
removing errors from spreadsheets. This section will illustrate some 
error prevention, auditing, testing, and automatic consistency 
checking approaches to help end-users create error-free spreadsheets. 

1. Preventing errors 
Spreadsheets are error-prone because they do not impose any 

restrictions on the kinds of updates that can be carried out. For 
example, end-users copy and paste formulas or even drag on a cell to 
fill another column, which can introduce severe errors and make it 
difficult to find them if references are not correctly updated [8]. This 
problem has led to the development of approaches, which are called 
preventing errors, that help end-users to create spreadsheets that do not 
have errors in the first place [9]. 
Researchers found that programmers make fewer syntax errors and 
focus on the logic of a program when they use a block-based language 

instead of a textual-based one [10]. As a result, researchers use visual-
based approaches to provide end-users with a visually enhanced 
representation of some aspects of the spreadsheet to understand its 
basic structure and dependencies between the formulas [9]. Visual-
based approaches aim to reduce formula errors and increase end-users 
efficiency while end-users edit and construct formulas. It does so by 
interactively visualizing hidden data and formulas. Thus, end-users 
can immediately see relevant data and results. In addition, visualizing 

referenced data and formulas is especially helpful for end-users 
working with large spreadsheets when navigating between different 
cells, formulas, and multiple sub-sheets. 
Jansen and Herman [11] developed a block-based formula editor, 
called XLBlocks, for spreadsheets to support end-users while 
developing or maintaining formulas. XLBlocks aims to create 
formulas with a block-based language instead of the default textual 
formula language and translate them automatically into valid 

spreadsheet formulas. XLBlocks also introduces new, more 
straightforward functions to use than some built-in Excel functions 
such as SUM, SUMIFS, IFERROR, INDEX, MATCH, VLOOKUP, 
IF, −, /, >, and <. 

 

 

 
* http://www.eusprig.org/horror-stories.htm 

As shown in Fig. 1, the user defines the formula in (a), and gives the 
formula a name (b). The user also has to specify cells in the 
spreadsheet that will receive this formula (c), and the functions that 
are used in the formula. The user can add comments, which are not 
transferred to the spreadsheet [11]. 

 

 
Fig. 1: Example of a block definition of a SUMIFS formula. 

 
A think-aloud study [12] investigated the feasibility of this approach, 
and it showed that XLBlocks helps end-users create formulas without 
considering the syntax of the formulas. In addition, editing a formula 
part is easier in XLBlocks than the default text-based formula editor 
because it can easily drag and drop different parts of the formula. 
Research on the showing computation in spreadsheets has shown that 

they positively affect the comprehension of the spreadsheet’s formulas. 
Another advantage of showing the spreadsheet’s formulas is that it 
minimizes the risk of introducing new errors during debugging and 
maintenance tasks. 
Sarkar et. al. [13] also introduced Calculation View, a multiple-
representation approach for viewing formulas and their groupings. 
Their approach uses a simple textual syntax for copying a formula into 
a block of cells and naming cells or ranges and referring to those names 
in other formulas. Calculation View allows end-users to give domain-

relevant names for grid cell references; for example, they can refer to 
cell B2 as TaxRate, which is easier to read, makes formulas faster to 
type, debug and easy to update. Figure 2 depicts the ability of assign 
names and assign formulas to individual cells. 
A user study was conducted with 22 participants who had prior 
experience with spreadsheets to assess the effectiveness of Calculation 
View. One goal of the study was to evaluate if the subjects would 
create and reason about spreadsheets with less manual and cognitive 

effort. The study shows that Calculation View improves the subjects’ 
performance when performing copy/paste and debugging tasks. The 
end-users also tend to make fewer errors in editing a block of formulas 
and can focus on the logic of the formulas when they use Calculation 
View instead of a textual one. 
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Fig. 2: Calculation View views the formulas in abstract operations 
such as range assignment and cell naming. 
 
The prevention error approaches require additional programming in a 
new language that end-users must learn, which can be very time-

consuming. Therefore, researchers have explored different approaches 
to visualize the computation hiding and identify groups of related cells 
in spreadsheets. The following section shows some automated 
techniques that aim to assist end-users with detecting and debugging 
spreadsheet formulas via visualization. 

2. Detecting and Fixing errors 
Researchers have developed different static checkers approaches and 
tools for automated fault localization. Such approaches are based on 
static code analysis that analyzes the tables, the formulas, and the 

dependencies between them [9]. They are designed to help end-users 
detect or remove errors, particularly during maintenance and 
debugging activities [1].  
Schmitz et al. [14] proposed an approach that automatically partitions 
a large spreadsheet into a set of semantically equivalent calculation 
areas called “fragments.” Once such areas are identified, the end-user 
is only required to check the correctness of a smaller part (i.e., one 
copy of the calculations) of the fragment. If this part is considered 

correct, the other areas containing identical calculations are also 
assumed to be correct. Their approach starts by defining a base 
fragment that only contains cells that share the same column or row 
with another fragment cell. The base fragment comprises either a 
single formula or a set of copy-equivalent formulas, i.e., they do the 
same calculations but use different inputs. Then, the base fragments 
are merged into larger ones in an evolutionary process to reduce the 
complexity when searching for the possible causes of the problem. 

Barowy et al. [8] also proposed a learning-based approach, called 
ExceLint, that identifies likely spreadsheet errors based on 
discrepancies with other nearby formulas. ExceLint extracts data 
dependencies for every formula in the given spreadsheet by parsing a 
sheet’s formulas and building the program’s data-flow graph. Then, 
ExceLint exploits the intrinsically rectangular layout of spreadsheets 
to identify homogeneous, rectangular regions that contain formulas 
with identical reference behavior. Finally, ExceLint identifies suspect 

formulas by comparing cells to adjacent rectangular regions. To 
determine whether a formula is likely to be an error, ExceLint uses the 
cell’s position in the layout and identifies formulas that are especially 
surprising disruptions to nearby rectangular regions.  
Recently, a lot of effort has been put into exposing end-users to 
machine learning (ML), such as spam filtering and recommendation 
systems. ML is a subset of artificial intelligence where statistical 
algorithms process a large of data to build a model to become more 
accurate at predicting outcomes without being explicitly programmed. 

There are two types of ML-based learning algorithms: supervised and 
unsupervised algorithms. In supervised learning algorithms, systems 
are able to predict based on past data. The learning algorithms require 
labeled input and output data to train and build a model. Then, they 
identify patterns in data, learn from observations, and make 
predictions. On the other hand, unsupervised algorithms identify 
hidden patterns and determine the correlations and relationships from 
unlabeled data provided. The algorithms try to group the data into 

clusters, and the anomalies become more evident. The rise in data 
availability has encouraged researchers to apply ML-based techniques 
to make inferences and predict faults in spreadsheets.  
Cheung et al. [15] proposed CUSTODES which uses an unsupervised 
learning-based approach to automatically detect faults in spreadsheets. 
First, it computes different features of spreadsheets and then uses 
cluster algorithm to put all cells with similar formulas in one group. 
Then, CUSTODES predicts if a cell is faulty if it is not in the identified 

group. CUSTODES utilizes strong features to extract similar cells and 
put them in one cluster. For examples, cell formulas and cell reference 
relations those cells in [F11:F16] in Fig 3. CUSTODES also refines 
each cluster by using weak features, such as cell labels, standard 
layouts, and fonts. For example, the header “Total” in F9 can be used 
to cluster cells in F11 to F19. CUSTODES identifies outlier cells as 
smells if they cannot be clustered or grouped. For example, cell F17 
might be faulty since it contains a value, whereas cells from F11 to 

F19 comprise formulas. 

 
Fig. 3: An example for illustrating CUSTODES’s whole cluster 

technique. 
 
Regarding the CUSTODES clustering technique evaluation, the 
experiment showed that CUSTODES was able to detect up to 78% of 
the faulty cells in 70 spreadsheets files randomly sampled from the 
EUSES corpus. 

Koch et al. [16] proposed an approach that uses spreadsheet metrics 
with Random Forests (RF) as an ML-based technique to predict faults 
in spreadsheet formulas. The main idea of their approach is to use a 
set of collection of spreadsheets containing labeled faulty formulas, 
incorrect or correct, to train an ML model for fault prediction. They 
selected a set of 64 metrics, such as the cell’s column number 
(position), the number of any references to empty cells, and the 
number of references to other spreadsheets, as a learning dataset. The 
learning set is obtained by taking the labeled spreadsheet as input and 

computing a value for each formula of the spreadsheet. Their approach 
utilizes Random Forests (RF) to return the likelihood of unseen a 
formula is faulty. An evaluation of their approach on different datasets 
containing faulty spreadsheets showed that Random Forests (RF) 
could predict spreadsheets’ faults.  

A spreadsheet file is a table, a rectangle block of cells describing a 
business process. A table contains two elements: the header region and 
the data region. Spreadsheet programs, such as MS Excel, do not 
provide documentation to show clear table structure information. 
Identifying spreadsheet semantic table structures can help end-users 
understand the spreadsheet, which is a fundamental step in detecting 

errors. Therefore, Zhang et al. [17] proposed an automated approach 
called TasiError (Table Structure Identification Error Detection). 
TasiError uses a multi-classifier, e.g., Random Forest, Logistic 
Regression, and Decision Tree, to train the model and automatically 
identifies semantic table structures in spreadsheets. TasiError detects 
two types of most common errors: missing formulas and formula 
errors. They evaluated their approach and compared it with other 
existing tools, CUSTODES [15], and [8]. TasiError outperforms the 

other existing tools. These results show that semantic table structures 
can help error detection in spreadsheets.  
Testing is an important approach to identify errors, reveal failures, and 
to assure the quality of software systems [5]. That is why developers 
test their programs and spend a large amount of time identifying and 
correcting errors within their programs [9]. The following section 
shows some testing approaches in the context of spreadsheets. 

3. Testing Spreadsheets 

Recent studies highlighted several challenges of testing in 
spreadsheets via interviewing spreadsheet end-users and conducting 
an online survey with industrial spreadsheet end-users [5] [18]. Roy et 
al. [5] report that end-users do manual and informal tests to ensure the 
correctness of their spreadsheets, and the most popular technique was 
ad-hoc testing. 
Spreadsheet systems such as MS Excel do not support systematic 
testing of spreadsheets. Smith et al. [18] reported that among their 

respondents, 87% reported examining cells individually or using a 
calculator to check selected cells and 79% reported using common 
sense. As a result, various automated testing techniques and tools were 
proposed for spreadsheets to help end-users identify and correct errors 
by providing them with better spreadsheet testing. 
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The most notable of these approaches is a visual and incremental 
spreadsheet testing methodology called “What You See Is What You 
Test” (WYSIWYT) [19]. Whenever the end-user enters values into the 
spreadsheet, the end-user marks the output cells, which contain 

formulas, with a symbol ✓ if the output is correct and an × symbol if 

incorrect. WYSIWYT uses definitions-use (du) adequacy for keeping 
track of which cells in the spreadsheet have been tested and determines 

the “testedness” of the spreadsheet. The testedness is shown to the end-
user by coloring the borders of the non-input cells from untested (red 
color) to tested (blue color) and through a progress bar, which ranges 
from 0 to 100 percent. Several enhancements to this approach were 
proposed, such as automatically generating test cases [20], and later 
WYSIWYT approach was integrated into Microsoft Excel [21]. 
Sohon et al. proposed an approach that aims to implement an invariant-
based testing approach [22]. In the context of spreadsheets, invariants 
are proprieties that remain true after operations throughout the 

spreadsheet’s usage. The properties are usually indicated by the labels 
of the individual cells or based on rows or columns. Sohon et al. 
explored the effectiveness of automatically inferred invariants to help 
end-users in ensuring the validity of their spreadsheets. They used the 
Daikon tool to infer invariants from the spreadsheets automatically. 
Daikon takes spreadsheets data saved in .CSV format and infers 
several invariants from the spreadsheet. However, the organizations of 
the structures of the spreadsheets must be converted into a single 

tabular structure with proper column headers. Let us, for example, 
consider the spreadsheet partly shown in Figure 4. 

 
Fig. 4: A portion of a typical Excel spreadsheet that targeted for 

invariant inference highlighted in orange. 
 
For Daikon to work, the data blocks must be restructured in an 
acceptable format. Daikon infers a list of invariants that are only true 
and not redundant, as shown in Figure 5. As shown in Figure 5, the 
invariants “Settled >= 1.51” represents the formula in column G with 
the header “Settled Price El Paso SJ”. The corresponding test case for 

this invariant would be =IF(G10>=1.51, “OK”, “ERROR”). This test 
case can be used for all the rest of the corresponding cells and columns. 

 
Fig. 5: Example of Inferred Invariants. 

 
As shown in the Figure 5, the invariants “Settled >= 1.51” represents 
the formula in the column G with the header “Settled Price El Paso 
SJ”. The corresponding test case for this invariant would be 
=IF(G10>=1.51, “OK”, “ERROR”). This test case can be used for all 
the rest of the corresponding cells and columns. 

DISCUSSION AND FUTURE WORKS 
This paper presented a review of different approaches that have been 

carried out to prevent, detect and remove errors from spreadsheets. All 
the proposed approaches work toward a common goal of helping end-
users to create error-free spreadsheet files and improve the quality of 
their spreadsheet files. However, these approaches have not 

successfully prevented or detected all types of errors that end-users 
commonly make 
Detecting and preventing errors in spreadsheets is difficult because of 
the significant input of the formula that needs to be explored. As we 
have seen, researchers proposed various approaches for end-users to 

prevent errors from spreadsheets by providing templates. These 
templates include all the formulas and the structure of the spreadsheet. 
Various approaches were proposed to assist the end-users test, 
localizing, and repairing faults in spreadsheets. Researchers 
implemented Machine learning (ML) techniques to reduce the end-
users cognitive load and simplify the testing and debugging process. 
The main obstacle of the ML-based methods is unable to discover new 
types of faults, e.g., those that did not exist in the training data. One 
major limitation that spreadsheet systems like Microsoft Excel have is 

the lack of abstractions of code reuse. A promising area for future 
work in this direction is automatically recommending formulas to help 
end-users build a spreadsheet model more accurately. 
Recommendations tools can use the spreadsheet metrics to offer 
similar spreadsheets or formulas. In addition, such tools might 
overwhelm some end-users with less experience. As a result, novel 
interaction mechanisms with different ways of visualizing faulty 
formulas are required to better guide the end-users in the debugging 
process. 

CONCLUSION 
Spreadsheets are used as a basis for financial tasks, decision-making, 

and data analysis. End-users use spreadsheets for their simplicity, and 
there are many spreadsheets written by end-users who do not have a 
solid background in programming and testing.  
Testing spreadsheet files is an essential activity and is a time-
consuming and intensive process. Therefore, researchers have made a 
significant effort to help end-users create, test, and debug spreadsheets. 
This paper describes various software testing spreadsheet techniques, 
their work, and their error detection ability. We discussed in detail the 

concept of multiple techniques and approaches and illustrated 
examples of how they work and how they detect errors in spreadsheet 
files. 
Based on our study of the automated testing tools for spreadsheet, we 
found the following:  

 Some spreadsheet testing approaches require end-users to have 

an understanding of the testing. For some less-experienced end-
users might be overwhelmed by some advanced approaches.  

 Further improvements are possible for machine learning 

approaches. For example, recommendation engine techniques for 
recommended existing formulas or tables is a promising area of 
research.  

 Researchers improved some existing techniques which need 

more end-user studies to examine the improved techniques value.  
It is essential to understand how end-users’ create and design 
spreadsheets to invent, design, and build new approaches to produce 

error-free spreadsheet files and improve the quality of the spreadsheet 
files. End-user studies are an excellent way to guide the researchers 
toward creating automated testing tools that best end-users needs. 
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