

SEBHA UNIVERSITY JOURNAL OF PURE & APPLIED SCIENCES VOL.21 NO. 4 2022

DOI: 10.51984/JOPAS.V21I4.2140

ة والتطبيقيةتجامعة سبها للعلوم البح مجلة
Sebha University Journal of Pure & Applied Sciences

Journal homepage: www.sebhau.edu.ly/journal/index.php/jopas

Corresponding author:

E-mail addresses: al.aburas@uot.edu.ly

Article History : Received 31 May 2022 - Received in revised form 01 September 2022 - Accepted 03 October 2022

A Comparative Study of Automated Testing Tools for Spreadsheets

Ali Aburas

Department of Computer Science, Faculty of Science, University of Tripoli, Tripoli, Libya

Keywords:

Automated Tools

End-user

Errors
Spreadsheets
Testing

 A B S T R A C T

Organizations and industries use spreadsheet programs, such as MS Excel, for various tasks, such as
accounting, financial calculations, and reporting. However, the number of spreadsheets that contain

errors is very high. One primary reason is that different end-users develop spreadsheets without
programming or software development training. Thus, researchers have proposed a variety of automated
tools and techniques to support the end-users in finding and fixing errors in spreadsheets. The main
objective of this paper is to study different automated tools in spreadsheet testing and classify them
according to two criteria: how they work and the ability to find spreadsheet faults. For this purpose, we
discuss various spreadsheet testing automated tools, techniques, and strategies. In addition, we highlight
their performance and where they can be used so that they can be beneficial to both end-users and
researchers. We then set out key directions for potential future works.

 دراسة مقارنة لأدوات الاختبار الآلي للجداول البيانات

 علي أبوراس

 ليبيا ،طرابلس ،جامعة طرابلس ،كلية العلوم ، قسم علوم الحاسب الآلي

Introduction
The flexibility afforded by spreadsheet programs allow end-users and
many organizations to use spreadsheets for various purposes such as

accounting, financial calculations, reporting, and decision supporting
tasks [1]. Spreadsheet programs are one of the most well-known
programming systems among end-user programmers. End-users can
easily use them without requiring training in programming [2]. In
general, end-users often write spreadsheet programs to support their
work or for personal use, and they do not have a solid background in
computer science [2]. For example, a teacher can create a spreadsheet
file to calculate grades, track attendances, and class schedules during
the school year.

Since spreadsheets are, in most cases, created by end-users who are
self-taught and have no education in software engineering, the error

rate is assumed higher than in traditional software [3]. An experiment-
based study on spreadsheet development reports that more than 95%
of spreadsheets contain at least one error [4]. The implications of the
errors in a spreadsheet are severe, and the consequences could be very
costly for organizations, e.g., massive financial loss or loss of

 المفتاحية: الكلمات

 الأدوات الآلية
 المستخدم النهائي

 الأخطاء

 جداول البيانات

 اختبارات

 الملخص

قطاعات المؤسسات والصناعات برامج جداول البيانات، مثلا ميكروسوفت اكسل، لمختلف المهام، مثلا تستخدم

في المحاسبة والحسابات المالية وإعداد التقارير. ومع ذلك، فإن عدد جداول البيانات التي تحتوي على أخطاء

ن تدريب لفين يطورون جداول بيانات بدو مرتفع للغاية. أحد الأسباب الأساسية هو أن المستخدمين النهائيين المخت

على البرمجة أو تطوير البرامج. وبالتالي، اقترح الباحثون مجموعة متنوعة من الأدوات والتقنيات الآلية لدعم

الهدف الرئيس ي من هذه الورقة هو .المستخدمين النهائيين في العثور على الأخطاء وإصلاحها في جداول البيانات

ا لمعيارين كيفية عملها والقدر على دراسة الأدوات الآ
لية المختلفة في اختبار جداول البيانات وتصييفها وفقا

العثور على أخطاء جداول البيانات. لهذا الغرض، نناقش مختلف الأدوات والتقنيات والاستراتيجيات الآلية

د كن استخدامها حتى تكون مفيلاختبار جداول البيانات. بالإضافة إلى ذلك، نسلط الضوء على أدائها وأين يم

 لكل من المستخدمين النهائيين والباحثين. ثم وضعنا الاتجاهات الرئيسية للأعمال المستقبلية المحتملة.

file:///C:/Users/DELL/Downloads/www.sebhau.edu.ly/journal/index.php/jopas
mailto:al.aburas@uot.edu.ly

A Comparative Study of Automated Testing Tools for Spreadsheets Aburas.

JOPAS Vol.21 No. 4 2022 141

reputation*. To minimize these risks, it is essential to support end-users
with appropriate methods and techniques to find and fix such faults.
Testing is essential for ensuring the correctness of spreadsheets [5].
Testing can be performed either manually or automatically. Manual
testing is time-consuming and requires more effort [6]. A study shows

that end-users typically underestimate the required testing effort,
generating tests that are largely manually and generally not
comprehensive [7]. Due to the need to ensure spreadsheet quality,
researchers have proposed various automated approaches to prevent,
detect, and remove spreadsheet errors.
This research intends to study and compare automated testing
spreadsheet tools’ concepts, features, and errors detection ability.
Furthermore, we will classify a set of automated spreadsheet testing
tools and distribute them over the type of approaches for preventing,

detecting, and correcting spreadsheet errors. The fundamental goal is
to analyze the features supported by these automated spreadsheet
testing tools that aid in minimizing the resources in creating and
testing spreadsheet files and increasing efficiency for maintenance and
reuse of spreadsheet files.
The rest of this paper is organized as follows: Section II presents a
variety of effective approaches for preventing, detecting and
correcting spreadsheet errors. Then, Section III contains a full

discussion of potential future works. Finally, a conclusion statement
about the studied approaches is given.

TYPES OF APPROACHES
Spreadsheet programs like MS Excel lack any higher-level
abstractions and include limited functionality to help end-users to
create error-free spreadsheets that implement complex models. As a
result, end-users make errors when creating or reusing complex
spreadsheet files. Researchers have developed different approaches

that engage various software engineering activities to support end-
users in the error detection and fault localization process. These
approaches are generally focused on preventing, detecting, and
removing errors from spreadsheets. This section will illustrate some
error prevention, auditing, testing, and automatic consistency
checking approaches to help end-users create error-free spreadsheets.

1. Preventing errors
Spreadsheets are error-prone because they do not impose any

restrictions on the kinds of updates that can be carried out. For
example, end-users copy and paste formulas or even drag on a cell to
fill another column, which can introduce severe errors and make it
difficult to find them if references are not correctly updated [8]. This
problem has led to the development of approaches, which are called
preventing errors, that help end-users to create spreadsheets that do not
have errors in the first place [9].
Researchers found that programmers make fewer syntax errors and
focus on the logic of a program when they use a block-based language

instead of a textual-based one [10]. As a result, researchers use visual-
based approaches to provide end-users with a visually enhanced
representation of some aspects of the spreadsheet to understand its
basic structure and dependencies between the formulas [9]. Visual-
based approaches aim to reduce formula errors and increase end-users
efficiency while end-users edit and construct formulas. It does so by
interactively visualizing hidden data and formulas. Thus, end-users
can immediately see relevant data and results. In addition, visualizing

referenced data and formulas is especially helpful for end-users
working with large spreadsheets when navigating between different
cells, formulas, and multiple sub-sheets.
Jansen and Herman [11] developed a block-based formula editor,
called XLBlocks, for spreadsheets to support end-users while
developing or maintaining formulas. XLBlocks aims to create
formulas with a block-based language instead of the default textual
formula language and translate them automatically into valid

spreadsheet formulas. XLBlocks also introduces new, more
straightforward functions to use than some built-in Excel functions
such as SUM, SUMIFS, IFERROR, INDEX, MATCH, VLOOKUP,
IF, −, /, >, and <.

* http://www.eusprig.org/horror-stories.htm

As shown in Fig. 1, the user defines the formula in (a), and gives the
formula a name (b). The user also has to specify cells in the
spreadsheet that will receive this formula (c), and the functions that
are used in the formula. The user can add comments, which are not
transferred to the spreadsheet [11].

Fig. 1: Example of a block definition of a SUMIFS formula.

A think-aloud study [12] investigated the feasibility of this approach,
and it showed that XLBlocks helps end-users create formulas without
considering the syntax of the formulas. In addition, editing a formula
part is easier in XLBlocks than the default text-based formula editor
because it can easily drag and drop different parts of the formula.
Research on the showing computation in spreadsheets has shown that

they positively affect the comprehension of the spreadsheet’s formulas.
Another advantage of showing the spreadsheet’s formulas is that it
minimizes the risk of introducing new errors during debugging and
maintenance tasks.
Sarkar et. al. [13] also introduced Calculation View, a multiple-
representation approach for viewing formulas and their groupings.
Their approach uses a simple textual syntax for copying a formula into
a block of cells and naming cells or ranges and referring to those names
in other formulas. Calculation View allows end-users to give domain-

relevant names for grid cell references; for example, they can refer to
cell B2 as TaxRate, which is easier to read, makes formulas faster to
type, debug and easy to update. Figure 2 depicts the ability of assign
names and assign formulas to individual cells.
A user study was conducted with 22 participants who had prior
experience with spreadsheets to assess the effectiveness of Calculation
View. One goal of the study was to evaluate if the subjects would
create and reason about spreadsheets with less manual and cognitive

effort. The study shows that Calculation View improves the subjects’
performance when performing copy/paste and debugging tasks. The
end-users also tend to make fewer errors in editing a block of formulas
and can focus on the logic of the formulas when they use Calculation
View instead of a textual one.

A Comparative Study of Automated Testing Tools for Spreadsheets Aburas.

JOPAS Vol.21 No. 4 2022 142

Fig. 2: Calculation View views the formulas in abstract operations
such as range assignment and cell naming.

The prevention error approaches require additional programming in a
new language that end-users must learn, which can be very time-

consuming. Therefore, researchers have explored different approaches
to visualize the computation hiding and identify groups of related cells
in spreadsheets. The following section shows some automated
techniques that aim to assist end-users with detecting and debugging
spreadsheet formulas via visualization.

2. Detecting and Fixing errors
Researchers have developed different static checkers approaches and
tools for automated fault localization. Such approaches are based on
static code analysis that analyzes the tables, the formulas, and the

dependencies between them [9]. They are designed to help end-users
detect or remove errors, particularly during maintenance and
debugging activities [1].
Schmitz et al. [14] proposed an approach that automatically partitions
a large spreadsheet into a set of semantically equivalent calculation
areas called “fragments.” Once such areas are identified, the end-user
is only required to check the correctness of a smaller part (i.e., one
copy of the calculations) of the fragment. If this part is considered

correct, the other areas containing identical calculations are also
assumed to be correct. Their approach starts by defining a base
fragment that only contains cells that share the same column or row
with another fragment cell. The base fragment comprises either a
single formula or a set of copy-equivalent formulas, i.e., they do the
same calculations but use different inputs. Then, the base fragments
are merged into larger ones in an evolutionary process to reduce the
complexity when searching for the possible causes of the problem.

Barowy et al. [8] also proposed a learning-based approach, called
ExceLint, that identifies likely spreadsheet errors based on
discrepancies with other nearby formulas. ExceLint extracts data
dependencies for every formula in the given spreadsheet by parsing a
sheet’s formulas and building the program’s data-flow graph. Then,
ExceLint exploits the intrinsically rectangular layout of spreadsheets
to identify homogeneous, rectangular regions that contain formulas
with identical reference behavior. Finally, ExceLint identifies suspect

formulas by comparing cells to adjacent rectangular regions. To
determine whether a formula is likely to be an error, ExceLint uses the
cell’s position in the layout and identifies formulas that are especially
surprising disruptions to nearby rectangular regions.
Recently, a lot of effort has been put into exposing end-users to
machine learning (ML), such as spam filtering and recommendation
systems. ML is a subset of artificial intelligence where statistical
algorithms process a large of data to build a model to become more
accurate at predicting outcomes without being explicitly programmed.

There are two types of ML-based learning algorithms: supervised and
unsupervised algorithms. In supervised learning algorithms, systems
are able to predict based on past data. The learning algorithms require
labeled input and output data to train and build a model. Then, they
identify patterns in data, learn from observations, and make
predictions. On the other hand, unsupervised algorithms identify
hidden patterns and determine the correlations and relationships from
unlabeled data provided. The algorithms try to group the data into

clusters, and the anomalies become more evident. The rise in data
availability has encouraged researchers to apply ML-based techniques
to make inferences and predict faults in spreadsheets.
Cheung et al. [15] proposed CUSTODES which uses an unsupervised
learning-based approach to automatically detect faults in spreadsheets.
First, it computes different features of spreadsheets and then uses
cluster algorithm to put all cells with similar formulas in one group.
Then, CUSTODES predicts if a cell is faulty if it is not in the identified

group. CUSTODES utilizes strong features to extract similar cells and
put them in one cluster. For examples, cell formulas and cell reference
relations those cells in [F11:F16] in Fig 3. CUSTODES also refines
each cluster by using weak features, such as cell labels, standard
layouts, and fonts. For example, the header “Total” in F9 can be used
to cluster cells in F11 to F19. CUSTODES identifies outlier cells as
smells if they cannot be clustered or grouped. For example, cell F17
might be faulty since it contains a value, whereas cells from F11 to

F19 comprise formulas.

Fig. 3: An example for illustrating CUSTODES’s whole cluster

technique.

Regarding the CUSTODES clustering technique evaluation, the
experiment showed that CUSTODES was able to detect up to 78% of
the faulty cells in 70 spreadsheets files randomly sampled from the
EUSES corpus.

Koch et al. [16] proposed an approach that uses spreadsheet metrics
with Random Forests (RF) as an ML-based technique to predict faults
in spreadsheet formulas. The main idea of their approach is to use a
set of collection of spreadsheets containing labeled faulty formulas,
incorrect or correct, to train an ML model for fault prediction. They
selected a set of 64 metrics, such as the cell’s column number
(position), the number of any references to empty cells, and the
number of references to other spreadsheets, as a learning dataset. The
learning set is obtained by taking the labeled spreadsheet as input and

computing a value for each formula of the spreadsheet. Their approach
utilizes Random Forests (RF) to return the likelihood of unseen a
formula is faulty. An evaluation of their approach on different datasets
containing faulty spreadsheets showed that Random Forests (RF)
could predict spreadsheets’ faults.

A spreadsheet file is a table, a rectangle block of cells describing a
business process. A table contains two elements: the header region and
the data region. Spreadsheet programs, such as MS Excel, do not
provide documentation to show clear table structure information.
Identifying spreadsheet semantic table structures can help end-users
understand the spreadsheet, which is a fundamental step in detecting

errors. Therefore, Zhang et al. [17] proposed an automated approach
called TasiError (Table Structure Identification Error Detection).
TasiError uses a multi-classifier, e.g., Random Forest, Logistic
Regression, and Decision Tree, to train the model and automatically
identifies semantic table structures in spreadsheets. TasiError detects
two types of most common errors: missing formulas and formula
errors. They evaluated their approach and compared it with other
existing tools, CUSTODES [15], and [8]. TasiError outperforms the

other existing tools. These results show that semantic table structures
can help error detection in spreadsheets.
Testing is an important approach to identify errors, reveal failures, and
to assure the quality of software systems [5]. That is why developers
test their programs and spend a large amount of time identifying and
correcting errors within their programs [9]. The following section
shows some testing approaches in the context of spreadsheets.

3. Testing Spreadsheets

Recent studies highlighted several challenges of testing in
spreadsheets via interviewing spreadsheet end-users and conducting
an online survey with industrial spreadsheet end-users [5] [18]. Roy et
al. [5] report that end-users do manual and informal tests to ensure the
correctness of their spreadsheets, and the most popular technique was
ad-hoc testing.
Spreadsheet systems such as MS Excel do not support systematic
testing of spreadsheets. Smith et al. [18] reported that among their

respondents, 87% reported examining cells individually or using a
calculator to check selected cells and 79% reported using common
sense. As a result, various automated testing techniques and tools were
proposed for spreadsheets to help end-users identify and correct errors
by providing them with better spreadsheet testing.

A Comparative Study of Automated Testing Tools for Spreadsheets Aburas.

JOPAS Vol.21 No. 4 2022 143

The most notable of these approaches is a visual and incremental
spreadsheet testing methodology called “What You See Is What You
Test” (WYSIWYT) [19]. Whenever the end-user enters values into the
spreadsheet, the end-user marks the output cells, which contain

formulas, with a symbol ✓ if the output is correct and an × symbol if

incorrect. WYSIWYT uses definitions-use (du) adequacy for keeping
track of which cells in the spreadsheet have been tested and determines

the “testedness” of the spreadsheet. The testedness is shown to the end-
user by coloring the borders of the non-input cells from untested (red
color) to tested (blue color) and through a progress bar, which ranges
from 0 to 100 percent. Several enhancements to this approach were
proposed, such as automatically generating test cases [20], and later
WYSIWYT approach was integrated into Microsoft Excel [21].
Sohon et al. proposed an approach that aims to implement an invariant-
based testing approach [22]. In the context of spreadsheets, invariants
are proprieties that remain true after operations throughout the

spreadsheet’s usage. The properties are usually indicated by the labels
of the individual cells or based on rows or columns. Sohon et al.
explored the effectiveness of automatically inferred invariants to help
end-users in ensuring the validity of their spreadsheets. They used the
Daikon tool to infer invariants from the spreadsheets automatically.
Daikon takes spreadsheets data saved in .CSV format and infers
several invariants from the spreadsheet. However, the organizations of
the structures of the spreadsheets must be converted into a single

tabular structure with proper column headers. Let us, for example,
consider the spreadsheet partly shown in Figure 4.

Fig. 4: A portion of a typical Excel spreadsheet that targeted for

invariant inference highlighted in orange.

For Daikon to work, the data blocks must be restructured in an
acceptable format. Daikon infers a list of invariants that are only true
and not redundant, as shown in Figure 5. As shown in Figure 5, the
invariants “Settled >= 1.51” represents the formula in column G with
the header “Settled Price El Paso SJ”. The corresponding test case for

this invariant would be =IF(G10>=1.51, “OK”, “ERROR”). This test
case can be used for all the rest of the corresponding cells and columns.

Fig. 5: Example of Inferred Invariants.

As shown in the Figure 5, the invariants “Settled >= 1.51” represents
the formula in the column G with the header “Settled Price El Paso
SJ”. The corresponding test case for this invariant would be
=IF(G10>=1.51, “OK”, “ERROR”). This test case can be used for all
the rest of the corresponding cells and columns.

DISCUSSION AND FUTURE WORKS
This paper presented a review of different approaches that have been

carried out to prevent, detect and remove errors from spreadsheets. All
the proposed approaches work toward a common goal of helping end-
users to create error-free spreadsheet files and improve the quality of
their spreadsheet files. However, these approaches have not

successfully prevented or detected all types of errors that end-users
commonly make
Detecting and preventing errors in spreadsheets is difficult because of
the significant input of the formula that needs to be explored. As we
have seen, researchers proposed various approaches for end-users to

prevent errors from spreadsheets by providing templates. These
templates include all the formulas and the structure of the spreadsheet.
Various approaches were proposed to assist the end-users test,
localizing, and repairing faults in spreadsheets. Researchers
implemented Machine learning (ML) techniques to reduce the end-
users cognitive load and simplify the testing and debugging process.
The main obstacle of the ML-based methods is unable to discover new
types of faults, e.g., those that did not exist in the training data. One
major limitation that spreadsheet systems like Microsoft Excel have is

the lack of abstractions of code reuse. A promising area for future
work in this direction is automatically recommending formulas to help
end-users build a spreadsheet model more accurately.
Recommendations tools can use the spreadsheet metrics to offer
similar spreadsheets or formulas. In addition, such tools might
overwhelm some end-users with less experience. As a result, novel
interaction mechanisms with different ways of visualizing faulty
formulas are required to better guide the end-users in the debugging
process.

CONCLUSION
Spreadsheets are used as a basis for financial tasks, decision-making,

and data analysis. End-users use spreadsheets for their simplicity, and
there are many spreadsheets written by end-users who do not have a
solid background in programming and testing.
Testing spreadsheet files is an essential activity and is a time-
consuming and intensive process. Therefore, researchers have made a
significant effort to help end-users create, test, and debug spreadsheets.
This paper describes various software testing spreadsheet techniques,
their work, and their error detection ability. We discussed in detail the

concept of multiple techniques and approaches and illustrated
examples of how they work and how they detect errors in spreadsheet
files.
Based on our study of the automated testing tools for spreadsheet, we
found the following:

 Some spreadsheet testing approaches require end-users to have

an understanding of the testing. For some less-experienced end-
users might be overwhelmed by some advanced approaches.

 Further improvements are possible for machine learning

approaches. For example, recommendation engine techniques for
recommended existing formulas or tables is a promising area of
research.

 Researchers improved some existing techniques which need

more end-user studies to examine the improved techniques value.
It is essential to understand how end-users’ create and design
spreadsheets to invent, design, and build new approaches to produce

error-free spreadsheet files and improve the quality of the spreadsheet
files. End-user studies are an excellent way to guide the researchers
toward creating automated testing tools that best end-users needs.

Acknowledgment
We thank the anonymous reviewers for the valuable feedback and
comments that helped us improve the quality of the manuscript.

References
[1]- Wensheng Dou, Shing-Chi Cheung, and Jun Wei. 2014. Is

Spreadsheet Ambiguity Harmful? Detecting and Repairing
Spreadsheet Smells due to Ambiguous Computation. In
Proceedings of International Conference on Software
Engineering (ICSE). 848–858.

[2]- Pak-Lok Poon, Fei-Ching Kuo, Huai Liu, and Tsong Yueh Chen.

How can non-technical end users effectively test their
spreadsheets? Information Technology & People, 2014.

[3]- Adil Mukhtar, Birgit Hofer, Dietmar Jannach, and Franz Wotawa.
Spreadsheet debugging: The perils of tool over-reliance. Journal
of Systems and Software, 184:111119, 2022.

A Comparative Study of Automated Testing Tools for Spreadsheets Aburas.

JOPAS Vol.21 No. 4 2022 144

[4]- Ray Panko. What we don’t know about spreadsheet errors today:
The facts, why we don’t believe them, and what we need to do.
arXiv preprint arXiv:1602.02601, 2016.

[5]- Sohon Roy, Felienne Hermans, and Arie Van Deursen.
Spreadsheet testing in practice. In 2017 IEEE 24th International

Conference on Software Analysis, Evolution and Reengineering
(SANER), pages 338– 348. IEEE, 2017.

[6]- F Okezie, I Odun-Ayo, and S Bogle. A critical analysis of
software testing tools. In Journal of Physics: Conference Series,
volume 1378, page 042030. IOP Publishing, 2019.

[7]- Awais Azam and Khubaib Amjad Alam. Spreadsheet based
software engineering. volume 2, pages 15–15, 2019.

[8]- Daniel W Barowy, Emery D Berger, and Benjamin Zorn. Excelint:
automatically finding spreadsheet formula errors. Proceedings of

the ACM on Programming Languages, 2(OOPSLA):1–26, 2018.
[9]- Dietmar Jannach, Thomas Schmitz, Birgit Hofer, and Franz

Wotawa. Avoiding, finding and fixing spreadsheet errors–a
survey of automated approaches for spreadsheet qa. Journal of
Systems and Software, 94:129–150, 2014.

[10]- Thomas W Price and Tiffany Barnes. Comparing textual and
block interfaces in a novice programming environment. In
Proceedings of the eleventh annual international conference on

international computing education research, pages 91–99, 2015.
[11]- Bas Jansen and Felienne Hermans. Xlblocks: A block-based

formula editor for spreadsheet formulas. In 2019 IEEE
Symposium on Visual Languages and Human-Centric
Computing (VL/HCC), pages 55–63. IEEE, 2019.

[12]- Bas Jansen and Felienne Hermans. The effect of a block-based
language on formula comprehension in spreadsheets. In 2021
IEEE/ACM 29th International Conference on Program

Comprehension (ICPC), pages 288–299. IEEE, 2021.
[13]- Advait Sarkar, Andrew D Gordon, Simon Peyton Jones, and Neil

Toronto. Calculation view: multiple-representation editing in
spreadsheets. In 2018 IEEE Symposium on Visual Languages
and Human-Centric Computing (VL/HCC), pages 85–93. IEEE,
2018.

[14]- Thomas Schmitz, Birgit Hofer, Dietmar Jannach, and Franz
Wotawa. Fragment-based diagnosis of spreadsheets. In

Federation of International Conferences on Software
Technologies: Applications and Foundations, pages 372–387.
Springer, 2016.

[15]- Shing-Chi Cheung, Wanjun Chen, Yepang Liu, and Chang Xu.
Custodes: Automatic spreadsheet cell clustering and smell
detection using strong and weak features. In 2016 IEEE/ACM
38th International Conference on Software Engineering (ICSE),
pages 464–475, 2016.

[16]- Patrick Koch, Konstantin Schekotihin, Dietmar Jannach, Birgit

Hofer, and Franz Wotawa. Metric-based fault prediction for
spreadsheets. IEEE Transactions on Software Engineering,
47(10):2195–2207, 2019.

[17]- Yakun Zhang, Xiao Lv, Haoyu Dong, Wensheng Dou, Shi Han,
Dongmei Zhang, Jun Wei, and Dan Ye. Semantic table structure
identification in spreadsheets. In Proceedings of the 30th ACM
SIGSOFT International Symposium on Software Testing and
Analysis, pages 283–295, 2021.

[18]- Justin Smith, Justin A Middleton, and Nicholas A Kraft.
Spreadsheet practices and challenges in a large multinational
conglomerate. In 2017 IEEE Symposium on Visual Languages
and Human-Centric Computing (VL/HCC), pages 155–163.
IEEE, 2017.

[19]- Margaret Burnett, Andrei Sheretov, Bing Ren, and Gregg
Rothermel. Testing homogeneous spreadsheet grids with the”
what you see is what you test” methodology. IEEE Transactions

on Software Engineering, 28(6):576–594, 2002.
[20]- Robin Abraham and Martin Erwig. Autotest: A tool for

automatic test case generation in spreadsheets. In Visual
Languages and Human-Centric Computing (VL/HCC’06), pages
43–50. IEEE, 2006.

[21]- Marc Fisher, Gregg Rothermel, Darren Brown, Mingming Cao,
Curtis Cook, and Margaret Burnett. Integrating automated test
generation into the wysiwyt spreadsheet testing methodology.

ACM Transactions on Software Engineering and Methodology
(TOSEM), 15(2):150–194, 2006.

[22]- Sohon Roy, Arie Van Deursen, and Felienne Hermans. On the
effectiveness of automatically inferred invariants in detecting
regression faults in spreadsheets. In 2018 IEEE International

Conference on Software Quality, Reliability and Security
Companion (QRS-C), pages 199–206. IEEE, 2018.

