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Abstract A capsule neural network (CapsNet) is a new approach in artificial neural network (ANN) that 
produces a better hierarchical relationship.  The performance of CapsNet on graphics processing unit (GPU) is 
considerably better than convolutional neural network (CNN) at recognizing highly overlapping digits in images. 
Nevertheless, this new method has not been designed as an accelerator on field programmable gate array 
(FPGA) to measure the speedup performance and compare it with the GPU. This paper aims to design the 
CapsNet module (accelerator) on FPGA. The performance between FPGA and GPU will be compared, mainly in 
terms of speedup and accuracy. The results show that training time on GPU using MATLAB is 789.091 s. 
Model evaluation accuracy is 99.79% and the validation accuracy is 98.53%. The time required to finish one 

routing algorithm iteration in MATLAB is 0.043622 s and in FPGA it takes 5600000 s which means FPGA 

module is 67 times faster than GPU. 
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I. Introduction 
Nowadays, Machine learning powers different fields 
such as websites, cameras, and smartphones. 
Machine learning [1] was implemented to identify 
objects in the image and extract them to apply 
further processing. The general idea of machine 
learning is to take a real dataset and apply any 
machine learning algorithms on the dataset such 

as deep learning [1], neural networks[2], 
Perceptron algorithm [3], K-nearest neighbour 
algorithm [4], decision tree[5], etc. In addition, the 
most dominant technique is deep learning. 
Convolutional neural network (CNN) has controlled 
the field of deep learning because it is very good to 
extract and analyze data to form the relationships 

between inputs and outputs. Unfortunately, CNN 
has a drawback in its basic architecture. This 
drawback causing it to be not effective [6-8]. The 
main drawback is the max pooling function in the 
convolutional layer where extracting the 
information for the image is accrued [1]. After 
applying convolution on the input image using 

feature extracting filters, the max pooling will take 
a place as shown in Fig. 1.Max polling function 
detects the presents of a certain object only and 
ignores other important features such as precise 
location, rotation, and the relationships to the 
other objects in the same image [6-8]. 
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Fig. 1: Convolutional layers in CNN 

The Capsule network is a new approach of machine 
learning field. Hinton and his team in 2017 [6] 
introduced a dynamic routing mechanism for 
capsule networks. The approach has proved that it 

reduces the MNIST dataset error rates and size of 
the training dataset. Results were estimated to be 
better than the CNN on highly overlapped digits. 
CNN learn to classify objects by passing the image 
through convolutional layers to extract low-level 
features in first layers and then grouping up 
features learned through the first layers to extract 
more complex features in deeper layers [1]. CNN 
tries to overcome the limitation by using a large 
training dataset. The fundamental issue in CNN is 
using the max pooling function to extract features 
and fed them to the next layer [9]. For this reason, 
CapsNet is developed to replace invariance concept 
with equivariant. Equivariant means that if the 
input appears in the image but in different rotation 
or position the model will consider them, while 
invariance means that the model aims to identify 
the presence of the object ignoring other related 
properties. 
In the last few years, there was a race between GPU 
and FPGA vendors in terms of the amount of 

computation that can be handled efficiently  
with high speed. In addition, the popularity of 
machine learning and its complex computation 
demands makes it one of the important 
comparisons between GPU and FPGA [10]. 
In this paper, we have implemented CapsNet on 
FPGA and GPU and compare the accuracy and the 
speedup performance. Vivado is used in FPGA 
implementation and MATLAB is used in GPU 
implementation. The organization of this paper is 
as follows. Section II includes details about the 
CapsNet algorithm. The FPGA implementation is 
described in Section III. Section IV presents the 

results in GPU. Section V presents the results in 
FPGA. Finally, Section VI concludes the paper. 
 

II. capsule neural network 
The hierarchy in this algorithm is divided into three 
main blocks as shown in Fig. 2. Each block has sub 
operation and they are [6]:  
1. Primary capsules:  
a) Convolution.  
b) Reshaping process.  
c) Squashing function.  
2. Higher level capsules:  
a) Routing between capsules.  
3. Loss calculation:  
a) Margin loss. 

Fig. 2: Structure of the capsule networks 

b) Reconstruction loss 
The key feature of this algorithm is the Routing 
algorithm which represents the mid-section of the 
CapsNet algorithm. The hardware part will be 
designed for the Routing algorithm. The 
mathematical representation of this algorithm is 
shown in Procedure 1. 
This procedure will receive û which the output of 
the primary capsules, the number of layers l and 
the number of epochs r.  
 

Procedure 1 Routing algorithm            

1: procedure Routing (ûj|i , r , l)                    
2:       for all capsule i in layer l and capsule j in layer (l + 1): bij ← 2.   
3:       for r iterations do 

4:              for all capsule i in layer l: ci ← softmax(bi)                      softmax computes Eq. (1)          
5:              for all capsule j in layer (l+1): sj ← ∑ 𝑐𝑖𝑗 û𝑗|𝑖𝑖  

6:              for all capsule j in layer (l+1): vj ← squash(sj)                   squash computes Eq. (2)          
7:              for all capsule i in layer l and capsule j in layer (l+1): bij ← bi + û𝑗|𝑖  . vj 

8:     return vj 

 

𝑐𝑖𝑗 =
exp (𝑏𝑖𝑗)

∑ exp (𝑏𝑖𝑘)𝑘
              ( 1 ) 

 
𝑣𝑗 =  

‖𝑠𝑗‖

1 + ‖𝑠𝑗‖
2  

𝑠𝑗

‖𝑠𝑗‖
          ( 2)  
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First, all initial logics b assigned to zero and the 

coupling coefficient is calculated using softmax 
function, equation (1), then the sum Sj of all inputs 
in each digit capsule is calculated, the final step is 
applying squashing function on Sj, equation (2), 
then the initial logics b are updated and this is the 
end of the first epoch. This process will be repeated 
for r times. The complexity of the routing algorithm 
is the reason for choosing it to be implemented in 
the hardware part. This will be proved in the result 
section. The dataset used in this algorithm is 
Modified National Institute of Standards and 
Technology (MNIST). The dataset consists of 
70,000 images (28 X 28). The training images are 
60,000 images, and testing images are 10,000 
images [11]. This part will be implemented in 

MATLAB. Profiling will be implemented on the code 
to find the timing of each part. The code will be 
executed on GPU.  
III. FPGA implementation 
The hardware implementation is done in the 
prediction mode, not in the training mode. First, 
the primary capsule layer is implemented in the 
MATLAB and the output of this layer will be 
adopted to the hardware implementation. Fig. 3 
shows the flowchart of the hardware design.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3: Flowchart of the hardware design 

 
The fixed-point representation is used in this 
design with 16-bit accuracy. This high number of 
bits reserved for the accuracy is because it is one 
of the aims of this research. A matrix û [160][31] 
and flag for the loop are the inputs of this 
flowchart. The main obstacles of the hardware 
design are represented in the square root function 
which is used in calculating the magnitude in MAG 
function, and the exponential function used in 
softmax function. First, the square root function is 
adopted from previous work [12]. Second, the 
exponential function is implemented on b matrix. 

The simulation in MATLAB shows that the values 
in this matrix almost equal to zero except for one 
row for all images in MINTS dataset. By replacing 

exp(b) with 2𝑏 the results will not be affected and 

many clock cycles will be saved. 

The software used in this part is Xilinx Vivado. The 
software will provide the timing simulation of the 
hardware design. 
 

IV. GPU Results 
CapsNet is implemented on GPU. The module is 
trained using MNIST dataset. The results show that 
the error rate and loss after each epoch are close to 
zero. Fig.  4 shows the results in MATLAB 
simulation. 

 

Fig. 4: Error rate and loss after each epoch 

The module evaluation accuracy is 99.79% and the 
validation accuracy is 98.53%. 
The time analyzing of the code by implementing 
profiling on MATLAB code shows that the 

maximum amount of time from overall execution 
time is taken by the routing algorithm which is 
equal to 0.043622 s. Fig. 5 shows the profiling 
summary of the code in MATLAB. 
 

Start 

û [160][31] 

flag = 0 

Softmax function () 

Replication_1 function () 

Dot_Pro function () 

Replication_2 function () 

Squashing function () 

Reshaping function () 

flag ==1? 

Update_b function () 

flag =1 

MAG function () 

End 
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Fig. 5: Profiling summary of the code 

 
Based on this profile summary, the part that 
should be implemented in FPGA is the routing by 
agreement algorithm due to its time consuming.  
 

V. FPGA Results 
Routing algorithm will be implemented in FPGA. 
The input ûj|i is taken from MATLAB 
implementation. The prediction of this ûj|i in 

MATLAB in digit 5. The hardware design must give 
the same result for the same ûj|i or the design will 
be wrong.  
The clock frequency is 100 MHz (20 ns for one clock 
cycle).  The modelling style used in this research is 
the behaviour modelling style. This type of 
modelling is considered as the highest level of 
abstraction provided by Verilog. A module can be 
implemented in terms of the desired design 
algorithm without concern for the hardware 

implementation details such as how many adders, 
multipliers and divider are required.   
Vivado software tool will be used to write ASM chart 
for the complete design.  
the module in Vivado is correctly synthesized and 
it is ready to be tested using ûj|i as a primary input 
for the module. After implementing the ûj|i to the 
module, the result is shown in Fig. 6. 

The values are stored in the memory in binary, and 
the representations of this binary numbers in 
decimal are 41, 156, 110, 170, 20, 62881, 47, 
143 ,0 and 33. By multiplying these number with 
2-16, the actual floating number will be obtained. 
This is because of using fixed point numbers with 
16-bit precision. The output shows that the digit 
appeared in the image is 5 and it is clear that both 
of the MATLAB and FPGA results are equal. 
 

 
Fig. 6: Results of FPGA for the same ûj|i 

The timing simulation in FPGA shows that the 
delay of the output is 650 ns. The results show the 
significant improvement in terms of timing 

simulation. The second objective has been 
addressed at this point. 
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Table 1 shows the differences in timing simulation 

between GPU and FPGA. In addition, the accuracy 
of prediction is not affected even by repeating the 
process with ten different values of ûj|i. 
 

Table 1: Summary of timing simulation and the 
accuracy in FPGA and GPU. 

 GPU FPGA 

Timing 

(0.043622*106 ns) 

2181100 clock 
cycles 

(650 ns) 
32 clock cycles 

 

VI. Conclusion  
First of all, in this research the most challenging 
part is how to extract the inputs from MATLAB 

implementation. This is because of the complexity 
of the code and CapsNet itself. Second, fixed point 
numbers are easier and more efficient than the 
flouting point number. To implement the floating-

point numbers in hardware, IP cores are needed, 
these IP cores consume many clock cycles. In 
addition, fixed point numbers are not affecting the 
results and the error is negligible. 
The FPGA module is designed with behavioural 
modelling style. Resources utilized by the module 
are not addressed in this type of modelling style. 
The software is responsible to find how many 
adder, multiplier and register are needed. Which is 
one of the advantages of this type of modelling 
style. However, the drawback of behaviour design 
is that it is so difficult for software tool to 
synthesise behaviour design and translate the 
Verilog code to the hardware design. Thus, if the 
module is so complex, behavioural modelling style 
is not the good choice.    
Finally, routing by agreement algorithm is the most 
time-consuming part in the CapsNet algorithm. 
Implementing this part in FPGA will minimize 
output delay without effecting the accuracy of the 
output.  
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