

Journal of Pure & Applied Sciences

www.Suj.sebhau.edu.ly ISSN 2521-9200

Received 23/03/2020 Revised 16/08/2020 Published online 05/10/2020

JOPAS Vol.19 No. 5 2002 50

Capsule Network Implementation On FPGA
*Salim A. Adrees , Ala A. Abdulrazeg

Department of Computer Engineering, College of Engineering, Omar Al-Mukhtar University, Libya
*Corresponding author: Salim.ali@omu.edu.ly

Abstract A capsule neural network (CapsNet) is a new approach in artificial neural network (ANN) that
produces a better hierarchical relationship. The performance of CapsNet on graphics processing unit (GPU) is
considerably better than convolutional neural network (CNN) at recognizing highly overlapping digits in images.
Nevertheless, this new method has not been designed as an accelerator on field programmable gate array
(FPGA) to measure the speedup performance and compare it with the GPU. This paper aims to design the
CapsNet module (accelerator) on FPGA. The performance between FPGA and GPU will be compared, mainly in
terms of speedup and accuracy. The results show that training time on GPU using MATLAB is 789.091 s.
Model evaluation accuracy is 99.79% and the validation accuracy is 98.53%. The time required to finish one

routing algorithm iteration in MATLAB is 0.043622 s and in FPGA it takes 5600000 s which means FPGA

module is 67 times faster than GPU.

Keywords: Artificial intelligent, Capsule neural network, Deep learning, FPGA, Image recognition.

FPGA

Salim.ali@omu.edu.ly

 (CapsNet) ANN

 GPU CNN

FPGA

MATLAB

90700717709770063

MATLAB000335220000056

59

FPGA

I. Introduction
Nowadays, Machine learning powers different fields
such as websites, cameras, and smartphones.
Machine learning [1] was implemented to identify
objects in the image and extract them to apply
further processing. The general idea of machine
learning is to take a real dataset and apply any
machine learning algorithms on the dataset such

as deep learning [1], neural networks[2],
Perceptron algorithm [3], K-nearest neighbour
algorithm [4], decision tree[5], etc. In addition, the
most dominant technique is deep learning.
Convolutional neural network (CNN) has controlled
the field of deep learning because it is very good to
extract and analyze data to form the relationships

between inputs and outputs. Unfortunately, CNN
has a drawback in its basic architecture. This
drawback causing it to be not effective [6-8]. The
main drawback is the max pooling function in the
convolutional layer where extracting the
information for the image is accrued [1]. After
applying convolution on the input image using

feature extracting filters, the max pooling will take
a place as shown in Fig. 1.Max polling function
detects the presents of a certain object only and
ignores other important features such as precise
location, rotation, and the relationships to the
other objects in the same image [6-8].

http://www.suj.sebhau.edu.ly/
mailto:Salim.ali@omu.edu.ly
mailto:Salim.ali@omu.edu.ly

Capsule Network Implementation On FPGA Adrees & Abdulrazeg.

JOPAS Vol.19 No. 5 2002 51

Fig. 1: Convolutional layers in CNN

The Capsule network is a new approach of machine
learning field. Hinton and his team in 2017 [6]
introduced a dynamic routing mechanism for
capsule networks. The approach has proved that it

reduces the MNIST dataset error rates and size of
the training dataset. Results were estimated to be
better than the CNN on highly overlapped digits.
CNN learn to classify objects by passing the image
through convolutional layers to extract low-level
features in first layers and then grouping up
features learned through the first layers to extract
more complex features in deeper layers [1]. CNN
tries to overcome the limitation by using a large
training dataset. The fundamental issue in CNN is
using the max pooling function to extract features
and fed them to the next layer [9]. For this reason,
CapsNet is developed to replace invariance concept
with equivariant. Equivariant means that if the
input appears in the image but in different rotation
or position the model will consider them, while
invariance means that the model aims to identify
the presence of the object ignoring other related
properties.
In the last few years, there was a race between GPU
and FPGA vendors in terms of the amount of

computation that can be handled efficiently
with high speed. In addition, the popularity of
machine learning and its complex computation
demands makes it one of the important
comparisons between GPU and FPGA [10].
In this paper, we have implemented CapsNet on
FPGA and GPU and compare the accuracy and the
speedup performance. Vivado is used in FPGA
implementation and MATLAB is used in GPU
implementation. The organization of this paper is
as follows. Section II includes details about the
CapsNet algorithm. The FPGA implementation is
described in Section III. Section IV presents the

results in GPU. Section V presents the results in
FPGA. Finally, Section VI concludes the paper.

II. capsule neural network
The hierarchy in this algorithm is divided into three
main blocks as shown in Fig. 2. Each block has sub
operation and they are [6]:
1. Primary capsules:
a) Convolution.
b) Reshaping process.
c) Squashing function.
2. Higher level capsules:
a) Routing between capsules.
3. Loss calculation:
a) Margin loss.

Fig. 2: Structure of the capsule networks

b) Reconstruction loss
The key feature of this algorithm is the Routing
algorithm which represents the mid-section of the
CapsNet algorithm. The hardware part will be
designed for the Routing algorithm. The
mathematical representation of this algorithm is
shown in Procedure 1.
This procedure will receive û which the output of
the primary capsules, the number of layers l and
the number of epochs r.

Procedure 1 Routing algorithm

1: procedure Routing (ûj|i , r , l)
2: for all capsule i in layer l and capsule j in layer (l + 1): bij ← 2.
3: for r iterations do

4: for all capsule i in layer l: ci ← softmax(bi) softmax computes Eq. (1)
5: for all capsule j in layer (l+1): sj ← ∑ 𝑐𝑖𝑗 û𝑗|𝑖𝑖

6: for all capsule j in layer (l+1): vj ← squash(sj) squash computes Eq. (2)
7: for all capsule i in layer l and capsule j in layer (l+1): bij ← bi + û𝑗|𝑖 . vj

8: return vj

𝑐𝑖𝑗 =
exp (𝑏𝑖𝑗)

∑ exp (𝑏𝑖𝑘)𝑘
 (1)

𝑣𝑗 =

‖𝑠𝑗‖

1 + ‖𝑠𝑗‖
2

𝑠𝑗

‖𝑠𝑗‖
 (2)

Capsule Network Implementation On FPGA Adrees & Abdulrazeg.

JOPAS Vol.19 No. 5 2002 52

First, all initial logics b assigned to zero and the

coupling coefficient is calculated using softmax
function, equation (1), then the sum Sj of all inputs
in each digit capsule is calculated, the final step is
applying squashing function on Sj, equation (2),
then the initial logics b are updated and this is the
end of the first epoch. This process will be repeated
for r times. The complexity of the routing algorithm
is the reason for choosing it to be implemented in
the hardware part. This will be proved in the result
section. The dataset used in this algorithm is
Modified National Institute of Standards and
Technology (MNIST). The dataset consists of
70,000 images (28 X 28). The training images are
60,000 images, and testing images are 10,000
images [11]. This part will be implemented in

MATLAB. Profiling will be implemented on the code
to find the timing of each part. The code will be
executed on GPU.
III. FPGA implementation
The hardware implementation is done in the
prediction mode, not in the training mode. First,
the primary capsule layer is implemented in the
MATLAB and the output of this layer will be
adopted to the hardware implementation. Fig. 3
shows the flowchart of the hardware design.

Fig. 3: Flowchart of the hardware design

The fixed-point representation is used in this
design with 16-bit accuracy. This high number of
bits reserved for the accuracy is because it is one
of the aims of this research. A matrix û [160][31]
and flag for the loop are the inputs of this
flowchart. The main obstacles of the hardware
design are represented in the square root function
which is used in calculating the magnitude in MAG
function, and the exponential function used in
softmax function. First, the square root function is
adopted from previous work [12]. Second, the
exponential function is implemented on b matrix.

The simulation in MATLAB shows that the values
in this matrix almost equal to zero except for one
row for all images in MINTS dataset. By replacing

exp(b) with 2𝑏 the results will not be affected and

many clock cycles will be saved.

The software used in this part is Xilinx Vivado. The
software will provide the timing simulation of the
hardware design.

IV. GPU Results
CapsNet is implemented on GPU. The module is
trained using MNIST dataset. The results show that
the error rate and loss after each epoch are close to
zero. Fig. 4 shows the results in MATLAB
simulation.

Fig. 4: Error rate and loss after each epoch

The module evaluation accuracy is 99.79% and the
validation accuracy is 98.53%.
The time analyzing of the code by implementing
profiling on MATLAB code shows that the

maximum amount of time from overall execution
time is taken by the routing algorithm which is
equal to 0.043622 s. Fig. 5 shows the profiling
summary of the code in MATLAB.

Start

û [160][31]

flag = 0

Softmax function ()

Replication_1 function ()

Dot_Pro function ()

Replication_2 function ()

Squashing function ()

Reshaping function ()

flag ==1?

Update_b function ()

flag =1

MAG function ()

End

Capsule Network Implementation On FPGA Adrees & Abdulrazeg.

JOPAS Vol.19 No. 5 2002 53

Fig. 5: Profiling summary of the code

Based on this profile summary, the part that
should be implemented in FPGA is the routing by
agreement algorithm due to its time consuming.

V. FPGA Results
Routing algorithm will be implemented in FPGA.
The input ûj|i is taken from MATLAB
implementation. The prediction of this ûj|i in

MATLAB in digit 5. The hardware design must give
the same result for the same ûj|i or the design will
be wrong.
The clock frequency is 100 MHz (20 ns for one clock
cycle). The modelling style used in this research is
the behaviour modelling style. This type of
modelling is considered as the highest level of
abstraction provided by Verilog. A module can be
implemented in terms of the desired design
algorithm without concern for the hardware

implementation details such as how many adders,
multipliers and divider are required.
Vivado software tool will be used to write ASM chart
for the complete design.
the module in Vivado is correctly synthesized and
it is ready to be tested using ûj|i as a primary input
for the module. After implementing the ûj|i to the
module, the result is shown in Fig. 6.

The values are stored in the memory in binary, and
the representations of this binary numbers in
decimal are 41, 156, 110, 170, 20, 62881, 47,
143 ,0 and 33. By multiplying these number with
2-16, the actual floating number will be obtained.
This is because of using fixed point numbers with
16-bit precision. The output shows that the digit
appeared in the image is 5 and it is clear that both
of the MATLAB and FPGA results are equal.

Fig. 6: Results of FPGA for the same ûj|i

The timing simulation in FPGA shows that the
delay of the output is 650 ns. The results show the
significant improvement in terms of timing

simulation. The second objective has been
addressed at this point.

Capsule Network Implementation On FPGA Adrees & Abdulrazeg.

JOPAS Vol.19 No. 5 2002 54

Table 1 shows the differences in timing simulation

between GPU and FPGA. In addition, the accuracy
of prediction is not affected even by repeating the
process with ten different values of ûj|i.

Table 1: Summary of timing simulation and the
accuracy in FPGA and GPU.

 GPU FPGA

Timing

(0.043622*106 ns)

2181100 clock
cycles

(650 ns)
32 clock cycles

VI. Conclusion
First of all, in this research the most challenging
part is how to extract the inputs from MATLAB

implementation. This is because of the complexity
of the code and CapsNet itself. Second, fixed point
numbers are easier and more efficient than the
flouting point number. To implement the floating-

point numbers in hardware, IP cores are needed,
these IP cores consume many clock cycles. In
addition, fixed point numbers are not affecting the
results and the error is negligible.
The FPGA module is designed with behavioural
modelling style. Resources utilized by the module
are not addressed in this type of modelling style.
The software is responsible to find how many
adder, multiplier and register are needed. Which is
one of the advantages of this type of modelling
style. However, the drawback of behaviour design
is that it is so difficult for software tool to
synthesise behaviour design and translate the
Verilog code to the hardware design. Thus, if the
module is so complex, behavioural modelling style
is not the good choice.
Finally, routing by agreement algorithm is the most
time-consuming part in the CapsNet algorithm.
Implementing this part in FPGA will minimize
output delay without effecting the accuracy of the
output.

References
[1]- Y. LeCun, Y. Bengio, and G. Hinton, "Deep

learning," nature, vol. 521, no. 7553, p. 436,
2015.

[2]- A. Muthuramalingam, S. Himavathi, and E.
Srinivasan, "Neural network implementation
using FPGA: issues and application,"

International journal of information technology,
vol. 4, no. 2, pp. 86-92, 2008.

[3]- Y. Taright and M. Hubin, "FPGA
implementation of a multilayer perceptron
neural network using VHDL," in ICSP'98. 1998

Fourth International Conference on Signal
Processing (Cat. No. 98TH8344), 1998, vol. 2,
pp. 1311-1314: IEEE.

[4]- Z.-H. Li, J.-F. Jin, X.-G. Zhou, and Z.-H. Feng,
"K-nearest neighbor algorithm implementation
on FPGA using high level synthesis," in 2016

13th IEEE International Conference on Solid-
State and Integrated Circuit Technology
(ICSICT), 2016, pp. 600-602: IEEE.

[5]- R. Narayanan, D. Honbo, G. Memik, A.
Choudhary, and J. Zambreno, "Interactive
presentation: An FPGA implementation of
decision tree classification," presented at the
Proceedings of the conference on Design,

automation and test in Europe, Nice, France,

2007.
[6]- S. Sabour, N. Frosst, and G. E. Hinton,

"Dynamic routing between capsules," in

Advances in neural information processing
systems, 2017, pp. 3856-3866.

[7]- G. E. Hinton, S. Sabour, and N. Frosst, "Matrix
capsules with EM routing," 2018.

[8]- A. Ahmad, B. Kakillioglu, and S. Velipasalar,
"3D Capsule Networks for Object Classification
from 3D Model Data," in 2018 52nd Asilomar

Conference on Signals, Systems, and
Computers, 2018, pp. 2225-2229: IEEE.

[9]- A. Shahroudnejad, P. Afshar, K. N. Plataniotis,
and A. Mohammadi, "Improved explainability
of capsule networks: Relevance path by
agreement," in 2018 IEEE Global Conference on
Signal and Information Processing (GlobalSIP),

2018, pp. 549-553: IEEE.

[10]- E. Nurvitadhi et al., "Can FPGAs beat GPUs in
accelerating next-generation deep neural
networks?," in Proceedings of the 2017

ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays, 2017, pp. 5-14:
ACM.

[11]- L. Deng, "The mnist database of handwritten
digit images for machine learning research
[best of the web]," IEEE Signal Processing
Magazine, vol. 29, no. 6, pp. 141-142, 2012.

[12]- Y. Li and W. Chu, "A new non-restoring
square root algorithm and its VLSI
implementations," in Proceedings International

Conference on Computer Design. VLSI in
Computers and Processors, 1996, pp. 538-544:
IEEE.

