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establishing new properties of the related classical functions that is they can inherit the properties of each 
other. Here we show how the Hermite polynomials are related to some well-known classical polynomials such 
as the Legendre polynomials and the associated Laguerre polynomials. These relationships set up the 
connection between both kinds of classical orthogonal polynomials and grant us the ability to consider the 
theory of Hermite polynomials as a special case of the theory of Legendre and Laguerre polynomials. We 
show the confluent hypergeometric and the hypergeometric representations of Hermite polynomials. Thus 
the Hermite polynomials inherit the great advantage of carrying out their analytic continuation into any part 
of the complex z-plane. Furthermore, the hypergeometric representation enables us to develop the theory of 

the Hermite polynomials by implementing the general theory of the hypergeometric function. In this paper we 
have shown various types of formulae which link the Hermite polynomials to the Legendre polynomials. 
Some of these formulae are of integral form, operational form and an expansion form. Such diversity should 
grant us more flexibility to apply the Hermite polynomials in a variety of applications in mathematics, 
physics and engineering. 
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Introduction
The classical polynomials in general and the 
Hermite polynomials [1, 2, 3, 4, 5] in particular are 
very important in many applications. The Hermite 
polynomials occur in wave mechanics in the 
treatment of harmonic oscillator, also appear in 
vibration theory and quantum theory of radiation. 
In this paper we shall introduce several relations 
that connect the Hermite polynomials with some 

well-known classical polynomials such as the 
Legendre polynomials [6, 7, 8, 9] and the 
associated Laguerre polynomials [6, 7, 8]. 
Furthermore we study the confluent 
hypergeometric and the hypergeometric 
representation [6, 7, 9] of the Hermite polynomials. 
The hypergeometric representations of the Hermite 
polynomials considerably benefit us in acquiring 
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the analytic continuation of Hermite polynomials 

into any part of the complex z-plane [6]. In turn 
this should allow variety of applications for such 
polynomials. 
Curzon [10] established many relations between 
the Hermite and the Legendre polynomials for 
general values of the index n. One of his relations 
is of real-integral type formula that will be shown 
in section 5. Furthermore, Curzon [10] introduced 
a relation that defines the Hermite polynomials as 
a contour integral of Legendre polynomials. 

However, such a relation was re derived in a 

simpler fashion by Rainville [11] in terms of a real 
integral defining the Hermite polynomials in terms 
of the Legendre polynomials. Rainville [11] 
approach is based on taking the Laplace transform 
of a general formula of the generating function that 
was derived by Rainville [11] for most of the special 

functions.  
On the other hand Araci et al [12] showed that the 
Legendre polynomials are proportional with the 
Hermite polynomials, their approach is based on 
the arithmetic properties of Legendre polynomials 
by making use of their orthogonally property. 
Furthermore a relationship between the Hermite 
polynomials and the Legendre polynomials has 

been established by Khammash et al. in [13] by 
implementing an integral transform representation. 
Such an approach has been proven beneficial in 
deriving most of the properties of the generalized 
Legendre polynomials [13]. An integral transform 
representation that connects the Hermite 
polynomials with the Legendre polynomials was 
obtained in [13] with the aid of operational 
methods [14, 15, 16] as it will be shown in section 
four.  
This paper is structured as follows: in section one; 
we briefly set up some concepts that we need in 
the paper. These concepts consist of some needed 
identities on the convergent double series, the 
hypergeometric function, the Hermite polynomials, 
the Bessel functions, the associated laguerre 
polynomials, and finally the Legendre polynomials. 
Then the confluent hypergeometric representations 
of the Hermite polynomials and the associated 
Laguerre polynomials are respectively presented in 
section two and three. In section four, different 
formats of the relations between the Hermite and 
the Legendre polynomials will be introduced. 
Finally a conclusion is drawn in section five. 
 

1  Preliminaries. 
Here we shall introduce some necessary concepts, 

which we will need later on, such as a very 
important tool of dealing with double series.   

 
1.1 Double Series Manipulations.  
Here we shall introduce some elementary 
operations with the convergent double power 
series. Such operations will be needed later in 
rearrangement of series appearing later in the 
paper.  

 
Theorem 1: For a non-negative integrals 𝑚, 𝑛 and 
for a convergent power series 𝜑, one has 

∑ ∑ 𝜑(𝑚, 𝑛)

∞

𝑚=0

∞

𝑛=0

= ∑ ∑ 𝜑(𝑚, 𝑛 − 𝑚)

𝑛

𝑚=0

∞

𝑛=0

.           (1) 

                           
and    

∑ ∑ 𝜑(𝑚, 𝑛)

∞

𝑚=0

∞

𝑛=0

= ∑ ∑ 𝜑(𝑚, 𝑛 − 2𝑚)

[𝑛 2⁄ ]

𝑚=0

∞

𝑛=0

,           (2) 

where [] is the greatest integer symbol defined as, 

[
𝑛

2
] = {

𝑛 2⁄ , for 𝑛 even,
(𝑛 − 1) 2⁄ , for 𝑛 odd.

 

It should be noted that these identities can be 
taken in a reverse order, that is 

∑ ∑ 𝜑(𝑚, 𝑛)

𝑛

𝑚=0

∞

𝑛=0

= ∑ ∑ 𝜑(𝑚, 𝑛 + 𝑚)

∞

𝑚=0

∞

𝑛=0

,           (3) 

                              
and    

∑ ∑ 𝜑(𝑚, 𝑛)

[𝑛 2⁄ ]

𝑚=0

∞

𝑛=0

= ∑ ∑ 𝜑(𝑚, 𝑛 + 2𝑚)

∞

𝑚=0

∞

𝑛=0

.           (4) 

                              
Also note that a combination of the identities (1) 
and (2) yields, 

∑ ∑ 𝜑(𝑚, 𝑛) =

𝑛

𝑚=0

∞

𝑛=0

∑ ∑ 𝜑(𝑚, 𝑛 − 𝑚)

[𝑛 2⁄ ]

𝑚=0

∞

𝑛=0

.           (5) 

 
1.2 The Hypergeometric Function. 
In this section we shall introduce some functions 
that are used in this paper. Firstly, consider the 
series  
 
1

+ ∑
𝛼(𝛼 + 1) … (𝛼 + 𝑛 − 1)𝛽(𝛽 + 1) … (𝛽 + 𝑛 − 1)

𝛾(𝛾 + 1) … (𝛾 + 𝑛 − 1)

∞

𝑛=1

𝑧𝑛

𝑛!
 , (6) 

 
where  z  is a complex variable 𝛼 or 𝛽 and 𝛾 are 

parameters, which can take arbitrary real or 
complex values provided that 𝛾 ≠ 0, −1, −2, …. If we 
let 𝛼 = 1 and 𝛽 = 𝛾, then we get the elementary 

geometric series ∑ 𝑧𝑛∞
𝑛=0 . The series (6) is called the 

Gauss hypergeometric series, which has great 
importance in mathematical analysis and its 
applications. It is very convenient to introduce the 
so called generalized factorial function [3, 5] or 
Pochhammer symbol (𝑎)𝑛 defined as, 

(𝑎)𝑛 = ∏(𝑎 + 𝑘 − 1), (𝑎)0 = 1,    𝑎 ≠ 0

𝑛

𝑘=1

.            

In terms of the Pochhammer symbol we can 
simplify the hypergeometric series (6) in the form, 

∑
(𝛼)𝑛(𝛽)𝑛

(𝛾)𝑛

∞

𝑛=0

𝑧𝑛

𝑛!
 .        

Now we introduce the gamma function that is 
related to Pochhammer symbol. 
 

Definition 1: For a non-negative number 𝛼, the 
gamma function Γ(𝛼) is defined by the following 

Euler integral, 

Γ(𝛼) = ∫ 𝑥𝛼−1𝑒−𝑥𝑑𝑥 , 𝛼 > 0

∞

0

.          

The Pochhammer symbol is related to the gamma 
function by the following relation. 
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Theorem 2: If 𝑎 is neither zero nor a negative 

integer then, 

(𝑎)𝑛 =
Γ(𝑎 + 𝑛)

Γ(𝑎)
, 𝑎 ≠ 0, ±1, ±2, … , 𝑛

= 0,1,2, …                 (7)  
Next, we introduce some beneficial identities that 
we will need in our derivations in this article. 

 
Example 1: show the identity:  

(−𝑛)𝑘

𝑛!
=

(−1)𝑘

(𝑛 − 𝑘)!
, 0 ≤ 𝑘 ≤ 𝑛.                   (8) 

Proof: since, 
(−𝑛)𝑘

𝑛!

=
(−𝑛)(−𝑛 + 1) … (−𝑛 + 𝑘 − 1)

𝑛(𝑛 − 1) … (𝑛 − 𝑘 + 1)(𝑛 − 𝑘)(𝑛 − 𝑘 − 1) … 3.2.1
, 

=
(−1)𝑘𝑛(𝑛 − 1) … (𝑛 − 𝑘 + 1)

𝑛(𝑛 − 1) … (𝑛 − 𝑘 + 1)(𝑛 − 𝑘)(𝑛 − 𝑘 − 1) … 3.2.1
. 

 
Thus one obtains the required relation. 
 
Example 2: show the identity:  

22𝑛 (
1

2
)

𝑛
=

(2𝑛)!

𝑛!
.                                  (9) 

Proof: Using the relation (7) yields, 

22𝑛 (
1

2
)

𝑛
= 22𝑛

Γ (𝑛 +
1
2

)

Γ (
1
2

)
 . 

Calling the following relation of Gamma function,  

Γ (𝑛 +
1

2
) =

(2𝑛)!

22𝑛𝑛!
√𝜋  .                          (10) 

 

And the fact that  Γ (
1

2
) = √𝜋 , thus one obtains the 

desired result (9). And similarly, one has, 
 

22𝑛+1 (
3

2
)

𝑛
=

2(2𝑛 + 1)!

𝑛!
.                  (11) 

 
We shall denote the convergent hypergeometric 
series (6) by the notation 𝐹(𝛼, 𝛽; 𝛾; 𝑧) that is, 

 

𝐹(𝛼, 𝛽; 𝛾; 𝑧) = ∑
(𝛼)𝑛(𝛽)𝑛

(𝛾)𝑛𝑛!

∞

𝑛=0

𝑧𝑛 ,   |𝑧| < 1, 𝛾

≠ 0, −1, −2, … (12) 
Theorem 3: The confluent hypergeometric series 
which is defined by 
 

Φ(𝛼; 𝛾; 𝑧) = ∑
(𝛼)𝑛

(𝛾)𝑛𝑛!

∞

𝑛=0

𝑧𝑛 , ∀ 𝑧, 𝛾 ≠ 0, −1, −2, … (13) 

is convergent for all finite values of z  . Thus the 

confluent hypergeometric function is an analytic 
for all finite values of z . 
Example 3:  Show that (1 − 𝑧)𝑎 = 𝐹(𝑎; 𝑧). 
Solution: Since, 

(1 − 𝑧)−𝑎 = 1 + 𝑎𝑧 + ⋯ + 𝑎(𝑎 + 1)(𝑎 + 𝑛 − 1)
𝑧𝑛

𝑛!
+ ⋯ 

Thus, 

(1 − 𝑧)−𝑎 = ∑
(𝑎)𝑛𝑧𝑛

𝑛!

∞

𝑛=0

= Φ(𝑎; −; 𝑧).          (14) 

    

1.3 Hermite Polynomials.    
The Hermite polynomials are defined by the 
following generating function, 

𝑒(2𝑥ℎ−ℎ2) = ∑
𝐻𝑛(𝑥)

𝑛!

∞

𝑛=0

ℎ𝑛, ∀  finite 𝑥, ℎ.        (15) 

Since, 

𝑒(2𝑥ℎ−ℎ2) = (∑
(2𝑥ℎ)𝑛

𝑛!

∞

𝑛=0

) (∑
(−ℎ2)𝑛

𝑛!

∞

𝑛=0

) 

Now we may rewrite this double series using the 
identity (2) as, 

𝑒(2𝑥ℎ−ℎ2) = ∑
𝐻𝑛(𝑥)

𝑛!

∞

𝑛=0

ℎ𝑛 = ∑ ∑
(−1)𝑘(2𝑥)𝑛−2𝑘

𝑘! (𝑛 − 2𝑘)!

[𝑛 2⁄ ]

𝑘=0

∞

𝑛=0

ℎ𝑛. 

 
Equating the coefficients ℎ𝑛 of on both sides of this 
equation yields,  

𝐻𝑛(𝑥) = ∑
(−1)𝑘𝑛! (2𝑥)𝑛−2𝑘

𝑘! (𝑛 − 2𝑘)!

[𝑛 2⁄ ]

𝑘=0

.           (16) 

Furthermore, the Hermite polynomials are defined 

by the following formula of Rodrigues type as, 

𝐻𝑛(𝑥) = (−1)𝑛𝑒𝑥2 𝑑𝑛

𝑑𝑥𝑛 𝑒−𝑥2
, 𝑛 = 0,1,2, …   (17) 

 
Theorem 4: For a non-negative integral 𝑛 and a 

finite real 𝑥, one has 

(2𝑥)𝑛

𝑛!
= ∑

𝐻𝑛−2𝑘(𝑥)

𝑘! (𝑛 − 2𝑘)!

[𝑛 2⁄ ]

𝑘=0

.                  (18) 

Proof: From the generating function of the Hermite 
polynomials (15) we have 
 

𝑒2𝑥ℎ = 𝑒ℎ2
∑

𝐻𝑛(𝑥)

𝑛!

∞

𝑛=0

ℎ𝑛,   

∑
(2𝑥ℎ)𝑛

𝑛!

∞

𝑛=0

= ∑
ℎ2𝑛

𝑛!

∞

𝑛=0

∑
𝐻𝑛(𝑥)

𝑛!

∞

𝑛=0

ℎ𝑛. 

Now we may rewrite this double series using the 
identity (2) as, 

∑
(2𝑥)𝑛

𝑛!

∞

𝑛=0

ℎ𝑛 = ∑ ∑
𝐻𝑛−2𝑘(𝑥)

𝑘! (𝑛 − 2𝑘)!

[𝑛 2⁄ ]

𝑘=0

ℎ𝑛.

∞

𝑛=0

 

 
Equating the coefficients ℎ𝑛 of on both sides, we 

reach the desired result (18). 
 

1.4 Integral Representations of Hermite 
Polynomials [6]. 
Hermite polynomials have some beneficial 
representations expressed in terms of some 
familiar definite integrals as shown in the following 
lemma.  
Lemma 1: The Hermite polynomials 𝐻2𝑛(𝑥) have 

the following integral representation for even index 
𝑛, 

𝐻2𝑛(𝑥) =
22𝑛+1(−1)𝑛𝑒𝑥2

√𝜋
∫ 𝑒−𝑢2

∞

0

𝑢2ncos 2𝑢𝑥  𝑑𝑢,   (19) 

and for odd index 𝑛, 
 

𝐻2𝑛+1(𝑥)

=
22𝑛+2(−1)𝑛𝑒𝑥2

√𝜋
∫ 𝑒−𝑢2

∞

0

𝑢2n+2sin 2𝑢𝑥  𝑑𝑢.       (20) 

 
Proof: From calculus we borrow the following 
simple integral, 

𝑒−𝑥2
=

2

√𝜋
∫ 𝑒−𝑢2

∞

0

cos 2𝑢𝑥  𝑑𝑢.                     (21) 
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Now differentiate the relation (21) 2𝑛 times with 

respect to the parameter 𝑥, one has 

𝑑2𝑛

𝑑𝑥2𝑛 𝑒−𝑥2
=

2.2𝑛

√𝜋
∫ 𝑒−𝑢2

∞

0

𝑢ncos 2𝑢𝑥  𝑑𝑢,       (22) 

 
Then we multiply both sides of (22) by the factor 

(−1)𝑛𝑒𝑥2
 to recall the Rodrigues formula of Hermite 

polynomials (17), so one obtains the relation (19). 
In a similar way, we obtain the relation (20). 
Result: Combining the both preceding integrals 
formulae (19) and (20), one has 

𝐻𝑛(𝑥) =
22𝑛(−𝑖)𝑛𝑒𝑥2

√𝜋
∫ 𝑒−𝑢2+2𝑖𝑢𝑥

∞

−∞

𝑢n 𝑑𝑢.   

These integral formulae (19) and (20) will be useful 
in deriving relations between the Hermite and the 
associated Laguerre polynomials as shown later 
on. 
 

1.5 Bessel Functions.  
Here we shall present all the needed information 
about the Bessel functions which will be used in 
this paper.  At first the Bessel differential equation 
takes the form, 

𝑥2𝑦″ + 𝑥𝑦′ + (𝑥2 − 𝜈2)𝑦 = 0. 
Solving this equation about the regular singular 
point at 𝑥 = 0 using the Frobenius method [1, 2], 
one obtain the Bessel functions of the first kind of 
order 𝜈 as, 

𝐽𝜈(𝑥) = ∑
(−1)𝑘  

  𝑘!  Γ(𝑘 + 𝜈 + 1)
(

𝑥

2
)

𝜈+2𝑘

 .

∞

𝑘=0

              (23) 

Using this series, one could easily derive the 
following recurrence differential formula,  

𝑑

𝑑𝑥
[𝑥𝜈𝐽𝜈(𝑥)] = 𝑥𝜈𝐽𝜈−1(𝑥) ,                         (24) 

which will be used later in this paper. 
 
Example 5: Find 𝐽1 2⁄ (𝑥) and 𝐽−1 2⁄ (𝑥) . 

Since, 

𝐽1 2⁄ (𝑥) = ∑
(−1)𝑘  

  𝑘!  Γ (𝑘 +
1
2

+ 1)
(

𝑥

2
)

1
2

+2𝑘

 .

∞

𝑘=0
 

                                                                

=
1

Γ (
3
2

)
(

𝑥

2
)

1
2

−
1

Γ (
5
2

)
(

𝑥

2
)

7
2

+
1

Γ (
7
2

)
(

𝑥

2
)

9
2

− ⋯ 

𝐽1 2⁄ (𝑥) =
1

1
2

Γ (
1
2

)
(

𝑥

2
)

1
2

−
1

1
2

.
3
2

Γ (
1
2

)
(

𝑥

2
)

7
2

+
1

1
2

.
3
2

.
5
2

Γ (
1
2

)
(

𝑥

2
)

9
2

− ⋯ 

𝐽1 2⁄ (𝑥) =
2

√𝜋
√

𝑥

2
[1 −

𝑥2

3!
+

𝑥4

5!
− ⋯ ]. 

𝐽1 2⁄ (𝑥) = √
2

𝜋𝑥
𝑠𝑖𝑛 𝑥.                             (25) 

In a similar way we can obtain, 

𝐽−1 2⁄ (𝑥) = √
2

𝜋𝑥
cos 𝑥 .                  (26) 

Example 6: Find 𝐽3 2⁄ (𝑥) using 𝐽1 2⁄ (𝑥),    𝐽−1 2⁄ (𝑥). 

Using the following recurrence relation of Bessel 
functions, 

𝐽𝜈+1(𝑥) =
𝜈

𝑥
𝐽𝜈(𝑥)−𝐽𝜈

′ (𝑥).       

Thus one has, 

𝐽3 2⁄ (𝑥) =
1

2𝑥
𝐽1 2⁄ (𝑥)−𝐽1 2⁄

′ (𝑥).       

 
From equations (25) and (26), we have 

 

𝐽3 2⁄ (𝑥) =
1

2𝑥
√

2

𝜋𝑥
sin 𝑥 −

𝑑

𝑑𝑥
(√

2

𝜋𝑥
sin 𝑥), 

𝐽3 2⁄ (𝑥) = √
2

𝜋𝑥
(

sin 𝑥

𝑥
− cos 𝑥).                 (27)  

Weber’s Integral.  
Theorem 5: The Weber’s Integral is given as, 
 

∫ 𝑒−𝛼2𝑥2
𝑥𝜈 𝐽𝜈(𝛽𝑥)𝑑𝑥

∞

0

=
𝛽𝜈

(2𝛼2)𝜈+1 𝑒
−

𝛽2

4𝛼2 , 𝛼 > 0, 𝛽 > 0,

(28) 
which can be proven by using the Bessel series 

(23) and then interchanging the order of the 
integral with the summation which is allowed due 
to the absolute convergence of the Bessel series 
(23) [9]. Finally recall the definitions of gamma 
function to reach the desired result. 
 

1.6 Associated Laguerre Polynomials. 
The associated Laguerre differential equation 

takes 
the form 

𝑥𝑦′′(𝑥) + (𝛼 + 1 − 𝑥)𝑦′(𝑥) + 𝑛𝑦(𝑥) = 0. 
Solving this equation about the regular singular 
point at 𝑥 = 0 using the Frobenius method [1, 2], 

one obtain the associated Laguerre polynomials 
𝐿𝑛 

𝛼 (𝑥) as, 

𝐿𝑛 
𝛼 (𝑥) = ∑

Γ(𝛼 + 𝑛 + 1)(−1)𝑘

Γ(𝛼 + k + 1)(𝑛 − 𝑘)! 𝑘!
𝑥𝑘 .               (29)

𝑛

𝑘=0

 

 
Also, the associated Laguerre polynomials 𝐿𝑛 

𝛼 (𝑥) 
are defined by the following formula of Rodrigues 
type as, 

𝐿𝑛 
𝛼 (𝑥) =

𝑥−𝛼𝑒𝑥

𝑛!

𝑑𝑛

𝑑𝑥𝑛
(𝑒−𝑥𝑥𝑛+𝛼), 𝑛 = 0,1,2, …   (30) 

 
1.7 Legendre Polynomials. 
The Legendre polynomials 𝑃𝑛(𝑥) are defined by the 

following generating function as, 

∑ 𝑃𝑛(𝑥)

∞

𝑛=0

ℎ𝑛 = (1 − 2𝑥ℎ + ℎ2)−
1
2. 

Using this formula we will derive a very beneficial 
series expression of the Legendre polynomials that 
will be used later on. By rewriting the function 

(1 − 2𝑥ℎ + ℎ2)−
1

2 in terms of the hypergeometric 
function using the identity (14), one has 

∑ 𝑃𝑛(𝑥)

∞

𝑛=0

ℎ𝑛 = ∑
(

1
2

)
𝑛

(2𝑥 + ℎ)𝑛

𝑛!

∞

𝑛=0

ℎ𝑛+𝑘 . 

Now by using the binomial expansion of the term 
(2𝑥 + ℎ)𝑛, we have 
 

∑ 𝑃𝑛(𝑥)

∞

𝑛=0

ℎ𝑛 = ∑ ∑
(−1)𝑘 (

1
2

)
𝑛

(2𝑥)𝑛−𝑘

𝑘! (𝑛 − 𝑘)!

𝑛

𝑘=0

∞

𝑛=0

ℎ𝑛+𝑘 . 

Rearrange the double series using the identity (5), 
one has 
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∑ 𝑃𝑛(𝑥)

∞

𝑛=0

ℎ𝑛 = ∑ ∑
(−1)𝑘 (

1
2

)
𝑛−𝑘

(2𝑥)𝑛−2𝑘

𝑘! (𝑛 − 2𝑘)!

[𝑛 2⁄ ]

𝑘=0

∞

𝑛=0

ℎ𝑛. 

 
Equating the coefficients of ℎ𝑛 of on both sides we 

have the following useful expression of 𝑃𝑛(𝑥) as, 
 

𝑃𝑛(𝑥) = ∑
(−1)𝑘 (

1
2

)
𝑛−𝑘

(2𝑥)𝑛−2𝑘

𝑘! (𝑛 − 2𝑘)!

[𝑛 2⁄ ]

𝑘=0

.           (31) 
 

2 The Confluent Hypergeometric 
Representations of Hermite Polynomials. 
In this section, we shall obtain the confluent 
hypergeometric representations of Hermite 
polynomials with complex variable z. These 
representations have the advantage of carrying out 
the analytic continuation of Hermite polynomials 
into any part of the complex z-plane. 

Replace 𝑛 by the odd order (2𝑛 + 1) in the series 

expansion of Hermite polynomials (16), one has 
 

𝐻2𝑛+1(𝑧) = ∑
(−1)𝑘(2𝑛 + 1)! (2𝑧)2𝑛−2𝑘+1

𝑘! (2𝑛 − 𝑘 + 1)!

[(2𝑛+1) 2⁄ ]

𝑘=0

, 𝑛

= 0,1, … 
where [(2𝑛 + 1) 2⁄ ] = 𝑛, Now replace 𝑘 by 𝑛 − 𝑘 to 

obtain the infinite series as 

𝐻2𝑛+1(𝑧) = (2𝑛 + 1)! (2𝑧) ∑
(−1)𝑛−𝑘(2𝑧)2𝑘

(1 + 2𝑘)! (𝑛 − 𝑘)!

∞

𝑘=0

, 

Call the identity (8), thus one has 

𝐻2𝑛+1(𝑧) = (−1)𝑛
(2𝑛 + 1)!

𝑛!
(2𝑧) ∑

(−𝑛)𝑘22𝑘𝑧2𝑘

(1 + 2𝑘)(2𝑘)! 

∞

𝑘=0

, 

Now using the fact that 
(2𝑘)!

22𝑘 = (
1

2
)

𝑘
𝑘! , one has 

𝐻2𝑛+1(𝑧) = (−1)𝑛
(2𝑛 + 1)!

𝑛!
(2𝑧) ∑

(−𝑛)𝑘𝑧2𝑘

(1 + 2𝑘) (
1
2

)
𝑘

𝑘! 

∞

𝑘=0

, 

Using the fact that (
3

2
)

𝑘
= (1 + 2𝑘) (

1

2
)

𝑘
, one has 

𝐻2𝑛+1(𝑧) = (−1)𝑛
(2𝑛 + 1)!

𝑛!
(2𝑧) ∑

(−𝑛)𝑘𝑧2𝑘

(
3
2

)
𝑘

𝑘! 

∞

𝑘=0

, 

Using the notation of the confluent hypergeometric 
function (13), one has 

 

𝐻2𝑛+1(𝑧) = (−1)𝑛
(2𝑛 + 1)!

𝑛!
(2𝑧)Φ (−𝑛,

3

2
; 𝑧2).       

Using the identity (11), one has, 

𝐻2𝑛+1(𝑧) = (−1)𝑛22𝑛+1 (
3

2
)

𝑛
z Φ (−𝑛,

3

2
; 𝑧2).    (32) 

 
In a similar fashion, we obtain the confluent 
hypergeometric representations of Hermite 
polynomials of even orders as, 

𝐻2𝑛(𝑧) = (−1)𝑛
(2𝑛)!

𝑛!
Φ (−𝑛,

1

2
; 𝑧2).       

Using the identity (9), one has, 
 

𝐻2𝑛(𝑧) = (−1)𝑛22𝑛 (
1

2
)

𝑛
Φ (−𝑛,

1

2
; 𝑧2).            (33) 

These confluent hypergeometric representations of 
Hermite polynomials (32) and (33) are convergent 
everywhere in the complex plane. Another 

hypergeometric representation of Hermite 

polynomials can be obtained as, 
 

𝐻𝑛(𝑧) = (2𝑧)𝑛 [1 −
𝑛(𝑛 − 1)

1!
(2𝑧)−2

+
𝑛(𝑛 − 1)(𝑛 − 2)(𝑛 − 3)

2!
(2𝑧)−4 + ⋯ ].  

   
Since, 

𝑛(𝑛 − 1)

22 = (−
𝑛

2
) (

1 − 𝑛

2
) = (−

𝑛

2
)

1
(

1 − 𝑛

2
)

1
, 

𝑛(𝑛 − 1)(𝑛 − 2)(𝑛 − 3)

24
= (−

𝑛

2
) (

1 − 𝑛

2
) (

2 − 𝑛

2
) (

3 − 𝑛

2
), 

= (−
𝑛

2
) (

2 − 𝑛

2
) (

1 − 𝑛

2
) (

3 − 𝑛

2
), 

= (−
𝑛

2
)

2
(

1 − 𝑛

2
)

2
. 

Thus one has, 

𝐻𝑛(𝑧) = (2𝑧)𝑛 ∑
(−

𝑛
2

)
𝑘

(
1 − 𝑛

2
)

𝑘

𝑘! 
(−

1

𝑧2)
𝑘

[𝑛 2⁄ ]

𝑘=0

𝑛

= 0,1,2, . ..            
Now we can rewrite this series using the 
hypergeometric function as the following, 
 

𝐻𝑛(𝑧) = (2𝑧)𝑛F (−
𝑛

2
,
1 − 𝑛

2
; −; −

1

𝑧2).        (34) 

 

The hypergeometric representation of Hermite 
polynomials is convergent in the complex region 
|𝑧| > 1.  
 

3 The Confluent Hypergeometric 
Representation of the Associated Laguerre 
Polynomials. 
Here we find the hypergemetric representation the 
associated Laguerre polynomials as well. 
Implementing the identity (8) in the series of the 
associated Laguerre polynomials (29), thus one has 

𝐿𝑛 
𝛼 (𝑧) = ∑

Γ(𝛼 + 𝑛 + 1)(−𝑛)𝑘(−1)𝑘

Γ(𝛼 + k + 1)n!  𝑘!
𝑧𝑘 .    

𝑛

𝑘=0

 

Now using the property of gamma function (7) 
leads to, 

Γ(𝛼 + n + 1)

Γ(𝛼 + k + 1)
=

Γ(𝛼 + n + 1) Γ(𝛼 + 1)⁄

Γ(𝛼 + k + 1) Γ(𝛼 + 1)⁄
=

(𝛼 + 1)n

(𝛼 + 1)k
. 

Thus 

𝐿𝑛 
𝛼 (𝑧) =

(𝛼 + 1)n

𝑛!
∑

(−𝑛)𝑘𝑧𝑘

(𝛼 + 1)k𝑘!
.           

𝑛

𝑘=0

 

Using the notation of the confluent hypergeometric 
function (10), yields 

 

𝐿𝑛 
𝛼 (𝑧) =

(𝛼 + 1)n

𝑛!
Φ(−𝑛, 𝛼 + 1; 𝑧).                 (35) 

 

4 Results and Discussion. 
 

4.1 Relations between the Hermite and the 
Associated Laguerre Polynomials. 
Relations between the Hermite and the associated 
Laguerre polynomials can be derived using their 
confluent hypergeometric representations (33) and 

(35) respectively. Thus let 𝛼 =
1

2
 in the confluent 

hypergeometric representation of associated 
Laguerre polynomials (32), so 
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Φ (−𝑛,
3

2
; 𝑥2) =

(
3
2

)
𝑛

𝑛! 
⁄ 𝐿𝑛

1
2⁄

(𝑥2).            (36) 

 
Now plug in equation (36) into the confluent 
hypergeometric of Hermite polynomials (32) to 
obtain, 

𝐻2𝑛+1(𝑥) = (−1)𝑛22𝑛+1 (
3

2
)

𝑛
𝑥

n!

(
3
2

)
𝑛

𝐿𝑛

1
2⁄

(𝑥2).         

Thus, we obtain this relation 

𝐻2𝑛+1(𝑥) = (−1)𝑛22𝑛+1𝑛! 𝑥 𝐿𝑛

1
2⁄

(𝑥2).                    (37) 

In a similar analogy we obtain the following 
relation, 

𝐻2𝑛(𝑥) = (−1)𝑛22𝑛𝑛!  𝐿𝑛

−1
2⁄

(𝑥2).                    (38) 

Thus the Hermite polynomials of even degree 

𝐻2𝑛(𝑥) are just Laguerre polynomials 𝐿𝑛

−1
2⁄

(𝑥2) up to 

a multiplicative constant. 

Further relations between the Hermite and the 
associated Laguerre polynomials can be derived. 
 
Theorem 6: The Hermite polynomials and the 
associated Laguerre polynomials are related by the 
following relations, 

𝐿𝑛

3
2⁄

(𝑥2) =
(−1)𝑛

𝑛! 𝑥222(𝑛+1)
[
𝐻2𝑛+1(𝑥)

𝑥
+

𝐻2𝑛+2(𝑥)

2
],    (39) 

 
and 
 

𝐿𝑛

−3
2⁄

(𝑥2) =
(−1)𝑛

𝑛! 22𝑛−1 [𝑥𝐻2𝑛−1(𝑥) +
𝐻2𝑛−2(𝑥)

2
].    (40) 

 
Proof: To prove these relations, we start at the 
Weber integral (28) that involve the Bessel function 
of order 𝜈 by setting the following values, 

 

    𝛼 = 1, 𝛽 = 2√𝑥, 𝑥 = √𝑤, 𝜈 = 𝑛 + 𝜇, 
 
in the Weber integral (28), thus one has 

𝑒−𝑥𝑥𝑛+𝜇 = ∫ 𝑒−𝑤(√𝑥𝑤)
𝑛+𝜇

 𝐽𝑛+𝜇(2√𝑥𝑤) 𝑑𝑤
∞

0

.      (41) 

Now differentiate equation (41) with respect to 𝑥 m 

times, one has 
 
𝑑𝑚

𝑑𝑥𝑚
(𝑒−𝑥𝑥𝑛+𝜇)

= ∫ 𝑒−𝑤
𝑑𝑚

𝑑𝑥𝑚  [ (√𝑥𝑤)
𝑛+𝜇

𝐽𝑛+𝜇(2√𝑥𝑤)]  𝑑𝑤
∞

0

.     

Now recall the recurrence relation (24), so 
𝑑𝑚

𝑑𝑥𝑚
(𝑒−𝑥𝑥𝑛+𝜇)

= ∫ 𝑒−𝑤 𝑤𝑚(√𝑥𝑤)
𝑛−𝑚+𝜇

𝐽𝑛−𝑚+𝜇(2√𝑥𝑤) 𝑑𝑤
∞

0

.       (42) 

Let 𝑛 = 𝑚 and multiply equation (42) by the factor 
𝑒𝑥𝑥−𝜇

𝑛!⁄ , then recall the generating function of 

associated Laguerre polynomials (30), one has, 

𝐿𝑛
𝜇

(𝑥)

=
𝑒𝑥𝑥−𝜇 2⁄

𝑛!
∫ 𝑒−𝑤 𝑤𝑛+

𝜇
2(√𝑥𝑤)

𝑛−𝑚+𝜇
𝐽𝜇(2√𝑥𝑤) 𝑑𝑤, 𝜇

∞

0

> 1.   

Now consider the special cases   𝜇 = ±
3

2
 , hence 

𝐿𝑛

3
2⁄

(𝑥) =
𝑒𝑥𝑥−3 4⁄

𝑛!
∫ 𝑒−𝑤 𝑤𝑛+

3
4  𝐽3

2⁄ (2√𝑥𝑤) 𝑑𝑤.
∞

0

     

Now recall 𝐽3 2⁄ (𝑥) from equation (27), one has  

=
𝑒𝑥𝑥−3 4⁄

𝑛!
∫ 𝑒−𝑤𝑤𝑛+

3
4  [√

2

2𝜋𝑥𝑤
(

sin(2√𝑥𝑤)

(2√𝑥𝑤)

∞

0

− cos(2√𝑥𝑤))] 𝑑𝑤.     

=
𝑒𝑥𝑥−3 4⁄

2𝑥3 2⁄ √𝜋𝑛!
∫ [𝑒−𝑤𝑤𝑛 sin(2√𝑥𝑤)

∞

0

− 𝑤𝑛+
1
2  cos(2√𝑥𝑤)] 𝑑𝑤.     

Making the substitutions 𝑤 = 𝑣2, 𝑥 → 𝑥2, yields 

𝐿𝑛

3
2⁄

(𝑥2) =
𝑒𝑥

𝑥3√𝜋𝑛!
∫ 𝑒−𝑣2

𝑣2𝑛+1  sin(2𝑣𝑥) 𝑑𝑣
∞

0

−
2𝑒𝑥

𝑥2√𝜋𝑛!
∫ 𝑒−𝑣2

𝑣2𝑛+2  cos(2𝑣𝑥) 𝑑𝑣
∞

0

.     

Finally recall the integral representations of 
Hermite polynomials (19) and (20); we end up at 

the relation (39). In a similar analogy we can 
obtain the relation (40) . The relations (41) and (42) 

are special results obtained by the author. 

 
4.2 Relations between the Hermite and the 
Legendre polynomials. 
Curzon [10] established many relations between 
the Hermite polynomials and the Legendre 
polynomials for unrestricted values of the index n. 
One of his relations is mentioned in the following 
theorem. 
Theorem 7: For general values of the index n, we 
have the following real-integral type formula given 
as, 

𝑃𝑛(𝑥) =
2

𝑛! √𝜋
∫ 𝑒−𝑡2

𝑡𝑛𝐻𝑛(𝑥𝑡)  𝑑𝑡.     
∞

0

       (43) 

Proof: This relation can be proven by recalling the 
series expansion of Hermite polynomials (16) as 

2

𝑛! √𝜋
∫ 𝑒−𝑡2

𝑡𝑛𝐻𝑛(𝑥𝑡)  𝑑𝑡
∞

0

=
2

𝑛! √𝜋
∫ 𝑒−𝑡2

𝑡𝑛 ∑
(−1)𝑘𝑛!

𝑘! (𝑛 − 𝑘)!
(2𝑥𝑡)𝑛−2𝑘

[𝑛 2⁄ ]

𝑘=0

  𝑑𝑡,
∞

0

 

= ∑
2𝑛−2𝑘+1(−1)𝑘

√𝜋𝑘! (𝑛 − 𝑘)!
𝑥𝑛−2𝑘

[𝑛 2⁄ ]

𝑘=0

∫ 𝑒−𝑡2
𝑡

2(𝑛−𝑘+
1
2

)−1
  𝑑𝑡,

∞

0

 

 
where we were allowed to swap the order of the 
integral with the summation because of the 
absolute convergence of the Hermite polynomials. 
Finally, we call the Euler definition of Gamma 
function and the relation (13) to reach the desired 

formula (43). Next we show how to derive another 
formula in a different mathematical frame. 
Khammash et al. [13] derived an operational 
formula between the Hermite polynomials and the 
Legendre polynomials. Their approach starts from 
the formula (43) by making the change of variable, 
𝑤 = 𝑥𝑡  thus one obtains, 

 

𝑃𝑛(𝑥) =
2

𝑛! 𝑥𝑛+1√𝜋
∫ 𝑒

−(
𝑤
𝑥

)
2

𝑤𝑛+1𝐻𝑛(𝑤)  𝑑𝑤.
∞

0

     (44) 

 
Actually this relation can be seen as the Mellin 
integral transform of the following function, 

𝐹(𝑦) = 𝑒
−(

𝑦
𝑥

)
2

𝑦𝑛+1𝐻𝑛(𝑦). 
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Then, they introduced the following operator which 
acts on the function 𝑓(𝑥) as, 

𝑒
𝜇 𝑥 

𝜕
𝜕𝑥𝑓(𝑥) = 𝑓(𝑥𝑒𝜇). 

Now, 

𝑓(𝑥𝑡) = 𝑓(𝑥𝑒𝑙𝑛 𝑡) = 𝑡
𝑥

𝜕
𝜕𝑥  𝑓(𝑥), 

𝐻𝑛(𝑥𝑡) = 𝐻𝑛(𝑥𝑒𝑙𝑛 𝑡) = 𝑡
𝑥

𝜕
𝜕𝑥  𝐻𝑛(𝑥). 

Thus equation (44) becomes, 
 

𝑃𝑛(𝑥) =
2  𝐻𝑛(𝑥)

𝑛! √𝜋
∫ 𝑒−𝑡2

𝑒
𝑛+𝑥

𝜕
𝜕𝑥    𝑑𝑡.

∞

0

  

Finally, they recall the gamma function definition 
to obtain the following operational formula, 

𝑃𝑛(𝑥) =
1

𝑛! √𝜋
𝛤 [(𝑛 + 1 + 𝑥

𝜕

𝜕𝑥
) 2⁄ ]   𝐻𝑛(𝑥).             (45) 

Next we show a relation between the Hermite 
polynomials and the Legendre polynomials in a 

different mathematical frame.  
 

4.3 An expansion form of Legendre polynomials 
in terms of Hermite polynomials 
Here we show how to expand the Legendre 
polynomials in a series of the orthogonal Hermite 
polynomials.  
 
Theorem 8: The Legendre polynomials 𝑃𝑛(𝑥) can 

be expanded in a series of the Hermite polynomials 
𝐻𝑛(𝑥) as, 
 
𝑃𝑛(𝑥)

= ∑
𝐹 (−𝑘,

1
2

+ 𝑛 − 𝑘; −; 1) (−1)𝑘 (
1
2

)
𝑛−𝑘

𝐻𝑛−2𝑘(𝑥)

𝑘! (𝑛 − 2𝑘)!
. (46)

[𝑛 2⁄ ]

𝑘=0

 

 
Proof: We start from the series of Legendre 
polynomials (31) as, 

∑ 𝑃𝑛(𝑥)

∞

𝑛=0

ℎ𝑛 = ∑ ∑
(−1)𝑘 (

1
2

)
𝑛−𝑘

(2𝑥)𝑛−2𝑘

𝑘! (𝑛 − 2𝑘)!

[𝑛 2⁄ ]

𝑘=0

∞

𝑛=0

ℎ𝑛. 

 
Rearrange this double series using (4) to obtain, 
 

= ∑ ∑
(−1)𝑘 (

1
2

)
𝑛+𝑘

(2𝑥)𝑛

𝑘!  𝑛!

∞

𝑘=0

∞

𝑛=0

ℎ𝑛+2𝑘 . 

 
Now recall the identity (18) to obtain, 
 

∑ 𝑃𝑛(𝑥)

∞

𝑛=0

ℎ𝑛 = ∑ ∑ ∑
(−1)𝑘 (

1
2

)
𝑛+𝑘

𝐻𝑛−2𝑗(𝑥)

𝑘!  𝑗! (𝑛 − 2𝑗)!

[𝑛 2⁄ ]

𝑗=0

∞

𝑘=0

∞

𝑛=0

ℎ𝑛+2𝑘 

 
Rearrange this double series using (4) to obtain, 

∑ 𝑃𝑛(𝑥)

∞

𝑛=0

ℎ𝑛 = ∑

(−1)𝑘 (
1
2

)
𝑛+𝑘+2𝑗

𝐻𝑛(𝑥)

𝑘!  𝑗! 𝑛!

∞

𝑛,𝑘,𝑗=0

ℎ𝑛+2𝑘+2𝑗 . 

 
Rearrange this double series using (1) to obtain, 

∑ 𝑃𝑛(𝑥)

∞

𝑛=0

ℎ𝑛 = ∑ ∑

(−1)𝑘−𝑗 (
1
2

)
𝑛+𝑘+𝑗

𝐻𝑛(𝑥)

𝑘! (𝑘 − 𝑗)! 𝑛!

𝑘

𝑗=0

∞

𝑛,𝑘=0

ℎ𝑛+2𝑘 . 

 
Now recall the following identities, 

 

(−𝑘)𝑗 =
(−1)𝑗𝑘!

(𝑘 − 𝑗)!
, (

1

2
)

𝑛+𝑘+𝑗
= (

1

2
+ 𝑛 + 𝑘)

𝑗
(

1

2
)

𝑛+𝑘
. 

Hence, one has 
 

∑ 𝑃𝑛(𝑥)

∞

𝑛=0

ℎ𝑛

= ∑ ∑

(−𝑘)𝑗(−1)𝑘 (
1
2

+ 𝑛 + 𝑘)
𝑗

(
1
2

)
𝑛+𝑘

𝐻𝑛(𝑥)

𝑘! 𝑛! 𝑗!

𝑘

𝑗=0

∞

𝑛,𝑘=0

ℎ𝑛+2𝑘 . 

 
Using the notation of the hypergeometric function 
(12), one has 

∑ 𝑃𝑛(𝑥)

∞

𝑛=0

ℎ𝑛

= ∑
𝐹(−𝑘,

1
2

+ 𝑛 + 𝑘; −; 1)(−1)𝑘 (
1
2

)
𝑛+𝑘

𝐻𝑛(𝑥)

𝑘! 𝑛!

∞

𝑛,𝑘=0

ℎ𝑛+2𝑘 . 

 
Finally using the identity (2) and the then equating 
the coefficient of ℎ𝑛 on both sides; one obtains the 

required relation (46). 
It should be noted that the formula (46) expands 
the Legendre polynomials in terms of the Hermite 
polynomials with a coefficient that involves the 
hypergeometric function of a constant argument 
(𝑥 = 1). 

 
5. Conclusion  

we have presented some relations that To conclude 
known -link the Hermite polynomials to some well

classical polynomials such as the Legendre 
 olynomials and the associated Laguereep

Furthermore, we have introduced the polynomials. 
and the ) 3) and (332(confluent hypergeometric 
Hermite of the ) 4(3hypergeometric representation 

 confluent hypergeometric polynomials. Since the
series is convergent everywhere in the complex z 

olynomials inherit this pplane, thus the Hermite 
in  adaptabilityus more  rewardgreat feature which 

 ingallow and olynomialspdealing with Hermite 
polynomials. To sum up,  of suchmore applications 

in this paper we have shown various types of 
formulae which connect the Hermite polynomials 

known classical polynomials. It -with some well
should be noted that these formulae hold distinct 

are  nsse relatioome of theS .mathematical frames
, an )3(4 of integral (either real or contour) form

 and series expansion form) 5(4operational form 

that involves the ) with a coefficient 6(4
. One could claim that by hypergeometric function

polynomials in terms of the  rewriting the Hermite
Legendre polynomials, one could treat the former 
as a special case of the latter polynomials. As 
future work, this approach can be extended to 

known classical polynomials, such as -other well
r Bessel, Chebychev, Jacobi, Gegenbaue
 
 

                                               polynomials, etc. 
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