Investigation of Murexide-Zn(II) Complexes in Water-Isopropanol Mixtures: Spectroscopic Analysis and Stability Studies

Khaled Elsherif (1) , Ahmed Zubi (2) , Zainab Alzalouk (3) , Salima Al-Ddarwish (4)
(1) Libyan Authority for Scientific Research, Tripoli, Libya ,
(2) Chemistry Department, Faculty of Science, Misurata University, Libya ,
(3) Chemistry Department, Faculty of Science, Misurata University, Libya ,
(4) Chemistry Department, Faculty of Science, Misurata University, Libya

Abstract

This study investigates the complexes formed between murexide and Zn (II) ion in water-isopropanol mixtures using spectroscopic analysis. The impact of varying solvent ratios on the absorption spectrum of murexide and its complexes with Zn (II) ion is examined. Furthermore, the influence of pH, time, and interfering ions on the stability of the complexes is investigated for three different isopropanol-water ratios with varying polarities (8:2, 6:4, and 3:7). The molar ratio and stability constants of these complexes are determined using the continuous variations method. The results indicate that complexes with a molar ratio of 1:2 (ML2) are formed at the ratios 8:2 and 6:4, while a molar ratio of 1:1 (ML) is observed at the ratio 3:7. The formation constants (Kf) for the complexes are found to be 7.32x1010, 1.10x1011, and 3.98x105 for the three ratios, respectively, suggesting an inverse relationship between complex stability and water content in the solvent mixture. Additionally, the spectroscopic method employed is evaluated based on sensitivity (0.0406 ppm⁻¹), detection limit (0.016 ppm), and quantification limit (0.054 ppm). The linear range of concentration, as determined by Beer‒Lambert’s law, spans from 0.2 ppm to 3.93 ppm. 

Full text article

Generated from XML file

References

Wahba, O., Hassan, A. M., Naser, A., Hanafi, A. (2017). Preparation and Spectroscopic Studies of Some Copper and Nickel Schiff Base Complexes and their Applications as Colouring Pigments in Protective Paints Industry. Egypt. J. Chem., 60, 25-40. DOI: https://doi.org/10.21608/ejchem.2017.517.1000

Cossee, P. (1964). Ziegler-Natta catalysis I. Mechanism of polymerization of α-olefins with Ziegler-Natta catalysts. J. Catal., 3, 80-88. DOI: https://doi.org/10.1016/0021-9517(64)90095-8

Flett, D., Melling, J., & Cox, M. (1983). Commercial solvent systems for inorganic processes. In Handbook of Solvent Extraction (pp. 629-647).

Spessard, G., & Miessler, G. (1996). Organometallic Chemistry. Prentice-Hall.

Erkey, C. (2011). Supercritical fluids and organometallic compounds: from recovery of trace metals to synthesis of nanostructured materials. Elsevier. DOI: https://doi.org/10.1016/B978-0-08-045329-3.00005-6

Ndagi, U., Mhlongo, N., & Soliman, M. E. (2017). Metal complexes in cancer therapy – an update from drug design perspective. Drug Des. Dev. Ther., 11, 599-616. DOI: https://doi.org/10.2147/DDDT.S119488

Monneret, C. (2011). Platinum anticancer drugs. From serendipity to rational design. Ann. Pharm. Fr., 69, 286-295. Elsevier. DOI: https://doi.org/10.1016/j.pharma.2011.10.001

Lum, C. T., Wong, A. S.-T., Lin, M. C., Che, C.-M., & Sun, R. W.-Y. (2013). A gold (III) porphyrin complex as an anti-cancer candidate to inhibit growth of cancer-stem cells. Chem. Commun., 49, 4364-4366. DOI: https://doi.org/10.1039/C2CC37366A

Esmaeili, L., Perez, M. G., Jafari, M., Paquin, J., Ispas-Szabo, P., Pop, V., Andruh, M., Byers, J., & Mateescu, M. A. (2019). Copper complexes for biomedical applications: Structural insights, antioxidant activity and neuron compatibility. J. Inorg. Biochem., 192, 87-97. DOI: https://doi.org/10.1016/j.jinorgbio.2018.12.010

Warra, A. (2011). Transition metal complexes and their application in drugs and cosmetics - a Review. J. Chem. Pharm. Res., 3, 951-958.

Jeffery, P. G., & Hutchison, D. (1981). Chemical methods of rock analysis. Elsevier.

Masoud, M., Kassem, T., Shaker, M., & Ali, A. (2006). Studies on transition metal murexide complexes. J. Therm. Anal. Calorim., 84, 549-555. DOI: https://doi.org/10.1007/s10973-005-9991-3

Mahanthesha, K., Swamy, B. K., Chandra, U., & Shankar, S. S. P. (2012). Electrocatalytic oxidation of dopamine at murexide and TX-100 modified carbon paste electrode: a cyclic voltammetric study. J. Mol. Liquids, 172, 119-124. DOI: https://doi.org/10.1016/j.molliq.2012.05.015

Huang, G., Calvez, G., Suffren, Y., Daiguebonne, C., Freslon, S., Guillou, O., & Bernot, K. (2018). Closing the Circle of the Lanthanide-Murexide Series: Single-Molecule Magnet Behavior and Near-Infrared Emission of the Nd(III) Derivative. Magnetochemistry, 4, 44. DOI: https://doi.org/10.3390/magnetochemistry4040044

Shamsipur, M., Madaeni, S., & Kashanian, S. (1989). Spectrophotometric study of the alkali metal-murexide complexes in some non-aqueous solutions. Talanta, 36, 773-776. DOI: https://doi.org/10.1016/0039-9140(89)80147-X

Shamsipur, M., & Alizadeh, N. (1992). Spectrophotometric study of cobalt, nickel, copper, zinc, cadmium and lead complexes with murexide in dimethylsulphoxide solution. Talanta, 39, 1209-1212.

Elsherif, K. M., Nabbra, F. M., Ewlad-Ahmed, A. M., & el Huda Elkebbir, N. (2020). Spectrophotometric Complex Formation Study of Murexide with Nickel and Cobalt in Aqueous Solution. To Chem., 5, 40-47.

Ghasemi, J., & Shamsipur, M. (1995). Spectrophotometric study of the thermodynamics of interaction of some metal ions with murexide in binary acetonitrile-dimethylsulfoxide mixtures. J. Coord. Chem., 36, 183-194. DOI: https://doi.org/10.1080/00958979508022560

Famoori, F., Haghgoo, S., & Shamsipur, M. (1990). On the influence of ionic strength on the equilibrium constant of copper-murexide interaction. Talanta, 37, 1107-1109. DOI: https://doi.org/10.1016/0039-9140(90)80164-B

Knoche, W., & Flees, N. H. (1984). The Kinetics and Mechanism of the Decomposition of Murexide in Acid Solution. J. Chem. Educ., 61, 724-726. DOI: https://doi.org/10.1021/ed061p724

Shamsipur, M., & Alizadeh, N. (1992). Spectrophotometric study of cobalt, nickel, copper, zinc, cadmium and lead complexes with murexide in dimethyl sulphoxide solution. Talanta, 39(10), 1209-1212. DOI: https://doi.org/10.1016/0039-9140(92)80222-Y

Kargosha, K., Maleki, M. S., & Azad, J. (2014). Spectrofluorimetric determination of nickel (ΙΙ) with murexide. J. Fluoresc., 24(3), 855-858. DOI: https://doi.org/10.1007/s10895-014-1363-6

Elsherif, K. M., Hadidan, Q., & Alkariwi, K. (2022). Spectrophotometric Determination of Zn(II) and Cu(II) in Analytical Sample Using Murexide Reagent. Prog. Chem. Biochem. Res., 5(3), 229-238.

Elsherif, K. M., Zubi, A., Najar, A., & Bin Ghashir, H. (2022). Determination of Stoichiometry and Stability Constant of Cd(II) and Zn(II) Complexes with Pyrazole Based Ligands in Mixed Solvent (EtOH-H2O). Sebha Univ. J. Pure Appl. Sci., 21(2), 128-134. DOI: https://doi.org/10.51984/jopas.v21i2.2080

Elsherif, K. M., Zubi, A., Najar, A., & Bin Ghashir, H. (2021). Complexation of Pyrazole Based Ligands with Ag(I): Spectrophotometric Studies in Mixed Solvents (EtOH-H2O). Arab. J. Chem. Environ. Res., 5(2), 138-146.

Winkler, R. (1972). Kinetics and mechanism of alkali ion complex formation in solution. In Structure and Bonding (pp. 1-24). Springer. DOI: https://doi.org/10.1007/BFb0119199

Alzalouk, Z. Y., Elsherif, K. M. M., Zubi, A., Atiya, R. M., & Al-Ddarwish, S. (2023). Metal Chelates of Copper and Nickel with Murexide in Mixed Isopropanol: Water Solvent: Spectrophotometric Study. Sci. J. Fac. Sci.-Sirte Univ., 3(1), 9-17.

Elsherif, K. M., Zubi, A., Najar, A., & Bazina, E. (2018). Complexation of 1,4-bis(3-(2-pyridyl)pyrazol-1-ylmethyl)benzene (1,4-PPB) with Cu(II), Co(II), and Ni(II): Spectrophotometric Studies in Mixed Solvent (EtOH-H2O). To Chem., 1(2), 214-223.

Shriver, D., Atkins, P., Overton, T., Rourke, J., Weller, M., & Armstrong, F. (2010). Inorganic chemistry. Oxford University Press, USA.

Elsherif, K. M., Zubi, A., Shawish, H. B., Abajja, S. A., & Almelah, E. B. M. (2020). Complex Formation of Bis(salicylidene) ethylenediamine (Salen type ligand) with Cupper(II) Ions in Different Solvents: Spectrophotometric and Conductometric Study. Int. J. New Chem., 7(1), 1-13.

Skoog, D. A., West, D. M., Holler, F. J., & Crouch, S. R. (2004). Fundamentals of analytical chemistry (9th ed.). Brooks/Cole.

Elsherif, K. M., Zubi, A., Najar, A., & Bin Ghashir, H. (2022). Facile spectrophotometric determination of Cd(II) and Pb(II) using murexide reagent in mixed solvent system. Chem. Int., 8(4), 148-156.

Al-Darwish, S. A.-S., Elsherif, K. M., Zubi, A., Alzalouk, Z. Y., & Atiya, R. M. (2023). Study of Absorption Spectrum of Murexide Complex with Cobalt Ion in a Water and 2-Propoanol Solvent Mixture. Al-Mukhtar J. Sci., 38(2), 199-208. DOI: https://doi.org/10.54172/mjsc.v38i2.974

Authors

Khaled Elsherif
elsherif27@yahoo.com (Primary Contact)
Ahmed Zubi
Zainab Alzalouk
Salima Al-Ddarwish
Elsherif, K., Zubi, A., Alzalouk, Z., & Al-Ddarwish, S. (2024). Investigation of Murexide-Zn(II) Complexes in Water-Isopropanol Mixtures: Spectroscopic Analysis and Stability Studies. Journal of Pure & Applied Sciences, 23(1), 84–89. https://doi.org/10.51984/jopas.v23i1.2878

Article Details