Novel rules for extracting the entities of entity relationship models
Abstract
Extracting entities from natural language text to design conceptual models of the entity relationships is not trivial and novice designers and students can find it especially difficult. Researchers have suggested linguistic rules/guidelines for extracting entities from natural language text. Unfortunately, while these guidelines are often correct they can, also, be invalid. There is no rule that is true at all times. This paper suggests novel rules based on the machine learning classifiers, the RIPPER, the PART and the decision trees. Performance comparison was made between the linguistic and the machine learning rules. The results shows that there was a dramatic improvement when machine learning rules were used.
Full text article
Authors
Copyright (c) 2021 Journal of Pure & Applied Sciences
This work is licensed under a Creative Commons Attribution 4.0 International License.
In a brief statement, the rights relate to the publication and distribution of research published in the journal of the University of Sebha where authors who have published their articles in the journal of the university of Sebha should how they can use or distribute their articles. They reserve all their rights to the published works, such as (but not limited to) the following rights:
- Copyright and other property rights related to the article, such as patent rights.
- Research published in the journal of the University of Sebha and used in its future works, including lectures and books, the right to reproduce articles for their own purposes, and the right to self-archive their articles.
- The right to enter a separate article, or for a non-exclusive distribution of their article with an acknowledgment of its initial publication in the journal of Sebha University.
Privacy Statement The names and e-mail addresses entered on the Sabha University Journal site will be used for the aforementioned purposes only and for which they were used.