Actions on Polish Spaces and p-Continuous Functions

Assakta Mohammed (1)
(1) Dept. of Mathematics, Faculty of Science, University of Bani Waleed, Libya

Abstract

The action of A on X is a map,F , called an f-action, which satisfies some conditions. In this paper, some results on f-actions are proved. First, the notion of p-continuity is defined. Using the properties of set-valued functions, we provide some results concerning the measurability, expansiveness, and extension of p-continuous f-actions, in the realm of Polish spaces. The findings of this paper generalize and extend some results in the literature.

Full text article

Generated from XML file

References

Aliprantis, C. D. and Border, K., Infinit Dimensional Analysis: A Hitchhiker's Guide, Springer Science & Business Media. 2006. DOI: https://doi.org/10.1007/3- 540-29587-9

Arkowitz, M. and Lupton, G. (2005). Homotopy actions, cyclic maps and their duals, Homology Homotopy Appl. 7(1), 169-184.

Choi, H. W., Kim, J. R. and Oda, N. (2017). The generalized coGottlieb groups, related actions and exact sequences, J. Korean Math.

Soc. 54(5), 1623-1639. DOI: 10.4134/JKMS.J160602

Golasinski, M. and De Melo, T. (2019). Generalized Gottlieb and Whitehead center groups of space forms, Homology Homotopy Appl. 21(1), 323-340. DOI: https://dx.doi.org/10.4310/HHA.2019.v21.n1.a15

Gottlieb, D. H. (1969). Evaluation subgroups of homotopy groups, Amer. J. Math. 91(3), 729-756. DOI: https://doi.org/10.2307/2373349

Gromov, M. (1999). Endomorphisms of symbolic algebraic varieties, J. Eur. Math. Soc. 1(2), 109-197. DOI: https://doi.org/10.1007/PL00011162

Iwase, N., Mimura, M., Oda, N. and Yoon, Y. S. (2012). The Milnor-Stasheff filtration on spaces and generalized cyclic maps, Canad. Math. Bull. 55(3), 523-536. DOI: https://doi.org/10.4153/CMB-2011-130-8

Kechris, A., Classical descriptive set theory, Vol. 156, Springer Science & Business Media. 2012.

Khalil, A. and Ghafur, A. (2018). A Baues fibbration category of p-spaces, J. King Saud Univ. Sci. 30(3), 324-329. DOI: http://dx.doi.org/10.1016/j.jksus.2016.11.008

Michael, E. (1956). Continuous selections II, Ann. of Math. 562-580.

Namioka, I. (1974). Separate continuity and joint continuity, Pacific J. Math. 51(2), 515-531.

Piotrowski, Z. (1985). Separate and joint continuity, Real Anal. Exch. 11(2), 293-322.

Repovs, D. and Semenov, P. V., Continuous selections of multivalued mappings, Vol. 455, Springer Science & Business Media. 2013.

Varadarajan, K. (1969). Generalised gottlieb groups, J. Indian Math. Soc. 33, 141-164

Authors

Assakta Mohammed
sakita.bwu@gmail.com (Primary Contact)
Mohammed, A. (2022). Actions on Polish Spaces and p-Continuous Functions. Journal of Pure & Applied Sciences, 21(1), 131–134. https://doi.org/10.51984/jopas.v21i1.1371

Article Details

Some Properties of Fuzzy Compact topological Space

Khadija Mohammed Am hammed Omar , Almbrok Hussin Alsonosi Omar
Abstract View : 234
Download :340