Review: Electrochemical biosensors based on ZnO nanostructures

.M Akhwater (1)
(1) Department of physics, College of Arts and Sciences, University of Benghazi, EL Marj, Libya

Abstract

In the last few decades’ electrochemical biosensors have witnessed vast developments due to the broad range of different applications, including health care and medical diagnosis, environmental monitoring and assessment, food industry, and drug delivery. Integration of nanostructured material with different disciplines and expertise of electrochemistry, solid-state physics, material science, and biology has offered the opportunity of a future generation of highly rapid, sensitive, stable, selective, and novel electrochemical biosensor devices.


Among metal oxide nanomaterials, ZnO nanostructures are one of the most important nanomaterials in today’s nanotechnology research. Such nanostructures have been studied intensely not only for their extraordinary structural, optical, and electronic properties but also for their prominent performance in diverse novel applications such as photonics, optics, electronics, drug delivery, cancer treatment, bio-imaging, etc. However, functionality of these nanomaterials is eventually dictated by the capability to govern their properties including shape, size, position, and crystalline structure on the nanosized scale.


This review aims to update the outstanding advancement in the developments of the enzymatic and non-enzymatic biosensors using a different structure of ZnO nanomaterials. After a coverage of the basic principles of electrochemical biosensors, we highlight the basic features of ZnO as a potential anticancer agent. focused attention gives to functionalized biosensors based on ZnO nanostructures for detecting biological analytes, such as glucose, cholesterol, L-lactic acid, uric acid, metal ions, and pH.

Full text article

Generated from XML file

References

Zhao, Z., Lei, W., Zhang, X., Wang, B. and Jiang, H., 2010. ZnO-based amperometric enzyme biosensors. Sensors, 10(2), pp.1216-1231.

Grieshaber, D., MacKenzie, R., Vörös, J. and Reimhult, E., 2008. Electrochemical biosensors-sensor principles and architectures. Sensors, 8(3), pp.1400-1458.

Wilson, M.S., 2005. Electrochemical immunosensors for the simultaneous detection of two tumor markers. Analytical chemistry, 77(5), pp.1496-1502.

D'Orazio, P., 2003. Biosensors in clinical chemistry. Clinica chimica acta, 334(1-2), pp.41-69.

Balzani, V., 2005. Nanoscience and nanotechnology: a personal view of a chemist. small, 1(3), pp.278-283.

Service, R.F., 2003. Nanodevices Make Fresh Strides Toward Reality.

Chaubey, A. and Malhotra, B., 2002. Mediated biosensors. Biosensors and bioelectronics, 17(6-7), pp.441-456.

Eggins, B.R., 2008. Chemical sensors and biosensors. John Wiley & Sons.

Luppa, P.B., Sokoll, L.J. and Chan, D.W., 2001. Immunosensors—principles and applications to clinical chemistry. Clinica chimica acta, 314(1-2), pp.1-26.

Wang, J., 2006. Electrochemical biosensors: towards point-of-care cancer diagnostics. Biosensors and Bioelectronics, 21(10), pp.1887-1892.

Caras, S. and Janata, J., 1980. Field effect transistor sensitive to penicillin. Analytical chemistry, 52(12), pp.1935-1937.

Jaffrezic-Renault, N. and Dzyadevych, S.V., 2008. Conductometric microbiosensors for environmental monitoring. Sensors, 8(4), pp.2569-2588.

Patolsky, F., Zheng, G. and Lieber, C.M., 2006. Nanowire-based biosensors.

Städler, B., Solak, H.H., Frerker, S., Bonroy, K., Frederix, F., Vörös, J. and Grandin, H.M., 2007. Nanopatterning of gold colloids for label-free biosensing. Nanotechnology, 18(15), p.155306.

Yagiuda, K., Hemmi, A., Ito, S., Asano, Y., Fushinuki, Y., Chen, C.Y. and Karube, I., 1996. Development of a conductivity-based immunosensor for sensitive detection of methamphetamine (stimulant drug) in human urine. Biosensors and Bioelectronics, 11(8), pp.703-707.

Zhang, Y., R Nayak, T., Hong, H. and Cai, W., 2013. Biomedical applications of zinc oxide nanomaterials. Current molecular medicine, 13(10), pp.1633-1645.

Taratula, O., Galoppini, E., Wang, D., Chu, D., Zhang, Z., Chen, H., Saraf, G. and Lu, Y., 2006. Binding studies of molecular linkers to ZnO and MgZnO nanotip films. The Journal of Physical Chemistry B, 110(13), pp.6506-6515.

Liu, D., Wu, W., Qiu, Y., Yang, S., Xiao, S., Wang, Q.Q., Ding, L. and Wang, J., 2008. Surface functionalization of ZnO nanotetrapods with photoactive and electroactive organic monolayers. Langmuir, 24(9), pp.5052-5059.

Zhou, J., Xu, N.S. and Wang, Z.L., 2006. Dissolving behavior and stability of ZnO wires in biofluids: a study on biodegradability and biocompatibility of ZnO nanostructures. Advanced Materials, 18(18), pp.2432-2435.

Bisht, G. and Rayamajhi, S., 2016. ZnO nanoparticles: a promising anticancer agent. Nanobiomedicine, 3(Godište 2016), pp.3-9.

Smalley, K.S. and Herlyn, M., 2006. Towards the targeted therapy of melanoma. Mini reviews in medicinal chemistry, 6(4), pp.387-393.

Langer, R., 1998. Drug delivery and targeting. Nature, 392(6679 Suppl), pp.5-10.

Gowda, R., Jones, N.R., Banerjee, S. and Robertson, G.P., 2013. Use of nanotechnology to develop multi-drug inhibitors for cancer therapy. Journal of nanomedicine & nanotechnology, 4(6).

McNeil, S.E., 2009. Nanoparticle therapeutics: a personal perspective. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 1(3), pp.264-271.

Kim, W., Ng, J.K., Kunitake, M.E., Conklin, B.R. and Yang, P., 2007. Interfacing silicon nanowires with mammalian cells. Journal of the American Chemical Society, 129(23), pp.7228-7229.

Rahong, S., Yasui, T., Kaji, N. and Baba, Y., 2016. Recent developments in nanowires for bio-applications from molecular to cellular levels. Lab on a Chip, 16(7), pp.1126-1138.

Hanley, C., Layne, J., Punnoose, A., Reddy, K., Coombs, I., Coombs, A., Feris, K. and Wingett, D., 2008. Preferential killing of cancer cells and activated human T cells using ZnO nanoparticles. Nanotechnology, 19(29), p.295103.

Shen, C., James, S.A., de Jonge, M.D., Turney, T.W., Wright, P.F. and Feltis, B.N., 2013. Relating cytotoxicity, zinc ions, and reactive oxygen in ZnO nanoparticle–exposed human immune cells. Toxicological Sciences, 136(1), pp.120-130.

Rasmussen, J.W., Martinez, E., Louka, P. and Wingett, D.G., 2010. Zinc oxide nanoparticles for selective destruction of tumor cells and potential for drug delivery applications. Expert opinion on drug delivery, 7(9), pp.1063-1077.

Wang, H., Wingett, D., Engelhard, M.H., Feris, K., Reddy, K.M., Turner, P., Layne, J., Hanley, C., Bell, J., Tenne, D. and Wang, C., 2009. Fluorescent dye encapsulated ZnO particles with cell-specific toxicity for potential use in biomedical applications. Journal of Materials Science: Materials in Medicine, 20(1), pp.11-22.

H. Müller, K., Kulkarni, J., Motskin, M., Goode, A., Winship, P., Skepper, J.N., Ryan, M.P. and Porter, A.E., 2010. pH-dependent toxicity of high aspect ratio ZnO nanowires in macrophages due to intracellular dissolution. ACS nano, 4(11), pp.6767-6779.

Tilke, A.T., Simmel, F.C., Lorenz, H., Blick, R.H. and Kotthaus, J.P., 2003. Quantum interference in a one-dimensional silicon nanowire. Physical Review B, 68(7), p.075311.

Khanal, D.R., Yim, J.W., Walukiewicz, W. and Wu, J., 2007. Effects of quantum confinement on the doping limit of semiconductor nanowires. Nano letters, 7(5), pp.1186-1190.

Wang, J.X., Sun, X.W., Wei, A., Lei, Y., Cai, X.P., Li, C.M. and Dong, Z.L., 2006. Zinc oxide nanocomb biosensor for glucose detection. Applied physics letters, 88(23), p.233106.

Alberts, B., 2017. Molecular Biology of the Cell (MBoC). Garland Science.

Chaniotakis, N.A., 2004. Enzyme stabilization strategies based on electrolytes and polyelectrolytes for biosensor applications. Analytical and Bioanalytical Chemistry, 378(1), pp.89-95.

Kuznetsov, B.A., Shumakovich, G.P., Koroleva, O.V. and Yaropolov, A.I., 2001. On applicability of laccase as label in the mediated and mediatorless electroimmunoassay: effect of distance on the direct electron transfer between laccase and electrode. Biosensors and Bioelectronics, 16(1-2), pp.73-84

Fang, A., Ng, H.T. and Li, S.F.Y., 2003. A high-performance glucose biosensor based on monomolecular layer of glucose oxidase covalently immobilised on indium–tin oxide surface. Biosensors and bioelectronics, 19(1), pp.43-49..

Nel, A.E., Mädler, L., Velegol, D., Xia, T., Hoek, E.M., Somasundaran, P., Klaessig, F., Castranova, V. and Thompson, M., 2009. Understanding biophysicochemical interactions at the nano–bio interface. Nature materials, 8(7), pp.543-557.

Min, Y., Akbulut, M., Kristiansen, K., Golan, Y. and Israelachvili, J., 2010. The role of interparticle and external forces in nanoparticle assembly. Nanoscience And Technology: A collection of reviews from Nature journals, pp.38-49.

Geiser, M., Rothen-Rutishauser, B., Kapp, N., Schürch, S., Kreyling, W., Schulz, H., Semmler, M., Hof, V.I., Heyder, J. and Gehr, P., 2005. Ultrafine particles cross cellular membranes by nonphagocytic mechanisms in lungs and in cultured cells. Environmental health perspectives, 113(11), pp.1555-1560.

Rimai, D.S., Quesnel, D.J. and Busnaina, A.A., 2000. The adhesion of dry particles in the nanometer to micrometer-size range. Colloids and surfaces A: Physicochemical and engineering aspects, 165(1-3), pp.3-10.

Clark Jr, L.C. and Lyons, C., 1962. Electrode systems for continuous monitoring in cardiovascular surgery. Annals of the New York Academy of sciences, 102(1), pp.29-45.

Wei, A., Sun, X.W., Wang, J.X., Lei, Y., Cai, X.P., Li, C.M., Dong, Z.L. and Huang, W., 2006. Enzymatic glucose biosensor based on ZnO nanorod array grown by hydrothermal decomposition. Applied Physics Letters, 89(12), p.123902.

Umar, A., Rahman, M.M., Kim, S.H. and Hahn, Y.B., 2008. ZnO nanonails: synthesis and their application as glucose biosensor. Journal of Nanoscience and Nanotechnology, 8(6), pp.3216-3221.

Neumann, S., 2015. Biomarkers–past and future (pp. 1-22). Wiley

Turner, A.P., 2013. Biosensors: sense and sensibility. Chemical Society Reviews, 42(8), pp.3184-3196.

Vadgama, P. and Crump, P.W., 1992. Biosensors: recent trends. A review. Analyst, 117(11), pp.1657-1670.

Pai, N.P., Vadnais, C., Denkinger, C., Engel, N. and Pai, M., 2012. Point-of-care testing for infectious diseases: diversity, complexity, and barriers in low-and middle-income countries.

Lee, T.M.H., 2008. Over-the-counter biosensors: Past, present, and future. Sensors, 8(9), pp.5535-5559.

Chin, C.D., Chin, S.Y., Laksanasopin, T. and Sia, S.K., 2013. Low-cost microdevices for point-of-care testing. In Point-of-care diagnostics on a chip (pp. 3-21). Springer, Berlin, Heidelberg.

Mehrotra, P., 2016. Biosensors and their applications–A review. Journal of oral biology and craniofacial research, 6(2), pp.153-159.

Xu, M., Li, J., Iwai, H., Mei, Q., Fujita, D., Su, H., Chen, H. and Hanagata, N., 2012. Formation of nano-bio-complex as nanomaterials dispersed in a biological solution for understanding nanobiological interactions. Scientific reports, 2(1), pp.1-6

Diamanti, S., Arifuzzaman, S., Elsen, A., Genzer, J. and Vaia, R.A., 2008. Reactive patterning via post-functionalization of polymer brushes utilizing disuccinimidyl carbonate activation to couple primary amines. Polymer, 49(17), pp.3770-3779..

Patolsky, F., Zheng, G. and Lieber, C.M., 2006. Nanowire sensors for medicine and the life sciences.

Carrara, S., Ghoreishizadeh, S., Olivo, J., Taurino, I., Baj-Rossi, C., Cavallini, A., Op de Beeck, M., Dehollain, C., Burleson, W., Moussy, F.G. and Guiseppi-Elie, A., 2012. Fully integrated biochip platforms for advanced healthcare. Sensors, 12(8), pp.11013-11060.

Gooding, J.J., Lai, L.M. and Goon, I.Y., 2009. Nanostructured electrodes with unique properties for biological and other applications. Advances in electrochemical science and engineering, 11.

Liu, X., Lin, P., Yan, X., Kang, Z., Zhao, Y., Lei, Y., Li, C., Du, H. and Zhang, Y., 2013. Enzyme-coated single ZnO nanowire FET biosensor for detection of uric acid. Sensors and Actuators B: Chemical, 176, pp.22-27.

Morkoc, H. and Ozgur, U., 2009. General properties of ZnO, zinc oxide: fundamentals. Materials and Device Technology, pp.1-2.

Coleman, V.A. and Jagadish, C., 2006. Basic properties and applications of ZnO. In Zinc oxide bulk, thin films and nanostructures (pp. 1-20). Elsevier Science Ltd.

Yakimova, R., Selegård, L., Khranovskyy, V., Pearce, R., Lloyd Spetz, A. and Uvdal, K., 2012. ZnO materials and surface tailoring for biosensing. Frontiers in bioscience (Elite edition), 4(1), pp.254-278.

Rekha, K., Nirmala, M., Nair, M.G. and Anukaliani, A., 2010. Structural, optical, photocatalytic and antibacterial activity of zinc oxide and manganese doped zinc oxide nanoparticles. Physica B: Condensed Matter, 405(15), pp.3180-3185.

Jeong, W.J., Kim, S.K. and Park, G.C., 2006. Preparation and characteristic of ZnO thin film with high and low resistivity for an application of solar cell. Thin Solid Films, 506, pp.180-183.

Vanmaekelbergh, D. and Van Vugt, L.K., 2011. ZnO nanowire lasers. Nanoscale, 3(7), pp.2783-2800.

Nair, S., Sasidharan, A., Rani, V.D., Menon, D., Nair, S., Manzoor, K. and Raina, S., 2009. Role of size scale of ZnO nanoparticles and microparticles on toxicity toward bacteria and osteoblast cancer cells. Journal of Materials Science: Materials in Medicine, 20(1), p.235.

Reinert, A.A., Payne, C., Wang, L., Ciston, J., Zhu, Y. and Khalifah, P.G., 2013. Synthesis and characterization of visible light absorbing (GaN) 1–x (ZnO) x semiconductor nanorods. Inorganic chemistry, 52(15), pp.8389-8398.

Yang, Z., Ye, Z., Zhao, B., Zong, X. and Wang, P., 2010. Synthesis of ZnO nanobundles via Sol–Gel route and application to glucose biosensor. Journal of sol-gel science and technology, 54(3), pp.282-285.

Feng, X., Liu, Y., Kong, Q., Ye, J., Chen, X., Hu, J. and Chen, Z., 2010. Direct electrochemistry of myoglobin immobilized on chitosan-wrapped rod-constructed ZnO microspheres and its application to hydrogen peroxide biosensing. Journal of Solid State Electrochemistry, 14(6), pp.923-930.

Liu, X., Hu, Q., Wu, Q., Zhang, W., Fang, Z. and Xie, Q., 2009. Aligned ZnO nanorods: a useful film to fabricate amperometric glucose biosensor. Colloids and Surfaces B: Biointerfaces, 74(1), pp.154-158.

Liu, J., Guo, C., Li, C.M., Li, Y., Chi, Q., Huang, X., Liao, L. and Yu, T., 2009. Carbon-decorated ZnO nanowire array: A novel platform for direct electrochemistry of enzymes and biosensing applications. Electrochemistry Communications, 11(1), pp.202-205.

Hwa, K.Y. and Subramani, B., 2014. Synthesis of zinc oxide nanoparticles on graphene–carbon nanotube hybrid for glucose biosensor applications. Biosensors and Bioelectronics, 62, pp.127-133.

Karuppiah, C., Palanisamy, S., Chen, S.M., Veeramani, V. and Periakaruppan, P., 2014. Direct electrochemistry of glucose oxidase and sensing glucose using a screen-printed carbon electrode modified with graphite nanosheets and zinc oxide nanoparticles. Microchimica Acta, 181(15-16), pp.1843-1850.

Kong, T., Chen, Y., Ye, Y., Zhang, K., Wang, Z. and Wang, X., 2009. An amperometric glucose biosensor based on the immobilization of glucose oxidase on the ZnO nanotubes. Sensors and Actuators B: Chemical, 138(1), pp.344-350.

Asif, M.H., Ali, S.M.U., Nur, O., Willander, M., Brännmark, C., Strålfors, P., Englund, U.H., Elinder, F. and Danielsson, B., 2010. Functionalised ZnO-nanorod-based selective electrochemical sensor for intracellular glucose. Biosensors and Bioelectronics, 25(10), pp.2205-2211.

Ali, S.M.U., Nur, O., Willander, M. and Danielsson, B., 2010. A fast and sensitive potentiometric glucose microsensor based on glucose oxidase coated ZnO nanowires grown on a thin silver wire. Sensors and Actuators B: Chemical, 145(2), pp.869-874.

Fulati, A., Ali, S.M.U., Asif, M.H., Willander, M., Brännmark, C., Strålfors, P., Börjesson, S.I., Elinder, F. and Danielsson, B., 2010. An intracellular glucose biosensor based on nanoflake ZnO. Sensors and Actuators B: Chemical, 150(2), pp.673-680.

Zhou, F., Jing, W., Wu, Q., Gao, W., Jiang, Z., Shi, J. and Cui, Q., 2016. Effects of the surface morphologies of ZnO nanotube arrays on the performance of amperometric glucose sensors. Materials Science in Semiconductor Processing, 56, pp.137-144.

Ahmad, M., Pan, C., Luo, Z. and Zhu, J., 2010. A single ZnO nanofiber-based highly sensitive amperometric glucose biosensor. The Journal of Physical Chemistry C, 114(20), pp.9308-9313.

Ahmad, R., Tripathy, N., Kim, J.H. and Hahn, Y.B., 2012. Highly selective wide linear-range detecting glucose biosensors based on aspect-ratio controlled ZnO nanorods directly grown on electrodes. Sensors and Actuators B: Chemical, 174, pp.195-201.

Asif, M.H., Danielsson, B. and Willander, M., 2015. ZnO nanostructure-based intracellular sensor. Sensors, 15(5), pp.11787-11804.

Jing, W.X., Zhou, F., Gao, W.Z., Jiang, Z.D., Ren, W., Shi, J.F., Cheng, Y.Y. and Gao, K., 2015. Regulating the hydrothermal synthesis of ZnO nanorods to optimize the performance of spirally hierarchical structure-based glucose sensors. RSC advances, 5(105), pp.85988-85995.

Miao, F., Lu, X., Tao, B., Li, R. and Chu, P.K., 2016. Glucose oxidase immobilization platform based on ZnO nanowires supported by silicon nanowires for glucose biosensing. Microelectronic Engineering, 149, pp.153-158.

Zhang, Y., Xu, J., Xiang, Q., Li, H., Pan, Q. and Xu, P., 2009. Brush-like hierarchical ZnO nanostructures: synthesis, photoluminescence and gas sensor properties. The Journal of Physical Chemistry C, 113(9), pp.3430-3435.

Fan, S., Zhao, M., Ding, L., Ma, Y., Liang, J., Wang, X., Song, Y. and Chen, S., 2016. Introducing pn junction interface into enzyme loading matrix for enhanced glucose biosensing performance. Sensors and Actuators B: Chemical, 237, pp.373-379.

Fang, L., Liu, B., Liu, L., Li, Y., Huang, K. and Zhang, Q., 2016. Direct electrochemistry of glucose oxidase immobilized on Au nanoparticles-functionalized 3D hierarchically ZnO nanostructures and its application to bioelectrochemical glucose sensor. Sensors and Actuators B: Chemical, 222, pp.1096-1102.

Tian, K., Alex, S., Siegel, G. and Tiwari, A., 2015. Enzymatic glucose sensor based on Au nanoparticle and plant-like ZnO film modified electrode. Materials Science and Engineering: C, 46, pp.548-552.

Wei, Y., Li, Y., Liu, X., Xian, Y., Shi, G. and Jin, L., 2010. ZnO nanorods/Au hybrid nanocomposites for glucose biosensor. Biosensors and Bioelectronics, 26(1), pp.275-278.

Mazeiko, V., Kausaite-Minkstimiene, A., Ramanaviciene, A., Balevicius, Z. and Ramanavicius, A., 2013. Gold nanoparticle and conducting polymer-polyaniline-based nanocomposites for glucose biosensor design. Sensors and Actuators B: Chemical, 189, pp.187-193.

Zeng, S., Yong, K.T., Roy, I., Dinh, X.Q., Yu, X. and Luan, F., 2011. A review on functionalized gold nanoparticles for biosensing applications. Plasmonics, 6(3), pp.491-506.

Lin, S.Y., Chang, S.J. and Hsueh, T.J., 2014. ZnO nanowires modified with Au nanoparticles for nonenzymatic amperometric sensing of glucose. Applied Physics Letters, 104(19), p.193704.

Hsu, C.L., Lin, J.H., Hsu, D.X., Wang, S.H., Lin, S.Y. and Hsueh, T.J., 2017. Enhanced non-enzymatic glucose biosensor of ZnO nanowires via decorated Pt nanoparticles and illuminated with UV/green light emitting diodes. Sensors and Actuators B: Chemical, 238, pp.150-159.

Vijayaprasath, G., Murugan, R., Narayanan, J.S., Dharuman, V., Ravi, G. and Hayakawa, Y., 2015. Glucose sensing behavior of cobalt doped ZnO nanoparticles synthesized by co-precipitation method. Journal of Materials Science: Materials in Electronics, 26(7), pp.4988-4996.

Tian, K., Prestgard, M. and Tiwari, A., 2014. A review of recent advances in nonenzymatic glucose sensors. Materials Science and Engineering: C, 41, pp.100-118.

Yang, J., Cho, M. and Lee, Y., 2016. Synthesis of hierarchical Ni (OH) 2 hollow nanorod via chemical bath deposition and its glucose sensing performance. Sensors and Actuators B: Chemical, 222, pp.674-681.

Strano, V. and Mirabella, S., 2016. Hierarchical ZnO nanorods/Ni (OH) 2 nanoflakes for room-temperature, cheap fabrication of non-enzymatic glucose sensors. RSC advances, 6(112), pp.111374-111379.

Zhou, C., Xu, L., Song, J., Xing, R., Xu, S., Liu, D. and Song, H., 2014. Ultrasensitive non-enzymatic glucose sensor based on three-dimensional network of ZnO-CuO hierarchical nanocomposites by electrospinning. Scientific reports, 4(1), pp.1-9.

Ding, Y., Wang, Y., Su, L., Zhang, H. and Lei, Y., 2010. Preparation and characterization of NiO–Ag nanofibers, NiO nanofibers, and porous Ag: towards the development of a highly sensitive and selective non-enzymatic glucose sensor. Journal of Materials Chemistry, 20(44), pp.9918-9926.

SoYoon, S., Ramadoss, A., Saravanakumar, B. and Kim, S.J., 2014. Novel Cu/CuO/ZnO hybrid hierarchical nanostructures for non-enzymatic glucose sensor application. Journal of Electroanalytical Chemistry, 717, pp.90-95.

Wu, J. and Yin, F., 2013. Easy fabrication of a sensitive non-enzymatic glucose sensor based on electrospinning CuO-ZnO nanocomposites. Integrated Ferroelectrics, 147(1), pp.47-58.

Niu, X., Li, X., Pan, J., He, Y., Qiu, F. and Yan, Y., 2016. Recent advances in non-enzymatic electrochemical glucose sensors based on non-precious transition metal materials: opportunities and challenges. RSC advances, 6(88), pp.84893-84905.

Motonaka, J. and Faulkner, L.R., 1993. Determination of cholesterol and cholesterol ester with novel enzyme microsensors. Analytical chemistry, 65(22), pp.3258-3261.

Umar, A., Rahman, M.M., Vaseem, M. and Hahn, Y.B., 2009. Ultra-sensitive cholesterol biosensor based on low-temperature grown ZnO nanoparticles. Electrochemistry Communications, 11(1), pp.118-121.

Ahmad, M., Pan, C., Gan, L., Nawaz, Z. and Zhu, J., 2010. Highly sensitive amperometric cholesterol biosensor based on Pt-incorporated fullerene-like ZnO nanospheres. The Journal of Physical Chemistry C, 114(1), pp.243-250.

Psychoyios, V.N., Nikoleli, G.P., Tzamtzis, N., Nikolelis, D.P., Psaroudakis, N., Danielsson, B., Israr, M.Q. and Willander, M., 2013. Potentiometric cholesterol biosensor based on ZnO nanowalls and stabilized polymerized lipid film. Electroanalysis, 25(2), pp.367-372.

Ahmad, R., Tripathy, N., Kim, S.H., Umar, A., Al-Hajry, A. and Hahn, Y.B., 2014. High performance cholesterol sensor based on ZnO nanotubes grown on Si/Ag electrodes. Electrochemistry communications, 38, pp.4-7.

Wang, C., Tan, X., Chen, S., Yuan, R., Hu, F., Yuan, D. and Xiang, Y., 2012. Highly-sensitive cholesterol biosensor based on platinum–gold hybrid functionalized ZnO nanorods. Talanta, 94, pp.263-270.

Umar, A., Rahman, M.M., Al-Hajry, A. and Hahn, Y.B., 2009. Highly-sensitive cholesterol biosensor based on well-crystallized flower-shaped ZnO nanostructures. Talanta, 78(1), pp.284-289.

Ahmad, R., Tripathy, N. and Hahn, Y.B., 2012. Wide linear-range detecting high sensitivity cholesterol biosensors based on aspect-ratio controlled ZnO nanorods grown on silver electrodes. Sensors and Actuators B: Chemical, 169, pp.382-386.

Batra, N., Tomar, M. and Gupta, V., 2012. Realization of an efficient cholesterol biosensor using ZnO nanostructured thin film. Analyst, 137(24), pp.5854-5859.

Batra, N., Tomar, M. and Gupta, V., 2014. ZnO Nanostructured Thin Film as an Efficient Matrix for Total Cholesterol Detection. Advanced Science Letters, 20(5-6), pp.1044-1049.

Solanki, P.R., Kaushik, A., Ansari, A.A. and Malhotra, B.D., 2009. Nanostructured zinc oxide platform for cholesterol sensor. Applied Physics Letters, 94(14), p.143901.

Wu, Q., Hou, Y., Zhang, M., Hou, X., Xu, L., Wang, N., Wang, J. and Huang, W., 2016. Amperometric cholesterol biosensor based on zinc oxide films on a silver nanowire–graphene oxide modified electrode. Analytical Methods, 8(8), pp.1806-1812.

Giri, A.K., Charan, C., Ghosh, S.C., Shahi, V.K. and Panda, A.B., 2016. Phase and composition selective superior cholesterol sensing performance of ZnO@ ZnS nano-heterostructure and ZnS nanotubes. Sensors and Actuators B: Chemical, 229, pp.14-24.

Giri, A.K., Charan, C., Saha, A., Shahi, V.K. and Panda, A.B., 2014. An amperometric cholesterol biosensor with excellent sensitivity and limit of detection based on an enzyme-immobilized microtubular ZnO@ ZnS heterostructure. Journal of Materials Chemistry A, 2(40), pp.16997-17004.

Phypers, B. and Pierce, J.T., 2006. Lactate physiology in health and disease. Continuing education in Anaesthesia, critical care & pain, 6(3), pp.128-132.

Ibupoto, Z.H., Shah, S.M.U.A., Khun, K. and Willander, M., 2012. Electrochemical L-lactic acid sensor based on immobilized ZnO nanorods with lactate oxidase. Sensors, 12(3), pp.2456-2466.

Lei, Y., Luo, N., Yan, X., Zhao, Y., Zhang, G. and Zhang, Y., 2012. A highly sensitive electrochemical biosensor based on zinc oxide nanotetrapods for L-lactic acid detection. Nanoscale, 4(11), pp.3438-3443.

Kobayashi, K.U.M.P.E.I. and Neely, J.R., 1979. Control of maximum rates of glycolysis in rat cardiac muscle. Circulation Research, 44(2), pp.166-175.

Wang, Y.T., Bao, Y.J., Lou, L., Li, J.J., Du, W.J., Zhu, Z.Q., Peng, H. and Zhu, J.Z., 2010, November. A novel L-lactate sensor based on enzyme electrode modified with ZnO nanoparticles and multiwall carbon nanotubes. In SENSORS, 2010 IEEE (pp. 33-37). IEEE.

Pachla, L.A., Reynolds, D.L., Wright, D.S. and Kissinger, P.T., 1987. Analytical methods for measuring uric acid in biological samples and food products. Journal of the Association of Official Analytical Chemists, 70(1), pp.01-14.

Harper, H., 1971. Review of physiological chemistry.

Toncev, G., Milicic, B., Toncev, S. and Samardzic, G., 2002. Serum uric acid levels in multiple sclerosis patients correlate with activity of disease and blood–brain barrier dysfunction. European Journal of Neurology, 9(3), pp.221-226.

Zhang, F.F., Wang, X.L., Ai, S.Y., Sun, Z.D., Wan, Q. and Zhu, Z.Q., 2004. Y, Z, Xian, LT Jin and K. Yamamoto. Anal. Chim. Acta, 519, p.155.

Wang, Y., Yu, L., Zhu, Z., Zhang, J. and Zhu, J., 2009. Novel uric acid sensor based on enzyme electrode modified by zno nanoparticles and multiwall carbon nanotubes. Analytical letters, 42(5), pp.775-789.

Lei, Y., Liu, X., Yan, X., Song, Y., Kang, Z., Luo, N. and Zhang, Y., 2012. Multicenter uric acid biosensor based on tetrapod-shaped ZnO nanostructures. Journal of nanoscience and nanotechnology, 12(1), pp.513-518.

Ahmad, R., Tripathy, N., Ahn, M.S., Bhat, K.S., Mahmoudi, T., Wang, Y., Yoo, J.Y., Kwon, D.W., Yang, H.Y. and Hahn, Y.B., 2017. Highly efficient non-enzymatic glucose sensor based on CuO modified vertically-grown ZnO nanorods on electrode. Scientific reports, 7(1), pp.1-10.

Tzamtzis, N., Psychoyios, V.N., Nikoleli, G.P., Nikolelis, D.P., Psaroudakis, N., Willander, M. and Qadir Israr, M., 2012. Flow potentiometric injection analysis of uric acid using lipid stabilized films with incorporated uricase on ZnO nanowires. Electroanalysis, 24(8), pp.1719-1725.

Zhao, Y., Yan, X., Kang, Z., Lin, P., Fang, X., Lei, Y., Ma, S. and Zhang, Y., 2013. Highly sensitive uric acid biosensor based on individual zinc oxide micro/nanowires. Microchimica Acta, 180(9-10), pp.759-766.

Hou, C., Liu, H., Zhang, D., Yang, C. and Zhang, M., 2016. Synthesis of ZnO nanorods-Au nanoparticles hybrids via in-situ plasma sputtering-assisted method for simultaneous electrochemical sensing of ascorbic acid and uric acid. Journal of Alloys and Compounds, 666, pp.178-184.

Yue, H.Y., Huang, S., Chang, J., Heo, C., Yao, F., Adhikari, S., Gunes, F., Liu, L.C., Lee, T.H., Oh, E.S. and Li, B., 2014. ZnO nanowire arrays on 3D hierachical graphene foam: biomarker detection of Parkinson’s disease. ACS nano, 8(2), pp.1639-1646.

Zhang, X., Zhang, Y.C. and Ma, L.X., 2016. One-pot facile fabrication of graphene-zinc oxide composite and its enhanced sensitivity for simultaneous electrochemical detection of ascorbic acid, dopamine and uric acid. Sensors and Actuators B: Chemical, 227, pp.488-496.

Liu, H., Gu, C., Hou, C., Yin, Z., Fan, K. and Zhang, M., 2016. Plasma-assisted synthesis of carbon fibers/ZnO core–shell hybrids on carbon fiber templates for detection of ascorbic acid and uric acid. Sensors and Actuators B: Chemical, 224, pp.857-862.

Chen, J., Zhao, M., Li, Y., Fan, S., Ding, L., Liang, J. and Chen, S., 2016. Synthesis of reduced graphene oxide intercalated ZnO quantum dots nanoballs for selective biosensing detection. Applied Surface Science, 376, pp.133-137.

Ghanbari, K. and Moloudi, M., 2016. Flower-like ZnO decorated polyaniline/reduced graphene oxide nanocomposites for simultaneous determination of dopamine and uric acid. Analytical biochemistry, 512, pp.91-102.

Jadon, N., Jain, R., Sharma, S. and Singh, K., 2016. Recent trends in electrochemical sensors for multianalyte detection–A review. Talanta, 161, pp.894-916.

Ghanbari, K. and Hajheidari, N., 2015. ZnO–CuxO/polypyrrole nanocomposite modified electrode for simultaneous determination of ascorbic acid, dopamine, and uric acid. Analytical biochemistry, 473, pp.53-62.

Da Silva, J.F. and Williams, R.J.P., 2001. The biological chemistry of the elements: the inorganic chemistry of life. Oxford University Press.

Elinder, F. and Århem, P., 2003. Metal ion effects on ion channel gating. Quarterly reviews of biophysics, 36(4), pp.373-427.

Asif, M.H., Nur, O., Willander, M. and Danielsson, B., 2009. Selective calcium ion detection with functionalized ZnO nanorods-extended gate MOSFET. Biosensors and Bioelectronics, 24(11), pp.3379-3382.

Asif, M.H., Nur, O., Willander, M., Yakovleva, M. and Danielsson, B., 2008. Studies on calcium ion selectivity of ZnO nanowire sensors using ionophore membrane coatings. Research Letters in Nanotechnology, 2008.

Draznin, B., Sussman, K.E., Eckel, R.H., Kao, M., Yost, T. and Sherman, N.A., 1988. Possible role of cytosolic free calcium concentrations in mediating insulin resistance of obesity and hyperinsulinemia. The Journal of clinical investigation, 82(6), pp.1848-1852.

Takahashi, T., Neher, E. and Sakmann, B., 1987. Rat brain serotonin receptors in Xenopus oocytes are coupled by intracellular calcium to endogenous channels. Proceedings of the National Academy of Sciences, 84(14), pp.5063-5067.

Börjesson, S.I., Englund, U.H., Asif, M.H., Willander, M. and Elinder, F., 2011. Intracellular K+ concentration decrease is not obligatory for apoptosis. Journal of Biological Chemistry, 286(46), pp.39823-39828.

Asif, M.H., Nur, O., Willander, M., Strålfors, P., Brännmark, C., Elinder, F., Englund, U.H., Lu, J. and Hultman, L., 2010. Growth and structure of ZnO nanorods on a sub-micrometer glass pipette and their application as intracellular potentiometric selective ion sensors. Materials, 3(9), pp.4657-4667.

Asif, M.H., Ali, S.M.U., Nur, O., Willander, M., Englund, U.H. and Elinder, F., 2010. Functionalized ZnO nanorod-based selective magnesium ion sensor for intracellular measurements. Biosensors and Bioelectronics, 26(3), pp.1118-1123.

Ibupoto, Z.H., Usman Ali, S.M., Chey, C.O., Khun, K., Nur, O. and Willander, M., 2011. Selective zinc ion detection by functionalised ZnO nanorods with ionophore. Journal of Applied Physics, 110(10), p.104702.

Fulati, A., Usman Ali, S.M., Riaz, M., Amin, G., Nur, O. and Willander, M., 2009. Miniaturized pH sensors based on zinc oxide nanotubes/nanorods. Sensors, 9(11), pp.8911-8923.

Kumar, N., Senapati, S., Kumar, S., Kumar, J. and Panda, S., 2016, April. Functionalized vertically aligned ZnO nanorods for application in electrolyte-insulator-semiconductor based pH sensors and label-free immuno-sensors. In Journal of Physics: Conference Series (Vol. 704, No. 1, p. 012013). IOP Publishing.

Al-Hilli, S.M., Willander, M., Öst, A. and Strålfors, P., 2007. ZnO nanorods as an intracellular sensor for p H measurements. Journal of Applied Physics, 102(8), p.084304.

Al-Hilli, S.M., Al-Mofarji, R.T., Klason, P., Willander, M., Gutman, N. and Sa'Ar, A., 2008. Zinc oxide nanorods grown on two-dimensional macroporous periodic structures and plane Si as ap H sensor. Journal of Applied Physics, 103(1), p.014302.

Maiolo, L., Mirabella, S., Maita, F., Alberti, A., Minotti, A., Strano, V., Pecora, A., Shacham-Diamand, Y. and Fortunato, G., 2014. Flexible pH sensors based on polysilicon thin film transistors and ZnO nanowalls. Applied physics letters, 105(9), p.093501.

Zhang, Q., Liu, W., Sun, C., Zhang, H., Pang, W., Zhang, D. and Duan, X., 2015. On-chip surface modified nanostructured ZnO as functional pH sensors. Nanotechnology, 26(35), p.355202.

Al-Hilli, S.M., Al-Mofarji, R.T. and Willander, M., 2006. Zinc oxide nanorod for intracellular p H sensing. Applied physics letters, 89(17), p.173119.

Kang, B.S., Ren, F., Heo, Y.W., Tien, L.C., Norton, D.P. and Pearton, S.J., 2005. p H measurements with single ZnO nanorods integrated with a microchannel. Applied physics letters, 86(11), p.112105.

Wang, J.L., Yang, P.Y., Hsieh, T.Y. and Juan, P.C., 2015. Ionic pH and glucose sensors fabricated using hydrothermal ZnO nanostructures. Japanese Journal of Applied Physics, 55(1S), p.01AE16.

Wang, J.L., Yang, P.Y., Hsieh, T.Y., Hwang, C.C. and Juang, M.H., 2013. pH-sensing characteristics of hydrothermal Al-doped ZnO nanostructures. Journal of Nanomaterials, 2013.

Lee, S.C., Hamilton, J.S., Trammell, T.R.A.C.Y., Horwitz, B.A. and Pappone, P.A., 1994. Adrenergic modulation of intracellular pH in isolated brown fat cells from hamster and rat. American Journal of Physiology-Cell Physiology, 267(2), pp.C349-C356.

Pollock, A.S., 1984. Intracellular pH of hepatocytes in primary monolayer culture. American Journal of Physiology-Renal Physiology, 246(5), pp.F738-F744.

Ren, X., Chen, D., Meng, X., Tang, F., Hou, X., Han, D. and Zhang, L., 2009. Zinc oxide nanoparticles/glucose oxidase photoelectrochemical system for the fabrication of biosensor. Journal of colloid and interface science, 334(2), pp.183-187.

Aini, B.N., Siddiquee, S., Ampon, K., Rodrigues, K.F. and Suryani, S., 2015. Development of glucose biosensor based on ZnO nanoparticles film and glucose oxidase-immobilized eggshell membrane. Sensing and Bio-Sensing Research, 4, pp.46-56.

Kim, J.Y., Jo, S.Y., Sun, G.J., Katoch, A., Choi, S.W. and Kim, S.S., 2014. Tailoring the surface area of ZnO nanorods for improved performance in glucose sensors. Sensors and Actuators B: Chemical, 192, pp.216-220.

Toghill, K.E. and Compton, R.G., 2010. Electrochemical non-enzymatic glucose sensors: a perspective and an evaluation. Int. J. Electrochem. Sci, 5(9), pp.1246-1301.

Park, S., Cho, K. and Kim, S., 2011. Enzyme-free glucose sensors with channels composed of necked ZnO nanoparticles on plastic. Microelectronic engineering, 88(8), pp.2611-2613.

Zhou, F., Jing, W., Liu, P., Han, D., Jiang, Z. and Wei, Z., 2017. Doping Ag in ZnO nanorods to improve the performance of related enzymatic glucose sensors. Sensors, 17(10), p.2214.

Mahmoud, A., Echabaane, M., Omri, K., El Mir, L. and Chaabane, R.B., 2019. Development of an impedimetric non enzymatic sensor based on ZnO and Cu doped ZnO nanoparticles for the detection of glucose. Journal of Alloys and Compounds, 786, pp.960-968.

Hayat, A., Haider, W., Raza, Y. and Marty, J.L., 2015. Colorimetric cholesterol sensor based on peroxidase like activity of zinc oxide nanoparticles incorporated carbon nanotubes. Talanta, 143, pp.157-161.

Vilian, A.E., Chen, S.M., Kwak, C.H., Hwang, S.K., Huh, Y.S. and Han, Y.K., 2016. Immobilization of hemoglobin on functionalized multi-walled carbon nanotubes-poly-l-histidine-zinc oxide nanocomposites toward the detection of bromate and H2O2. Sensors and Actuators B: Chemical, 224, pp.607-617.

Kreisberg, R.A., 1984. Pathogenesis and management of lactic acidosis. Annual review of medicine, 35(1), pp.181-193.

Shapiro, F. and Silanikove, N., 2010. Rapid and accurate determination of D-and L-lactate, lactose and galactose by enzymatic reactions coupled to formation of a fluorochromophore: Applications in food quality control. Food Chemistry, 119(2), pp.829-833.

Nesakumar, N., Thandavan, K., Sethuraman, S., Krishnan, U.M. and Rayappan, J.B.B., 2014. An electrochemical biosensor with nanointerface for lactate detection based on lactate dehydrogenase immobilized on zinc oxide nanorods. Journal of colloid and interface science, 414, pp.90-96.

Galbán, J., Andreu, Y., Almenara, M.J., de Marcos, S. and Castillo, J.R., 2001. Direct determination of uric acid in serum by a fluorometric-enzymatic method based on uricase. Talanta, 54(5), pp.847-854.

Zhang, F., Wang, X., Ai, S., Sun, Z., Wan, Q., Zhu, Z., Xian, Y., Jin, L. and Yamamoto, K., 2004. Immobilization of uricase on ZnO nanorods for a reagentless uric acid biosensor. Analytica Chimica Acta, 519(2), pp.155-160.

Yates, D.E., Levine, S. and Healy, T.W., 1974. Site-binding model of the electrical double layer at the oxide/water interface. Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, 70, pp.1807-1818.

Yang, K., She, G.W., Wang, H., Ou, X.M., Zhang, X.H., Lee, C.S. and Lee, S.T., 2009. ZnO nanotube arrays as biosensors for glucose. The Journal of Physical Chemistry C, 113(47), pp.20169-20172.

Tarlani, A., Fallah, M., Lotfi, B., Khazraei, A., Golsanamlou, S., Muzart, J. and Mirza-Aghayan, M., 2015. New ZnO nanostructures as non-enzymatic glucose biosensors. Biosensors and Bioelectronics, 67, pp.601-607.

Yang, Y., Wang, Y., Bao, X. and Li, H., 2016. Electrochemical deposition of Ni nanoparticles decorated ZnO hexagonal prisms as an effective platform for non-enzymatic detection of glucose. Journal of Electroanalytical Chemistry, 775, pp.163-170.

Liu, Y., Pang, H., Wei, C., Hao, M., Zheng, S. and Zheng, M., 2014. Mesoporous ZnO-NiO architectures for use in a high-performance nonenzymatic glucose sensor. Microchimica Acta, 181(13-14), pp.1581-1589.

Cai, B., Zhou, Y., Zhao, M., Cai, H., Ye, Z., Wang, L. and Huang, J., 2015. Synthesis of ZnO–CuO porous core–shell spheres and their application for non-enzymatic glucose sensor. Applied physics A, 118(3), pp.989-996.

Soejima, T., Takada, K. and Ito, S., 2013. Alkaline vapor oxidation synthesis and electrocatalytic activity toward glucose oxidation of CuO/ZnO composite nanoarrays. Applied surface science, 277, pp.192-200.

Fatemi, H., Khodadadi, A.A., Firooz, A.A. and Mortazavi, Y., 2012. Apple–biomorphic synthesis of porous ZnO nanostructures for glucose direct electrochemical biosensor. Current Applied Physics, 12(4), pp.1033-1038.

Ridhuan, N.S., Razak, K.A. and Lockman, Z., 2018. Fabrication and characterization of glucose biosensors by using hydrothermally grown ZnO nanorods. Scientific reports, 8(1), pp.1-12.

Israr, M.Q., Sadaf, J.R., Asif, M.H., Nur, O., Willander, M. and Danielsson, B., 2010. Potentiometric cholesterol biosensor based on ZnO nanorods chemically grown on Ag wire. Thin solid films, 519(3), pp.1106-1109.

Lu, Y.M., Wang, P.C., Tang, J.F. and Chu, S.Y., 2017. Dependence of seed layer thickness on sensitivity of nano-ZnO cholesterol biosensor. In IOP Conference Series: Materials Science and Engineering (Vol. 167, No. 1, p. 012021). IOP Publishing.

Ma, S., Zhang, X., Liao, Q., Liu, H., Huang, Y., Song, Y., Zhao, Y. and Zhang, Y., 2015. Enzymatic lactic acid sensing by In-doped ZnO nanowires functionalized AlGaAs/GaAs high electron mobility transistor. Sensors and Actuators B: Chemical, 212, pp.41-46.

Zhao, Y., Yan, X., Kang, Z., Fang, X., Zheng, X., Zhao, L., Du, H. and Zhang, Y., 2014. Zinc oxide nanowires-based electrochemical biosensor for L-lactic acid amperometric detection. Journal of nanoparticle research, 16(5), pp.1-9.

Alam, F., Jalal, A.H., Sinha, R., Umasankar, Y., Bhansali, S. and Pala, N., 2018. Sonochemically synthesized ZnO nanostructure-based L-lactate enzymatic sensors on flexible substrates. MRS Advances, 3(5), pp.277-282.

Ahmad, R., Tripathy, N., Ahn, M.S. and Hahn, Y.B., 2017. Solution process synthesis of high aspect ratio ZnO nanorods on electrode surface for sensitive electrochemical detection of uric acid. Scientific reports, 7(1), pp.1-8.

Ali, S.M.U., Ibupoto, Z.H., Kashif, M., Hashim, U. and Willander, M., 2012. A potentiometric indirect uric acid sensor based on ZnO nanoflakes and immobilized uricase. Sensors, 12(3), pp.2787-2797.

Ahmad, R., Tripathy, N., Jang, N.K., Khang, G. and Hahn, Y.B., 2015. Fabrication of highly sensitive uric acid biosensor based on directly grown ZnO nanosheets on electrode surface. Sensors and Actuators B: Chemical, 206, pp.146-151.

Song, Y., Zhang, X., Yan, X., Liao, Q., Wang, Z. and Zhang, Y., 2014. An enzymatic biosensor based on three-dimensional ZnO nanotetrapods spatial net modified AlGaAs/GaAs high electron mobility transistors. Applied Physics Letters, 105(21), p.213703.

Ali, M., Shah, I., Kim, S.W., Sajid, M., Lim, J.H. and Choi, K.H., 2018. Quantitative detection of uric acid through ZnO quantum dots based highly sensitive electrochemical biosensor. Sensors and Actuators A: Physical, 283, pp.282-290.

Lokman, A., Harun, S.W., Harith, Z., Rafaie, H.A., Nor, R.M. and Arof, H., 2015. Inline Mach–Zehnder interferometer with ZnO nanowires coating for the measurement of uric acid concentrations. Sensors and Actuators A: Physical, 234, pp.206-211.

Asif, M.H., Fulati, A., Nur, O., Willander, M., Brännmark, C., Strålfors, P., Börjesson, S.I. and Elinder, F., 2009. Functionalized zinc oxide nanorod with ionophore-membrane coating as an intracellular Ca 2+ selective sensor. Applied Physics Letters, 95(2), p.023703.

Ali, S.M.U., Asif, M.H., Fulati, A., Nur, O., Willander, M., Brännmark, C., Strålfors, P., Englund, U.H., Elinder, F. and Danielsson, B., 2010. Intracellular K+ Determination With a Potentiometric Microelectrode Based on ZnO Nanowires. IEEE transactions on nanotechnology, 10(4), pp.913-919.

Khun, K., Ibupoto, Z.H., Chey, C.O., Lu, J., Nur, O. and Willander, M., 2013. Comparative study of ZnO nanorods and thin films for chemical and biosensing applications and the development of ZnO nanorods based potentiometric strontium ion sensor. Applied surface science, 268, pp.37-43.

Wahab, H.A., Salama, A.A., El-Saeid, A.A., Nur, O., Willander, M. and Battisha, I.K., 2013. Optical, structural and morphological studies of (ZnO) nano-rod thin films for biosensor applications using sol gel technique. Results in Physics, 3, pp.46-51.

Ibupoto, Z.H., Ali, S.M.U., Khun, K. and Willander, M., 2012. Selective thallium (I) ion sensor based on functionalised ZnO nanorods. Journal of Nanotechnology, 2012.

Van Thanh, P., Mai, H.H., Tuyen, N.V., Doanh, S.C. and Viet, N.C., 2017. Zinc oxide nanorods grown on printed circuit board for extended-gate field-effect transistor pH sensor. Journal of Electronic Materials, 46(6), pp.3732-3737.

Young, S.J., Lai, L.T. and Tang, W.L., 2019. Improving the performance of pH sensors with one-dimensional ZnO nanostructures. IEEE Sensors Journal, 19(23), pp.10972-10976.

Huang, B.R., Lin, J.C. and Yang, Y.K., 2013. ZnO/Silicon nanowire hybrids extended-gate field-effect transistors as pH sensors. Journal of the Electrochemical Society, 160(6), p.B78.

Authors

.M Akhwater
mary44772@yahoo.com (Primary Contact)
Akhwater, .M. (2023). Review: Electrochemical biosensors based on ZnO nanostructures. Journal of Pure & Applied Sciences, 22(1), 22–40. https://doi.org/10.51984/jopas.v22i1.1456

Article Details

Effect of seed inoculation method with Rhizobium species on the germination of alfalfa seeds (Medicago sativa L.)

Jamal Abubaker, Nouriya Salah Mohammed, Mohemed Essalem, Abdelsalam Abobaker, Massoudah Khalifa
Abstract View : 297
Download :141

Studying Biochemical and hematology Parameters in maternal blood and umbilical cord in Zeliten city

Hanan S. Derrat , Adel M. Mlitan , Wafa R. Griba , Najla M. Worayet , Hussein I. Amer
Abstract View : 234
Download :156