Comparison of Two Face Recognition Machine Learning Models
Abstract
Machine learning (ML) is one of the fastest-developing topics today, straddling the boundary between statistics and computer science, as well as data science. It is a type of artificial intelligence that allows software applications to become more accurate at predicting outcomes without being explicitly programmed. And It addresses the difficulty of the way to assemble gadgets that enhance themselves via experience, and make conclusions with minimum human assistance. For this purpose, there arises a need to use various statistical methods of face recognition’ models, such as (DeepFace) and (OpenFace). DeepFace is the most lightweight face recognition and facial attribute analysis library for Python, and is currently on the verge of human-level precision. OpenFace on the other hand is an open source deep learning facial recognition model based on Google's Facenet model. In this paper, we will discuss the face recognition comparison between two models DeepFace and OpenFace on the calibrators of (Accuracy, Error Rate and Verification Time). DeepFace showed a higher accuracy rate by (3%) than that of OpenFace, and a lower error rate by (3%). Whereas OpenFace delivered with a minimum time shorter than that of DeepFace by (0.061323) second.
Full text article
Authors
Copyright (c) 2022 Journal of Pure & Applied Sciences
This work is licensed under a Creative Commons Attribution 4.0 International License.
In a brief statement, the rights relate to the publication and distribution of research published in the journal of the University of Sebha where authors who have published their articles in the journal of the university of Sebha should how they can use or distribute their articles. They reserve all their rights to the published works, such as (but not limited to) the following rights:
- Copyright and other property rights related to the article, such as patent rights.
- Research published in the journal of the University of Sebha and used in its future works, including lectures and books, the right to reproduce articles for their own purposes, and the right to self-archive their articles.
- The right to enter a separate article, or for a non-exclusive distribution of their article with an acknowledgment of its initial publication in the journal of Sebha University.
Privacy Statement The names and e-mail addresses entered on the Sabha University Journal site will be used for the aforementioned purposes only and for which they were used.