Assessment of Radiation Levels and Potential Radiological Hazards in the Soils of Riruwai Mining Area, North-Western Nigeria

Hamza Badamasi (1) , Umar Hassan (2) , Harami Adamu (3) , Nasirudeen Baba (4) , Dahiru Adamu (5) , Haruna Baba (6)
(1) Department of Chemistry, Federal University Dutse, Dutse, 72001, Jigawa State, Nigeria ,
(2) Department of Chemistry, Abubakar Tafawa Balewa University Bauchi, Bauchi State, Nigeria ,
(3) Department of Chemistry, Abubakar Tafawa Balewa University Bauchi, Bauchi State, Nigeria ,
(4) Department of Chemistry, Federal University of Lafia, Lafia, Nasarawa State, Nigeria ,
(5) Department of Chemistry, Abubakar Tafawa Balewa University Bauchi, Bauchi State, Nigeria ,
(6) Department of Chemistry, College of Education Minna, Niger State, Nigeria

Abstract

This research aimed to assess the levels of natural radionuclides in the soil of the Riruwai mining area and to evaluate the radiological hazards associated with them. A total of sixty soil samples were collected from four sampling sites during the dry and wet seasons. The concentrations of uranium-238 (238U), thorium-232 (232Th), and potassium-40 (40K) were measured using an HPGe gamma-ray spectrometer, and the measured concentrations were used to estimate the internal and external hazards and gamma dose rate. The results of the analysis indicated that the concentrations of 238U and 232Th in all sampling sites and seasons were higher than the world average. The radionuclide levels in the soils showed a significant seasonal variation, with higher concentrations obtained during the dry season. The correlation analysis revealed a very strong positive relationship between all the radionuclides, which indicates a common origin (parent material). The gamma dose rate computations revealed that only active and abandoned mining sites have a mean gamma dose rate greater than the tolerable limit of 59.00 nGy/h. The internal and external radiological hazards assessments showed that only the active mining sites had the potential to be hazardous to human health. The researchers, therefore, recommend that comprehensive monitoring of mining operations and public education about the dangers of radiation exposure in the study area be carried out.

Full text article

Generated from XML file

References

Beogo, C.E., Cisse, O.I., Zougmore, F. (2022). Assessment of Radiological Hazards from Soil Samples in the Northeastern area of Burkina Faso., SN Appl. Sci., 4, 73. DOI: 10.1007/s42452-022-04960-x.

Gulan, L., Milenkovic, B., Zeremski, T., Milic, G., & Vuckovic, B. (2017). Persistent Organic Pollutants, Heavy Metals and Radioactivity in the Urban Soil of Priština City, Kosovo and Metohija., Chemosphere., 171, 415–426. DOI: 10.1016/j.chemosphere.2016.12.064.

Filgueiras, R. A., Silva, A. X., Ribeiro, F. C. A., Lauria, D. C., Viglio, E. P. (2020). Baseline, Mapping and Dose Estimation of Natural Radioactivity in Soils of the Brazilian State of Alagoas. Radiat. Phys. Chem., 167, 108332. DOI: 10.1016/j.radphyschem.2019.05.022.

UNSCEAR, 2000. Sources, effects and risks of ionizing radiation. United Nations Scientific Committee on the effects of Atomic Radiation. Exposures from natural sources, 2000 report to General Assembly, Annex B. New York, United Nations Publications.

Durusoy, A., Yildirim, M. (2017). Determination of Radioactivity Concentrations in Soil Samples and Dose Assessment for Rize Province, Turkey. J. Radiat. Res. Appl. Sci., 10(4), 348–352. DOI: 10.1016/j.jrras.2017.09.005.

Guagliardi, I., Caloiero, T., Infusino, E., Callegari, G., Ricca, N. (2021). Environmental Estimation of Radiation Equivalent Dose Rates in Soils and Waters of Northern Calabria (Italy). Geofluids, 1, 1-8.

Ademola, A.K., Bello, A.K., Adejumobi, A.C. (2014). Determination of Natural Radioactivity and Hazard in Soil Samples in and Around Gold Mining Area in Itagunmodi, South Western, Nigeria. J. Radiat. Res. Appl. Sci., 7, 249 55. DOI: 10.1016/j.jrras.2014.06.001.

Ladan, S.C., Mustapha, I.M., Hassan, A., Aliyu, M.S., Tukur, S.R. (2022). Assessment of Radioactivity Concentration Level in Soil Samples of some Gold Mining Areas of Shiroro, Niger State, Nigeria. J. Radiat. Nucl. Appl., 7(2), 1-6.

Faanu, A., Adukpo, O.K., Tettey-Larbi, H. Lawluvi, D. O. Kpeglo, E. O., Darko, G. et al. (2016). Natural Radioactivity Levels in Soils, Rocks and Water at a Mining Concession of Perseus Gold Mine and Surrounding Towns in Central Region of Ghana. Springer Plus, 5, 98. DOI: 10.1186/s40064-016-1716-5.

Hassona, R. K., Sam, A. K., Osman, O. I., Sirelkhatim, D. A., LaRosa, J. (2008). Assessment of Committed Effective Dose Due to Consumption of Red Sea Coral Reef Fishes Collected From the Local Market (Sudan). Sci. Total Environ, 393(3), 214-218. DOI: 10.1016/j.scitotenv.2007.12.014.

Baborowski, M., Büttner, O., Morgenstern, P., Jancke, T., Westrich, B. (2012). Spatial Variability of Metal Pollution in Groyne Fields of the Middle Elbe-Implications for Sediment Monitoring. Environ. Pollut., 167, 115-123. DOI: 10.1016/j.envpol.2012.03.046.

El-Gamal, H., Maher., Hussien, T., Saleh, E.E. (2019). Evaluation of Natural Radioactivity Levels in Soil and Various Foodstuffs from Delta Abyan, Yemen. J. Radiat. Res. Appl. Sci., 12(1), 226–233. DOI:10.1080/16878507.2019.1646523.

Alomari, A.H., Saleh, M.A., Hashim, S., Alsayaheen, A.. Abukashabeh, A. (2019). Statistical Relationship between Activity Concentrations of Radionuclides 226Ra, 232Th, 40K, and 137Cs and Geological Formations in Surface Soil of Jordan. Isotopes Environ. Health Stud. 55(2), 211-226. DOI: 10.1080/10256016.2019.1581776.

Gulan, L., Milenkovic, B., Stajic, J.M., Vuckovic, B., Krstic, D., Zeremskic, T. et al. (2013). Correlation between Radioactivity Levels and Heavy Metal Content in the Soils of the North Kosovska Mitrovica Environment. Environ. Sci. Process. Impacts, 15, 1735.

Gbadamosi, M. R., Abayomi, A. A., Afolabi, T. A., Adegboye, M. A., Bakare, H. O. and Banjoko, O.O. et al. (2021). Pollution Sources Identification, Health, and Radiological Risk Assessment of Naturally Occurring Radioisotopes and Heavy Metals in Waste DumpSites in Ijebu-Ode, Ogun State, Southwest Nigeria. Environ. Forensics, 22, 1-18. DOI: 10.1080/15275922.2021.2006365.

Guagliardi, I., Rovella, N., Apollaro, C., Bloise, A., De Rosa, R., Scarciglia, F. et al. (2016). Modelling Seasonal Variations of Natural Radioactivity in Soils: A Case Study in Southern Italy. J. Earth Syst. Sci., 125, 1569–1578. DOI: 10.1007/s12040-016-0758-y.

Maxwell, O., Olusegun, O.A., Joel, E.S., Ijeh I.B., Mary, A.T., Emeka, E.O. et al. (2021). Measurements of Seasonal Variations of Radioactivity Distributions in Riverine Soil Sediment of Ado-Odo Ota, South-West Nigeria: Probabilistic Approach Using Monte Carlo, Radiat. Prot. Dosimetry, 193(2), 76–89. DOI:10.1093/rpd/ncab027.

Innocent, A. J., Onimisi, M. Y., Jonah, S. A. (2013). Evaluation of Naturally Occurring Radionuclide Materials in Soil Samples Collected from Some Mining Sites in Zamfara State, Nigeria. British J. Appl. Sci. & Tech., 3(4), 684-692. DOI:10.9734/BJAST/2013/3244.

Botwe, B.O., Schirone, A., Delbono. I., Barsanti, M., Delfanti, R., Kelderman, P. et al. (2017). Radioactivity Concentrations and their Radiological Significance in Sediments of the Tema Harbour (Greater Accra, Ghana). J. Radiat. Res. Appl. Sci., 10, 63-71. DOI: 10.1016/j.jrras.2016.12.002

MMSD, 2017. Nigeria’s Mining and Metal Sector. Federal Republic of Nigeria, Abuja, Nigeria.

Mallo, I.I.Y. (2010). Environmental, Health and Socio-Economic Implications of Solid Minerals Mining in Nigeria. African Journal of Environmental Pollution and Health, 8(1), 62-72.

Attahiru, A. M. (2017). Assessment of Radiological Hazards around Riruwai tin mines, Kano State, North Western Nigeria. Unpublished doctoral dissertation. Ahmadu Bello University Zaria, Zaria, Kaduna State.

Abdu, N. M., Aznan F. I., Nura, N. G. (2022). Annual Effective Dose Associated with Radioactivity in Drinking Water from Tin Mining Areas in North-Western Nigeria. J. Radiat. Res. Appl. Sci., 15(3), 96–102. DOI: 10.1016/j.jrras.2022.06.008.

Ismaila, A., Aliyu, A.S., Ibrahim, Y.V. (2022). Evaluation of Gamma Radiation Dose Level in Mining Sites of Riruwai, Kano, Nigeria. Commun. Physic. Sci., 8(1), 101-108.

Ibrahim, U., Akpa, T.C., Daniel, I.H. (2013). Assessment of Radioactivity Concentration in Soil of Some Mining Areas in Central Nasarawa State, Nigeria. Sci. World J., 8(2), 1-12.

Ahmad, A.Y., Al-Ghouti, M.A., AlSadig, I., Abu-Dieyeh, M. (2019). Vertical Distribution and Radiological Risk Assessment of 137Cs and Natural Radionuclides in Soil Samples. Sci. Rep., 9, 12196. DOI: 10.1038/s41598-019-48500-x.

Akpanowo, M., Umaru, I., Iyakwari, S., Joshua, E.O., Yusuf, S., Ekong, G.B. (2020). Determination of Natural Radioactivity Levels and Radiological Hazards in Environmental Samples from Artisanal Mining Sites of Anka, North-West Nigeria. Sci. African, 10: 1-11. DOI:10.46266/njes.1009.

Huang, Y.J., Yang, L.T., Zhao, F. Guo, G., Wu, L. (2021). Spatial Distribution and Characteristic of Radiological Hazard of the Paddy Field around a Decommissioned Uranium Mine in Eastern China. J. Radioanal. Nucl. Chem., 327, 789–799.

NPC, 2006. Population and Housing Census, “Population Distribution by Sex, State, LGA and Senatorial District. Federal Republic of Nigeria.

Olasehinde, A., Ashano, E.C., Singh, G.P. (2012). Analysis of Magnetic Anomaly over the Riruwai Younger Granite Ring Complex: A Geodynamic Implication. Cont. J. Earth Sci., 7(1), 9 – 18. DOI:10.5707/cjearthsci.2012.7.1.9.18.

Fan, S., Wang, X. (2017). Analysis and Assessment of Heavy Metals Pollution in Soils around Pb and Zn Smelter in Baoji City, Northwest China. Human and Ecological Risk Assessment: An International Journal, 23(5), 1099-1120. DOI:10.1080/10807039.2017.1300857.

Boukhenfouf, W. and Boucenna, A. (2011). The Radioactivity Measurements in Soils and Fertilizers using Gamma Spectrometry Technique. J. Environ. Radioact., 102(4), 336–339. DOI:10.1016/j.jenvrad.2011.01.006.

Khandaker, M.U., Asaduzzaman, K., Nawi, S.M., Usman, A.R., Amin, Y.M., Daar, E. et al. (2015). Assessment of Radiation and Heavy Metals Risk due to the Dietary Intake of Marine Fishes (Rastrelliger Kanaguta) from Straits of Malacca. PLoS ONE Journal, 10(6), 1-16. DOI:10.1371/journal.pone.0128790.

Orosun, M.M., Usikalub, M.R., Oyewumia, K.J., Adagunodob. T.A. (2019). Natural Radionuclides and Radiological Risk Assessment of Granite Mining Field in Asa, North-central Nigeria. Methods X, 6, 2504–2514. DOI:10.1016/j.heliyon.2020.e04240.

Laniyan, T.A., Adewumi, A.J. (2021). Health Risk Profile of Natural Radionuclides in Soils, Sediments, Tailings and Rocks Around Mining Sites in Nigeria. Environ. Earth Sci., 80, 375. DOI:10.1007/s12665-021-09674-8.

Yang, J., Sun, Y. (2022). Natural Radioactivity and Dose Assessment in Surface Soil from Guangdong, a High Background Radiation Province in China. J. Radiat. Res. Appl. Sci., 15, 145–151. DOI: 10.1016/j.jrras.2022.01.019.

Zhivin, S., Laurier, D., Guseva Canu, I. (2014). Health effects of occupational exposure to uranium: do physicochemical properties matter?. Int J Radiat Biol., 90(11),1104–1113. DOI: 10.3109/09553002.2014.943849.

Jibiri, N.N., Alausa, S.K., Farai, I.P. (2009). Radiological Hazard Indices due to Activity Concentrations of Natural Radionuclides in Farm Soils from Two High Background Radiation Areas in Nigeria. International Journal of Low Radiation, 6(2), 79–95. DOI: 10.1016/j.jenvrad.2006.12.011.

Beogo, C.E., Cisse, O.I., Zougmore, F. (2022). Assessment of Radiological Hazards from Soil Samples in the Northeastern Area of Burkina Faso. SN Appl. Sci. 4, 73. DOI: 10.1007/s42452-022-04960-x.

Jwanbot, D.I., Izam, M.M., Nyam, G.G., John, H.N. (2013). Radionuclides Analysis of Some Soils and Food Crops in Barkin Ladi LGA, Plateau State-Nigeria. J. Environ. Earth Sci., 3(3), 79-86.

Aborisade M. A, Gbadebo A.M., Adedeji O.H, Okeyode I.C., Ajayi O.A. (2018). Excess lifetime Cancer risk and Radiation Pollution hazard indices in rocks and soil of some selected mining sites in Nasarawa State, Nigeria. AEgean J. Environ. Sci., 3 (2017-2018), 1-18.

Cao, L., Yang, Y., Zhang, Y., Zheng, Y., Yang, T. (2012). Distribution Pattern of Radionuclides in the Soil of Mainland China. J. East China Instit. Tech., 35(2), 167–172.

Rawlins, B. G., Scheib, C., Tyler, A. N., and Beamish, D. (2012). Optimal Mapping of Terrestrial Gamma Dose Rates Using Geological Parent Material and Aero Geophysical Survey Data. J. Environ. Monit., 14 (12), 3086–3093. DOI: 10.1039/c2em30563a.

Belyaeva, O., Pyuskyulyan, K., Movsisyan, N., Saghatelyan, A., Carvalho, F. P. (2019). Natural Radioactivity in Urban Soils of Mining Centers in Armenia: Dose Rate and Risk Assessment. Chemosphere, 225, 859–870. DOI: 10.1016/j.chemosphere.2019.03.057.

Akӧzcan, S., Yılmaz, M., Ku¨lahc, F. (2013). Dose Rates and Seasonal Variations of 238U, 232Th, 226Ra, 40K and 137Cs Radionuclides in Soils along Thrace, Turkey. J. Radioanal. Nucl. Chem, 356, 1-7. DOI: 10.1007/s10967-013-2730-5.

Fajkovic, H., Mikelic, I.L., Prohic, E. (2013). Vertical Distribution of K-40, Th-232 and Cs-137 Mass Activities in Lake Sediment (Vransko Lake, Croatia) and their Relationship with the Source Material and Sedimentation. J. Radioanal. Nucl. Chem., 295, 2273– 228. DOI:10.1007/s10967-012-2332-7.

Guagliardi, I., Apollaro, C., Scarciglia, F., De Rosa, R. (2013). Influence of Particle-Size on Geochemical Distribution of Stream Sediments in the Lese River Catchment, Southern Italy. Biotechnol. Agron. Soc. Environ, 17, 43–55.

Tchorz-Trzeciakiewicz, D.E., Kozłowska, B., Walencik-Łata, A. (2023). Seasonal Variations of Terrestrial Gamma Dose, Natural Radionuclides and Human Health. Chemosphere, 310, 1-11. DOI:10.1016/j.chemosphere.2022.136908.

Rangaswamy, D.R., Srilatha, M.C., Ningappa, C., Srinivasa, E., Sannappa, J. (2016). Measurement of Natural Radioactivity and Radiation Hazards Assessment in Rock Samples of Ramanagara and Tumkur districts, Karnataka, India. Environ. Earth Sci., 75, 373 84. DOI:10.1007/s12665-015-5195-8.

Itodo, A. U., Edimeh, P. O., Eneji, I. S., Wuana, R. A. (2020). Radiological Impact Assessment of Mining on Soil, Water and Plant Samples from Okobo Coal Field, Nigeria. J. Geosci. Environ. Protect., 8, 65-81. DOI:10.4236/gep.2020.85005.

Hassan, M., Ngadda, Y.H., Adamu, A. (2020). Health Risk Assessment of Radionuclides in Soil and Sediments of some Selected Areas of Pindiga, Nigeria. J. Radiat. Nucl. Applic., 5(2), 95-103. DOI:10.18576/jma/050203.

Shittu, A., Aznan, F. I., Supiat, S. (2019). Radiological Characterization of Building Materials Used in Malaysia and Assessment of External and Internal Doses. Nucl. Sci. Tech., 30, 46. DOI:10.1007/s41365-019-0569-3

Authors

Hamza Badamasi
hamza.badamasi@fud.edu.ng (Primary Contact)
Umar Hassan
Harami Adamu
Nasirudeen Baba
Dahiru Adamu
Haruna Baba
Badamasi, H., Hassan, U., Adamu, H., Baba, N., Adamu, D., & Baba, H. (2022). Assessment of Radiation Levels and Potential Radiological Hazards in the Soils of Riruwai Mining Area, North-Western Nigeria. Journal of Pure & Applied Sciences, 22(1), 95–101. https://doi.org/10.51984/jopas.v22i1.2525

Article Details