The Effects of Fertilization with Dried Spent Coffee Grounds and their Extracts on Germination and Growth of Broad Bean (Vicia faba L.) and Pea (Pisum sativum L.) Plants

Amna Elareffi (1) , Ibraheem Alshareef (2)
(1) Environmental and Ocuppational Health and Safety, Faculty of Environment and Natural Resources, Wadi Alshatti University, Libya ,
(2) Petrolium and Environmental Technologies Department, Faculty of Environment and Natural Resources, Wadi Alshatti University, Libya

Abstract

This study evaluated the effects of fertilization with spent coffee grounds on soil properties, as well as the growth and productivity of broad bean (Vicia faba L.) and pea (Pisum sativum L.) plants. The study consisted of two experiments: the first conducted in Petri dishes and the second in pots. In the first experiment, four concentrations of aqueous coffee extracts (ACE) were tested (25%, 30%, 50%, and 75%), with distilled water serving as a control treatment. Radicle and plumule lengths were measured until the eighth day of the experiment.


For most concentrations, the germination percentage of broad beans was higher than that of peas. In beans, germination decreased as ACE concentration increased, with the highest germination rate observed in the control treatment (94.4%) and the lowest in the highest concentration (58.33%). Conversely, for peas, the highest germination rate was recorded at the highest concentration (77.77%), and the lowest at 30% concentration (55.55%). Radicle length in peas was consistently higher in the control treatment, while results for beans varied across treatments.


In the second experiment, 900 grams of soil were placed in each pot, and spent coffee grounds were added at the following rates: 0% (control), 2.25%, 4.5%, and 6.5%. Plant height and the number of leaves per plant were measured over five weeks. The responses of the two plants to spent coffee grounds differed. For beans, the highest plant height was observed at 2.25%, while the lowest was at 4.5%; a similar trend was noted for peas. In terms of leaf number, the highest count for peas occurred at 6.5%, while for beans, the largest number of leaves was observed at 2.25%.These findings provide valuable insights into the potential use of spent coffee grounds as an organic fertilizer, highlighting variable effects on different plant species and growth parameters.

Full text article

Generated from XML file

References

Yamane, K., Kono, M., Fukunaga, T., Iwai, K., Sekine, R.,Watanabe, Y., & Iijima, M. 2014. Field Evaluation of Coffee Grounds Application for Crop Growth Enhancement, Weed Control, and Soil Improvement. Plant Production Science, 17(1), 93–102. https://doi.org/10.1626/pps.17.93 DOI: https://doi.org/10.1626/pps.17.93

Cruz, R., Morais, S., Mendes, E., Pereira, J. A., Baptista, P., & Pereira, J. A. 2014. Improvement of vegetables elemental quality by espresso coffee residues. Food Chemistry, 148, 294–299. https://doi.org/10.1016/j.foodchem.2013.10.059 DOI: https://doi.org/10.1016/j.foodchem.2013.10.059

Chalker-Scott, L. 2016. Using coffee grounds in gardens and landscapes. Washington State University Extension Publication FS207E.

أبوبكر، حنين مسعود، الشريف، ابراهيم محمد وبن يحمد فاضل محمد (2022). تأثير بقايا القهوة المستهلكة على نمو وإنتاجية نباتي الجرجير Eruca sativa mill والسلق Beta vulgaarisl.var.cicla مجلة جامعة سبها للعلوم البحتة والتطبيقية. العدد 21 (4). DOI: https://doi.org/10.51984/jopas.v21i4.2167

Hardgrove, S. J., and Livesley, S. J. 2016. Applying spent coffee grounds directly to urban agriculture soils greatly reduces plant growth. Urban forestry & urban greening, 18, 1-8.

Cervera-Mata., A., Navarro-Alarcón, M., Delgado, G., Pastoriza, .S., Montilla-Gómez, J., Llopis, J., & Rufián-Henares, J.Á. 2019a. Spent coffee grounds improve the nutritional value in elements of lettuce (Lactuca sativa L.) and are an ecological alternative to inorganicfertilizers. Food Chem 282:1–8. https://doi.org/ 10.1016/j.foodchem.2018.12.101. DOI: https://doi.org/10.1016/j.foodchem.2018.12.101

Ronga D, Pane C, ZaccardelliM, Pecchioni N. 2016. Use of spent coffeeground compost in peat-based growing media for the production of basil and tomato potting plants. Commun Soil Sci Plan 47(3):356–368.https://doi.org/ 10.1080/00103624.2015. 1122803.‏

Cruz R.,Mendes, E., Torrinha, Á., Morais, S., Pereira, J.A., Baptista, P., & Casal, S. 2015. Revalorization of spent coffee residues by a direct agronomicapproach. Food Res Int 73:190–196. ttps://doi.org/ 10.1016/j.foodres.2014.11.018. DOI: https://doi.org/10.1016/j.foodres.2014.11.018

Ribeiro, J.P., Vicente, E.D., Gomes, A.P., Nunes, M.I., Alves, C., & Tarelho,. L.A. 2017. Effect of industrial and domestic ash from biomass combustion, and spent coffee grounds, on soil fertility and plant growth: experiments at field conditions. Environ Sci Pollut Res 24(18):15270–15277. https://doi.org/10.1007/s11356-017-9134-y. DOI: https://doi.org/10.1007/s11356-017-9134-y

Ronga, D., Pane, C., Zaccardelli, M., & Pecchioni, N. 2015. Use of Spent Coffee Ground Compost in Peat-Based Growing Media for the Production of Basil and Tomato Potting Plants. Communications in Soil Science and Plant Analysis, 47(3), 356–368. https://doi.org/10.1080/00103624.2015.1122803. DOI: https://doi.org/10.1080/00103624.2015.1122803

Morikawa, C. K., & Saigusa, M. 2011. Recycling coffee grounds and tea leaf wastes to improve the yield and mineral content of grains of paddy rice. Journal of the science of food and agriculture, 91(11), 2108–2111. https://doi.org/10.1002/jsfa.4444. DOI: https://doi.org/10.1002/jsfa.4444

Morikawa, C. K., & Saigusa, M. 2008. Recycling coffee and tea wastes to increase plant available Fe in alkaline soils. Plant and soil, 304, 249-255.‏ https://doi.org/10.1007/s11104-008-9544-1. DOI: https://doi.org/10.1007/s11104-008-9544-1

Ros, M., Hernandez, M. T., Garcia, C., Bernal, A., & Pascual, J. A. 2005. Biopesticide effect of green compost against fusarium wilt on melon plants. Journal of applied microbiology, 98(4), 845–854.https://doi.org/10.1111/j.1365-2672.2004. 02508.x. DOI: https://doi.org/10.1111/j.1365-2672.2004.02508.x

Sciarappa, W. J., Polavarapu, S., Barry, J. P., Oudemans, P. V., Ehlenfeldt, M. K., Pavlis, G. L., Polk, D., & Holdcraft, R. 2008. Developing an organic production system for Highbush Blueberry. Hortscience, 43(1), 51–57. https://doi.org/10.21273/hortsci.43.1.51. DOI: https://doi.org/10.21273/HORTSCI.43.1.51

Chrysargyris, A., Antoniou, O., Xylia, P., Petropoulos, S., & Tzortzakis, N. 2020. The use of spent coffee grounds in growing media for the production of Brassica seedlings in nurseries. Environmental Science and Pollution Research International, 28(19),24279–24290. https://doi.org/ 10.1007/ s11356-020-07944-9 DOI: https://doi.org/10.1007/s11356-020-07944-9

Kitou, M., & Yoshida, S. 1997. Effect of coffee residue on the growth of several crop species. Journal of Weed Science and Technology, 42(1),25–30. https://doi.org/10.3719/weed.42.25 DOI: https://doi.org/10.3719/weed.42.25

Hardgrove, S. J., & Livesley, S. J. 2016. Applying spent coffee grounds directly to urban agriculture soils greatly reduces plant growth. Urban Forestry & Urban Greening, 18,1–8. https://doi.org/10.1016/j.ufug.2016.02.015 DOI: https://doi.org/10.1016/j.ufug.2016.02.015

Cruz, R., Baptista P, Cunha S, Pereira JA, Casal, S. 2012. Carotenoids of lettuce (Lactuca sativa L.) grown on soil enriched with spent coffee grounds. Molecules 17:1535–1547 DOI: https://doi.org/10.3390/molecules17021535

Sant’Anna, V., Biondo, E., Kolchinski, E. M., da Silva, L. F. S., Corrêa, A. P. F., Bach, E., & Brandelli, A. 2017. Total polyphenols, antioxidant, antimicrobial and allelopathic activities of spend coffee ground aqueous extract. Waste and Biomass Valorization, 8, 439-442.‏ DOI: https://doi.org/10.1007/s12649-016-9575-4

Duc, G., Aleksić, J., Marget, P., Mikic, A., Paull, j., Redden, R.J., Sass, o., Stoddard , F.L., Vandenberg, A., Vishnyakova, V., Torres, A.M., . 2015. Faba Bean. In: De Ron, A. (eds) Grain Legumes. Handbook of Plant Breeding, vol 10. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2797-5_5. DOI: https://doi.org/10.1007/978-1-4939-2797-5_5

Merga, B., Egigu, M. C., & Wakgari, M. 2019. Reconsidering the economic and nutritional importance of faba bean in Ethiopian context. Cogent Food & Agriculture, 5(1), 1683938.‏ DOI: https://doi.org/10.1080/23311932.2019.1683938

Saxena, M. C. 1991. Status and scope for production of faba bean in the Mediterranean countries. Options Méditerranéennes, 10(1), 5-20

الهيئة العامة للمعلومات - النتائج النهائية التعداد الزراعي2007 - ص 63 .

Yang, F., Chen, H., Changyan, L., Li, L., Liu, L., Han, X., Zhenghuang, W., & Sha, A. 2020. Transcriptome profile analysis of two Vicia faba cultivars with contrasting salinity tolerance during seed germination. Scientific Reports,10(1). https://doi.org/10.1038/s41598-020-64288-7. DOI: https://doi.org/10.1038/s41598-020-64288-7

Vishnupriya, S., Roshini, D., Bhavaniramya, S., & Ramar, V. 2024. Faba bean starch: structure, functionality, and applications. Non-Conventional Starch Sources, 409-438.‏ DOI: https://doi.org/10.1016/B978-0-443-18981-4.00014-8

Ali, E. A. A. M. O., Awadelkareem, A. M., Gasim, S., & Yousif, N. E. (2014). Nutritional composition and anti-nutrients of two faba bean (Vicia faba L.) LINES. International Journal of Advanced Research, 2(12), 538-544.‏

Warkentin, T. et al. 2015. Pea. In: De Ron, A. (eds) Grain Legumes. Handbook of Plant Breeding, vol 10. Springer, New York, NY.

Vural, H., D. Esiyok and I. Duman, 2000. Kultur Sebzeleri. Ege Universitesi Ziraat Fakultesi Yayini, Izmir (Tr). unguiculata L. Walp.) Genotypes in Delmarva Region of the United States. Crop/ Stress Physiology, 191: 210-217.

Duzdemir, O., Kurunc, A. H. M. E. T., & Unlukara, A. 2009. Response of pea (Pisum sativum) to salinity and irrigation water regime. Bulgarian Journal of Agricultural Science, 15(5), 400-409.

Ciurescu, G., Toncea, I., Ropotă, M., & Hăbeanu, M. 2018. Seeds composition and their nutrients quality of some pea (Pisum sativum L.) and lentil (Lens culinaris Medik.) cultivars. Romanian Agricultural Research, 35, 101-108.‏ DOI: https://doi.org/10.59665/rar3514

Cochran, D.R. and Gu, . 2010. Effect of Coffee Grounds on Seed Germination. Combined Proceedings International Plant Propagators’ Society, Volume 60, 2010.

Sharma, A., Devkota, D., Thapa, S., Sapkota., M. & Bista, B. 2021. Improving germination and stand establishment of kiwifruit (Actinidia deliciosa cv. Hayword) seed through media selection and hormonal use in Dolakha, Nepal. Tropical Agrobiodiversity (TRAB) 2(1) (2021) 16-21. DOI: https://doi.org/10.26480/trab.01.2021.16.21

Cokkizgin, A. 2012. Salinity stress in common bean (Phaseolus vulgaris L.) seed germination. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 40(1), 177-182.‏ DOI: https://doi.org/10.15835/nbha4017493

Richard, L.A. 1954. Diagnosis and Improvement of Saline and Alkalis Soils. Agric. Handbook 60, US Dept. Agric., Washington DC.

Mussatto, S. I., Machado, E. M., Martins, S., & Teixeira, J. A. 2011. Production, composition, and application of coffee and its industrial residues. Food and bioprocess technology, 4, 661-672.‏ DOI: https://doi.org/10.1007/s11947-011-0565-z

Caliskan, S., Ozok, N., & Makineci, E. 2020. Utilization of Spent Coffee Grounds as Media for Stone Pine (Pinus pinea) Seedlings. Journal of Soil Science and Plant Nutrition, 20, 2014-2024.‏ DOI: https://doi.org/10.1007/s42729-020-00271-5

Birnbaum, A.L. , Bodine, G, Holland, M. and Reed, D.W. 2021. The effect of spent coffee ground on germination and growth of container grown specialty crops. Horticultural Sciences. Texas A&M University.

عليوش، خلود ومختاري، صبرينة. 2020. مقارنة تأثير التسميد بتفل القهوة المجفف(SCG) والتسميد بمحلول (NPK) على الخصائص المورفولوجية لنبات العدس المحلي (Lens cuilranis) دراسة ميدانية. رسالة ماجستير. جامعة الأخوة منتوري قسنطينة. الجزائر

الشويرف، ناجية، الشريف أحمد، بشير، عادل وعبدالكريم، هاجر.2021. دراسة تأثير مسحوق وبقايا القهوة كسماد طبيعي في تحسين خواص التربة الرملية وعلى إنتاجية نبات الخس Lactuca sativa . المجلة الدولية للعلوم التقنية. العدد 27 المجلد 27.

Cervera-Mata A, Martín-García, J.M., Delgado, R., Sánchez-Marañón, M., Delgado, G. 2019b. Short-termeffects of spent coffee grounds on thephysical properties of two Mediterranean agricultural soils. Int. Agrophys 33(2):205–216. https://doi.org/10.31545/ intagr/109412. DOI: https://doi.org/10.31545/intagr/109412

Authors

Amna Elareffi
Ibraheem Alshareef
Ib.alshareef@wau.edu.ly (Primary Contact)
Elareffi آ., & Alshareef ا. (2024). The Effects of Fertilization with Dried Spent Coffee Grounds and their Extracts on Germination and Growth of Broad Bean (Vicia faba L.) and Pea (Pisum sativum L.) Plants. Journal of Pure & Applied Sciences, 23(2), 189–197. https://doi.org/10.51984/jopas.v23i2.3310

Article Details