Generative Adversarial Networks in Brain Imaging: A Decade-Long Review of Progress and Future Directions
Abstract
Due to the increasing demand for effective and objective analysis to address complex challenges such as brain medical image reconstruction, segmentation, and classification, medical image analysis for brain tumor research has gained significant attention. The ability of Generative Adversarial Networks (GANs) to increase the probability density over data distributions by estimating density ratios, along with their capacity to uncover high-dimensional latent distributions, has led to substantial performance improvements in visual feature extraction. Furthermore, the adversarial loss incurred by the discriminator offers a subtle method of incorporating unlabeled samples into training, thereby improving accuracy at higher orders. These characteristics of GANs have proven valuable in various applications, including enhancing medical images and translating images across different modalities. Additionally, the ability of GANs to generate images with remarkable realism offers hope that, through these generative models, the ongoing challenge of limited labelled data in the medical field may be overcome. The aim of this review is to provide a comprehensive overview, starting with a concise summary of the range of available GAN architectures and datasets. This study then highlights the research conducted in processing and interpreting GAN-based brain images. Finally, the limitations of GAN-based methods for brain image analysis are discussed, identifying unresolved research issues and suggesting avenues for further exploration in this emerging field.
References
N. Wani and K. Raza, “Multiple Kernel Learning approach for Medical Image Analysis,” Elsevier, doi: 10.1101/121509. DOI: https://doi.org/10.1101/121509
L. Singh, G. Chetty, and D. Sharma, “A novel machine learning approach for detecting the brain abnormalities from MRI structural images,” in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2012, vol. 7632 LNBI, pp. 94–105, doi: 10.1007/978-3-642-34123-6_9. DOI: https://doi.org/10.1007/978-3-642-34123-6_9
S. Charfi, R. Lahmyed, and L. Rangarajan, “Impact Factor (JCC): 1.5548-A NOVEL APPROACH FOR BRAIN TUMOR DETECTION USING NEURAL NETWORK,” Citeseer, vol. 2, pp. 93–104, 2014, Accessed: Dec. 27, 2020. [Online]. Available: www.impactjournals.us.
T. H. Berquist, R. L. Ehman, B. F. King, C. G. Hodgman, and D. M. Ilstrup, “Value of MR imaging in differentiating benign from malignant soft-tissue masses: Study of 95 lesions,” Am. J. Roentgenol., vol. 155, no. 6, pp. 1251–1255, 1990, doi: 10.2214/ajr.155.6.2122675. DOI: https://doi.org/10.2214/ajr.155.6.2122675
M. Havaei et al., “Brain Tumor Segmentation with Deep Neural Networks $.” Accessed: Dec. 27, 2020. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S1361841516300330.
I. J. Goodfellow et al., “Generative Adversarial Nets.” Accessed: Dec. 27, 2020. [Online]. Available: http://www.github.com/goodfeli/adversarial.
P. Isola, J.-Y. Zhu, T. Zhou, A. A. Efros, and B. A. Research, “Image-to-Image Translation with Conditional Adversarial Networks.” Accessed: Dec. 27, 2020. [Online]. Available: https://github.com/phillipi/pix2pix.
X. Yi, E. Walia, and P. Babyn, “Generative Adversarial Network in Medical Imaging: A Review.” Accessed: Dec. 28, 2020. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S1361841518308430.
S. Kazeminia et al., “GANs for Medical Image Analysis.” Accessed: Dec. 28, 2020. [Online]. Available: http://livingreview.in.tum.de/GANs_for_Medical_Applications/. DOI: https://doi.org/10.1016/j.artmed.2020.101938
M. M. Saad, R. O’Reilly, and M. H. Rehmani, “A survey on training challenges in generative adversarial networks for biomedical image analysis,” Artif. Intell. Rev., vol. 57, no. 2, Feb. 2024, doi: 10.1007/S10462-023-10624-Y. DOI: https://doi.org/10.1007/s10462-023-10624-y
A. Showrov, M. Aziz, H. Nabil, … J. J.-I., 2024, “Generative Adversarial Networks (GANs) in Medical Imaging: Advancements, Applications and Challenges,” ieeexplore.ieee.orgAA Showrov, MT Aziz, HR Nabil, JR Jim, MM Kabir, MF Mridha, N Asai, J ShinIEEE Access, 2024•ieeexplore.ieee.org, Accessed: Nov. 13, 2024. [Online]. Available: https://ieeexplore.ieee.org/abstract/document/10445413/.
D. N. Sindhura, R. M. Pai, S. N. Bhat, and M. M. M. Pai, “A review of deep learning and Generative Adversarial Networks applications in medical image analysis,” Multimed. Syst., vol. 30, no. 3, Jun. 2024, doi: 10.1007/S00530-024-01349-1. DOI: https://doi.org/10.1007/s00530-024-01349-1
X. Wu, K. Xu, P. H.-T. S. and Technology, 2017, “A survey of image synthesis and editing with generative adversarial networks,” ieeexplore.ieee.org, Accessed: Dec. 28, 2020. [Online]. Available: https://ieeexplore.ieee.org/abstract/document/8195348/.
S. Latifi, N. T.-R.-I. J. Of, and U. 2019, “Audio enhancement and synthesis using generative adversarial networks: A survey,” digitalscholarship.unlv.edu, Accessed: Dec. 28, 2020. [Online]. Available: https://digitalscholarship.unlv.edu/ece_fac_articles/1042/.
S. Tavse, V. Varadarajan, M. Bachute, S. Gite, K. K.-F. Internet, and undefined 2022, “A systematic literature review on applications of GAN-synthesized images for brain MRI,” mdpi.comS Tavse, V Varadarajan, M Bachute, S Gite, K KotechaFuture Internet, 2022•mdpi.com, Accessed: Nov. 13, 2024. [Online]. Available: https://www.mdpi.com/1999-5903/14/12/351. DOI: https://doi.org/10.3390/fi14120351
Y. Skandarani, P. Jodoin, A. L.-J. of Imaging, 2023, “Gans for medical image synthesis: An empirical study,” mdpi.comY Skandarani, PM Jodoin, A LalandeJournal Imaging, 2023•mdpi.com, Accessed: Nov. 13, 2024. [Online]. Available: https://www.mdpi.com/2313-433X/9/3/69. DOI: https://doi.org/10.3390/jimaging9030069
J. J. Jeong, A. Tariq, T. Adejumo, H. Trivedi, J. W. Gichoya, and I. Banerjee, “Systematic Review of Generative Adversarial Networks (GANs) for Medical Image Classification and Segmentation,” J. Digit. Imaging, vol. 35, no. 2, pp. 137–152, Apr. 2022, doi: 10.1007/S10278-021-00556-W. DOI: https://doi.org/10.1007/s10278-021-00556-w
H. Ali et al., “The role of generative adversarial networks in brain MRI: a scoping review,” Insights Imaging, vol. 13, no. 1, Dec. 2022, doi: 10.1186/S13244-022-01237-0. DOI: https://doi.org/10.1186/s13244-022-01237-0
A. Ferreira, J. Li, K. L. Pomykala, J. Kleesiek, V. Alves, and J. Egger, “GAN-based generation of realistic 3D volumetric data: A systematic review and taxonomy,” Med. Image Anal., vol. 93, p. 103100, Apr. 2024, doi: 10.1016/J.MEDIA.2024.103100. DOI: https://doi.org/10.1016/j.media.2024.103100
D. Kingma, M. W. preprint arXiv:1312.6114 2013, “Auto-encoding variational bayes,” arxiv.org, Accessed: Jan. 05, 2021. [Online]. Available: https://arxiv.org/abs/1312.6114.
H. A.-A. of the institute of S. Mathematics 1969, “Fitting autoregressive models for prediction,” Springer, Accessed: Jan. 05, 2021. [Online]. Available: https://link.springer.com/content/pdf/10.1007/BF02532251.pdf.
L. Mescheder, S. Nowozin, and A. Geiger, “Adversarial variational bayes: Unifying variational autoencoders and generative adversarial networks,” in 34th International Conference on Machine Learning, ICML 2017, 2017, vol. 5, pp. 3694–3707, Accessed: Jan. 05, 2021. [Online]. Available: http://www.
M. Frid-Adar, E. Klang, M. Amitai, J. Goldberger, and H. Greenspan, “Synthetic data augmentation using GAN for improved liver lesion classification,” Proc. - Int. Symp. Biomed. Imaging, vol. 2018-April, pp. 289–293, May 2018, doi: 10.1109/ISBI.2018.8363576. DOI: https://doi.org/10.1109/ISBI.2018.8363576
D. Nie et al., “Medical image synthesis with context-aware generative adversarial networks,” in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2017, vol. 10435 LNCS, pp. 417–425, doi: 10.1007/978-3-319-66179-7_48. DOI: https://doi.org/10.1007/978-3-319-66179-7_48
J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros, “Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks,” Proc. IEEE Int. Conf. Comput. Vis., vol. 2017-October, pp. 2242–2251, Mar. 2017, Accessed: Jan. 05, 2021. [Online]. Available: http://arxiv.org/abs/1703.10593. DOI: https://doi.org/10.1109/ICCV.2017.244
T. Schlegl, P. Seeböck, S. M. Waldstein, U. Schmidt-Erfurth, and G. Langs, “Unsupervised Anomaly Detection with Generative Adversarial Networks to Guide Marker Discovery,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 10265 LNCS, pp. 146–147, Mar. 2017, doi: 10.1007/978-3-319-59050-9_12. DOI: https://doi.org/10.1007/978-3-319-59050-9_12
Y. Xue, T. Xu, H. Zhang, L. R. Long, and X. Huang, “SegAN: Adversarial Network with Multi-scale L 1 Loss for Medical Image Segmentation,” Neuroinformatics, vol. 16, no. 3–4, pp. 383–392, Oct. 2018, doi: 10.1007/s12021-018-9377-x. DOI: https://doi.org/10.1007/s12021-018-9377-x
D. Shen, G. Wu, and H. Il Suk, “Deep Learning in Medical Image Analysis,” Annu. Rev. Biomed. Eng., vol. 19, pp. 221–248, Jun. 2017, doi: 10.1146/annurev-bioeng-071516-044442. DOI: https://doi.org/10.1146/annurev-bioeng-071516-044442
D. Ravì, C. Wong, F. D.-… health informatics 2016, “Deep learning for health informatics,” ieeexplore.ieee.org, Accessed: Dec. 27, 2020. [Online]. Available: https://ieeexplore.ieee.org/abstract/document/7801947/.
P. Y. Simard, D. Steinkraus, and J. C. Platt, “Best Practices for Convolutional Neural Networks Applied to Visual Document Analysis.” Accessed: Dec. 27, 2020. [Online]. Available: http://www.cs.cmu.edu/~bhiksha/courses/deeplearning/Fall.2016/pdfs/Simard.pdf.
A. Shrivastava, T. Pfister, O. Tuzel, J. Susskind, W. Wang, and R. Webb, “Learning from Simulated and Unsupervised Images through Adversarial Training.” Accessed: Dec. 27, 2020. [Online]. Available: http://openaccess.thecvf.com/content_cvpr_2017/html/Shrivastava_Learning_From_Simulated_CVPR_2017_paper.html. DOI: https://doi.org/10.1109/CVPR.2017.241
M. Jiang et al., “FA-GAN: Fused attentive generative adversarial networks for MRI image super-resolution,” Comput. Med. Imaging Graph., vol. 92, p. 101969, Sep. 2021, doi: 10.1016/J.COMPMEDIMAG.2021.101969. DOI: https://doi.org/10.1016/j.compmedimag.2021.101969
H. Zhang, H. Li, J. Dillman, N. Parikh, L. H.- Diagnostics, 2022, “Multi-contrast MRI image synthesis using switchable cycle-consistent generative adversarial networks,” mdpi.comH Zhang, H Li, JR Dillman, NA Parikh, L HeDiagnostics, 2022•mdpi.com, Accessed: Sep. 14, 2024. [Online]. Available: https://www.mdpi.com/2075-4418/12/4/816. DOI: https://doi.org/10.3390/diagnostics12040816
M. Frid-Adar, I. Diamant, E. Klang, M. Amitai, J. Goldberger, and H. Greenspan, “GAN-based Synthetic Medical Image Augmentation for increased CNN Performance in Liver Lesion Classification.” Accessed: Jan. 05, 2021. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0925231218310749.
M. J. M. Chuquicusma, S. Hussein, J. Burt, and U. Bagci, “Accepted for publication in IEEE International Symposium on Biomedical Imaging (ISBI) 2018 HOW TO FOOL RADIOLOGISTS WITH GENERATIVE ADVERSARIAL NETWORKS? A VISUAL TURING TEST FOR LUNG CANCER DIAGNOSIS.” Accessed: Jan. 05, 2021. [Online]. Available: https://ieeexplore.ieee.org/abstract/document/8363564/.
M. Mirza and S. Osindero, “Conditional Generative Adversarial Nets,” Nov. 2014, Accessed: Jan. 05, 2021. [Online]. Available: http://arxiv.org/abs/1411.1784.
A. Radford, L. Metz, and S. Chintala, “Unsupervised representation learning with deep convolutional generative adversarial networks,” Nov. 2016, Accessed: Jan. 05, 2021. [Online]. Available: https://arxiv.org/abs/1511.06434v2.
E. Denton, S. Chintala, A. Szlam, and R. Fergus, “Deep Generative Image Models using a Laplacian Pyramid of Adversarial Networks,” Adv. Neural Inf. Process. Syst., vol. 2015-January, pp. 1486–1494, Jun. 2015, Accessed: Jan. 05, 2021. [Online]. Available: http://arxiv.org/abs/1506.05751.
M. Arjovsky, S. Chintala, and L. Bottou, “Wasserstein GAN,” arXiv, Jan. 2017, Accessed: Jan. 05, 2021. [Online]. Available: http://arxiv.org/abs/1701.07875.
I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. Courville, “Improved Training of Wasserstein GANs,” Adv. Neural Inf. Process. Syst., vol. 2017-December, pp. 5768–5778, Mar. 2017, Accessed: Jan. 05, 2021. [Online]. Available: http://arxiv.org/abs/1704.00028.
T. Karras, T. Aila, S. Laine, and J. Lehtinen, “Progressive growing of gans for improved quality, stability, and variation,” arXiv. arXiv, Oct. 27, 2017, Accessed: Jan. 05, 2021. [Online]. Available: https://youtu.be/G06dEcZ-QTg.
J. Donahue, P. Krähenbühl, and T. Darrell, “Adversarial Feature Learning,” May 2016, Accessed: Jan. 05, 2021. [Online]. Available: http://arxiv.org/abs/1605.09782.
T. Karras, S. Laine, and T. Aila, “A style-based generator architecture for generative adversarial networks,” in Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Jun. 2019, vol. 2019-June, pp. 4396–4405, doi: 10.1109/CVPR.2019.00453. DOI: https://doi.org/10.1109/CVPR.2019.00453
T. Karras, S. Laine, M. Aittala, J. Hellsten, J. Lehtinen, and T. Aila, “Analyzing and Improving the Image Quality of StyleGAN,” Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., pp. 8107–8116, Dec. 2019, Accessed: Jan. 05, 2021. [Online]. Available: http://arxiv.org/abs/1912.04958. DOI: https://doi.org/10.1109/CVPR42600.2020.00813
A. J. Plassard, L. T. Davis, A. T. Newton, S. M. Resnick, B. A. Landman, and C. Bermudez, “Learning implicit brain MRI manifolds with deep learning,” in Proceedings of SPIE--the International Society for Optical Engineering, Mar. 2018, vol. 10574, p. 56, doi: 10.1117/12.2293515. DOI: https://doi.org/10.1117/12.2293515
K. Kazuhiro, R. Werner, F. Toriumi, M. J.- Tomography, 2018, “Generative adversarial networks for the creation of realistic artificial brain magnetic resonance images,” ncbi.nlm.nih.gov, Accessed: Aug. 16, 2020. [Online]. Available: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6299742/.
J. Islam and Y. Zhang, “GAN-based synthetic brain PET image generation,” Brain Inf, vol. 7, p. 3, 2020, doi: 10.1186/s40708-020-00104-2. DOI: https://doi.org/10.1186/s40708-020-00104-2
H. Lee, J. Jo, and H. Lim, “Study on Optimal Generative Network for Synthesizing Brain Tumor-Segmented MR Images,” 2020, doi: 10.1155/2020/8273173. DOI: https://doi.org/10.1155/2020/8273173
A. Chang, V. Suriyakumar, A. Moturu, N. Tewattanarat, A. Doria, and A. Goldenberg, “Using Generative Models for Pediatric wbMRI,” ArXiv, vol. abs/2006.0, 2020.
F. Calimeri, A. Marzullo, C. Stamile, C. Bernard, U. Lyon, and G. Terracina, “Biomedical Data Augmentation Using Generative Adversarial Neural Networks LoIDE: a web-based IDE for Logic Programming View project Multimodal Analysis of Profiles of Children with High Intelligence Quotien View project Biomedical Data Augmentation using ,” Springer, vol. 10614 LNCS, pp. 626–634, 2017, doi: 10.1007/978-3-319-68612-7_71. DOI: https://doi.org/10.1007/978-3-319-68612-7_71
C. Bowles et al., “GAN Augmentation: Augmenting Training Data using Generative Adversarial Networks.” Accessed: Aug. 04, 2020. [Online]. Available: https://arxiv.org/abs/1810.10863.
C. Han et al., “GAN-BASED SYNTHETIC BRAIN MR IMAGE GENERATION.” Accessed: Aug. 04, 2020. [Online]. Available: https://ieeexplore.ieee.org/abstract/document/8363678/.
A. Beers et al., “High-resolution medical image synthesis using progressively grown generative adversarial networks.” Accessed: Aug. 04, 2020. [Online]. Available: https://arxiv.org/abs/1805.03144.
A. K. Mondal, J. Dolz, and C. Desrosiers, “Few-shot 3D Multi-modal Medical Image Segmentation using Generative Adversarial Learning,” Oct. 2018, Accessed: Aug. 04, 2020. [Online]. Available: http://arxiv.org/abs/1810.12241.
A. Chang, V. M. Suriyakumar, A. Moturu, N. Tewattanarat, A. Doria, and A. Goldenberg, “Using Generative Models for Pediatric wbMRI.”
S. ; Wang et al., “Multimodal CT Image Synthesis Using Unsupervised Deep Generative Adversarial Networks for Stroke Lesion Segmentation,” Electron. 2022, Vol. 11, Page 2612, vol. 11, no. 16, p. 2612, Aug. 2022, doi: 10.3390/ELECTRONICS11162612. DOI: https://doi.org/10.3390/electronics11162612
L. Sun, J. Chen, Y. Xu, M. Gong, … K. Y.-I. journal of 2022, “Hierarchical amortized GAN for 3D high resolution medical image synthesis,” ieeexplore.ieee.orgL Sun, J Chen, Y Xu, M Gong, K Yu, K BatmanghelichIEEE J. Biomed. Heal. informatics, 2022•ieeexplore.ieee.org, Accessed: Sep. 04, 2024. [Online]. Available: https://ieeexplore.ieee.org/abstract/document/9770375/. DOI: https://doi.org/10.1109/JBHI.2022.3172976
D. Mourad, K. O. preprint arXiv:2404.08703, 2024, “Synthetic Brain Images: Bridging the Gap in Brain Mapping With Generative Adversarial Model,” arxiv.orgD Mourad, KO OseniarXiv Prepr. arXiv2404.08703, 2024•arxiv.org, vol. 16, no. 1, Apr. 2024, doi: 10.5121/ijmit.2024.16101. DOI: https://doi.org/10.5121/ijmit.2024.16101
B. Xin et al., “Deformation-aware GAN for Medical Image Synthesis with Substantially Misaligned Pairs,” Aug. 2024, Accessed: Sep. 04, 2024. [Online]. Available: http://arxiv.org/abs/2408.09432.
J. M. Wolterink, A. M. Dinkla, M. H. F. Savenije, P. R. Seevinck, C. A. T. Van Den Berg, and I. Išgum, “Deep MR to CT Synthesis using Unpaired Data.” Accessed: Aug. 05, 2020. [Online]. Available: https://link.springer.com/chapter/10.1007/978-3-319-68127-6_2.
D. Nie et al., “Medical Image Synthesis with Deep Convolutional Adversarial Networks,” IEEE Trans. Biomed. Eng., vol. 65, no. 12, pp. 2720–2730, Dec. 2018, doi: 10.1109/TBME.2018.2814538. DOI: https://doi.org/10.1109/TBME.2018.2814538
H. Emami, M. Dong, S. P. Nejad-Davarani, and C. Glide-Hurst, “Generating Synthetic CTs from Magnetic Resonance Images using Generative Adversarial Networks,” Wiley Online Libr., vol. 45, no. 8, pp. 3627–3636, Aug. 2018, doi: 10.1002/mp.13047. DOI: https://doi.org/10.1002/mp.13047
C.-B. Jin et al., “Deep CT to MR Synthesis Using Paired and Unpaired Data,” Sensors, vol. 19, no. 10, p. 2361, May 2019, doi: 10.3390/s19102361. DOI: https://doi.org/10.3390/s19102361
H. Yang et al., “Unpaired Brain MR-to-CT Synthesis using a Structure-Constrained CycleGAN.”
K. Armanious et al., “MedGAN: Medical Image Translation using GANs,” Comput. Med. Imaging Graph., vol. 79, Jun. 2018, doi: 10.1016/j.compmedimag.2019.101684.
W. Wei et al., “Learning Myelin Content in Multiple Sclerosis from Multimodal MRI through Adversarial Training,” 2018. Accessed: Aug. 05, 2020. [Online]. Available: https://link.springer.com/chapter/10.1007/978-3-030-00931-1_59. DOI: https://doi.org/10.1007/978-3-030-00931-1_59
Q. Yang, N. Li, Z. Zhao, X. Fan, E. I.-C. Chang, and Y. Xu, “MRI Image-to-Image Translation for Cross-Modality Image Registration and Segmentation,” 2018.
Y. Pan et al., “Synthesizing missing PET from MRI with cycle-consistent generative adversarial networks for Alzheimer’s disease diagnosis,” Springer, Accessed: Aug. 06, 2020. [Online]. Available: https://link.springer.com/chapter/10.1007/978-3-030-00931-1_52.
P. Welander, S. Karlsson, and A. Eklund, “Generative Adversarial Networks for Image-to-Image Translation on Multi-Contrast MR Images - A Comparison of CycleGAN and UNIT,” Jun. 2018, Accessed: Aug. 06, 2020. [Online]. Available: http://arxiv.org/abs/1806.07777.
B. Yu, L. Zhou, L. Wang, … J. F.-2018 I. 15th, 2018, “3D cGAN based cross-modality MR image synthesis for brain tumor segmentation,” ieeexplore.ieee.org, Accessed: Aug. 06, 2020. [Online]. Available: https://ieeexplore.ieee.org/abstract/document/8363653/. DOI: https://doi.org/10.1109/ISBI.2018.8363653
T. Chen, X. Song, C. W.-I. Access, 2018, “Preserving-texture generative adversarial networks for fast multi-weighted MRI,” ieeexplore.ieee.org, Accessed: Aug. 18, 2020. [Online]. Available: https://ieeexplore.ieee.org/abstract/document/8513818/. DOI: https://doi.org/10.1109/ACCESS.2018.2877932
S. Olut, Y. H. Sahin, U. Demir, and G. Unal, “Generative Adversarial Training for MRA Image Synthesis Using Multi-Contrast MRI.” Accessed: Aug. 06, 2020. [Online]. Available: https://link.springer.com/chapter/10.1007/978-3-030-00320-3_18.
C. Ge, I. Y. H. Gu, A. Store Jakola, and J. Yang, “Cross-Modality Augmentation of Brain Mr Images Using a Novel Pairwise Generative Adversarial Network for Enhanced Glioma Classification,” in Proceedings - International Conference on Image Processing, ICIP, Sep. 2019, vol. 2019-Septe, pp. 559–563, doi: 10.1109/ICIP.2019.8803808. DOI: https://doi.org/10.1109/ICIP.2019.8803808
S. Ul et al., “Image Synthesis in Multi-Contrast MRI with Conditional Generative Adversarial Networks.” Accessed: Aug. 06, 2020. [Online]. Available: https://ieeexplore.ieee.org/abstract/document/8653423/.
G. Kwon, C. Han, and D.-S. Kim, “Generation of 3D Brain MRI Using Auto-Encoding Generative Adversarial Networks.”
C. Han et al., “Learning More with Less: Conditional PGGAN-based Data Augmentation for Brain Metastases Detection Using Highly-Rough Annotation on MR Images,” dl.acm.org, pp. 119–127, Nov. 2019, doi: 10.1145/3357384.3357890. DOI: https://doi.org/10.1145/3357384.3357890
M. Ali, I. Y. H Gu, A. Store Jakola, M. Barat Ali, and I. Yu-Hua Gu, “Multi-stream Convolutional Autoencoder and 2D Generative Adversarial Network for Glioma Classification Antisecretory factor in treatment of cerebral edema View project QoS Provision Assessment View project Multi-stream Convolutional Autoencoder and 2D Generative Adversarial Network for Glioma Classification,” Springer, vol. 11678 LNCS, pp. 234–245, 2019, doi: 10.1007/978-3-030-29888-3_19. DOI: https://doi.org/10.1007/978-3-030-29888-3_19
B. Zhou, L. Wang, L. Shi, Y. Fripp, and J. & Bourgeat, “Ea-GANs: Edge-Aware Generative Adversarial Networks for Cross-Modality MR Image Synthesis,” 2019. Accessed: Aug. 18, 2020. [Online]. Available: https://ro.uow.edu.au/eispapers1/2984.
P. Huang et al., “CoCa-GAN: Common-Feature-Learning-Based Context-Aware Generative Adversarial Network for Glioma Grading,” in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2019, vol. 11766 LNCS, pp. 155–163, doi: 10.1007/978-3-030-32248-9_18. DOI: https://doi.org/10.1007/978-3-030-32248-9_18
K. Armanious et al., “Independent brain F-FDG PET attenuation correction using a deep learning approach with Generative Adversarial Networks,” 2019. Accessed: Aug. 19, 2020. [Online]. Available: www.nuclmed.gr. DOI: https://doi.org/10.1186/s13550-020-00644-y
A. Eklund, “FEEDING THE ZOMBIES: SYNTHESIZING BRAIN VOLUMES USING A 3D PROGRESSIVE GROWING GAN,” arXiv. arXiv, Dec. 11, 2019, Accessed: Jan. 02, 2021. [Online]. Available: https://github.com/wanderine/ProgressiveGAN3D.
M. Yurt, S. U. Dar, A. Erdem, E. Erdem, and T. C. ¸ Ukur, “mustGAN: Multi-Stream Generative Adversarial Networks for MR Image Synthesis.”
E. Carver, Z. Dai, E. Liang, J. Snyder, and N. Wen, “Improvement of Multiparametric MR Image Segmentation by Augmenting the Data with Generative Adversarial Networks for Glioma Patients.” Accessed: Aug. 18, 2020. [Online]. Available: https://arxiv.org/abs/1910.00696. DOI: https://doi.org/10.3389/fncom.2020.495075
Y. Lei, Y. Fu, H. Mao, W. J. Curran, T. Liu, and X. Yang, “Multi-modality MRI arbitrary transformation using unified generative adversarial networks,” in Medical Imaging 2020: Image Processing, Mar. 2020, vol. 11313, p. 1, doi: 10.1117/12.2549794. DOI: https://doi.org/10.1117/12.2549794
V. Kearney et al., “Attention-Aware Discrimination for MR-to-CT Image Translation Using Cycle-Consistent Generative Adversarial Networks,” Radiol. Artif. Intell., vol. 2, no. 2, p. e190027, Mar. 2020, doi: 10.1148/ryai.2020190027. DOI: https://doi.org/10.1148/ryai.2020190027
B. Xin, Y. Hu, Y. Zheng, and H. Liao, “MULTI-MODALITY GENERATIVE ADVERSARIAL NETWORKS WITH TUMOR CONSISTENCY LOSS FOR BRAIN MR IMAGE SYNTHESIS.” Accessed: Aug. 16, 2020. [Online]. Available: https://github.com/. DOI: https://doi.org/10.1109/ISBI45749.2020.9098449
H. Emami, M. Dong, and C. K. Glide-Hurst, “Attention-Guided Generative Adversarial Network to Address Atypical Anatomy in Modality Transfer,” Jun. 2020, Accessed: Aug. 20, 2020. [Online]. Available: http://arxiv.org/abs/2006.15264. DOI: https://doi.org/10.1109/IRI49571.2020.00034
X. A. Hagiwara et al., “Improving the Quality of Synthetic FLAIR Images with Deep Learning Using a Conditional Generative Adversarial Network for Pixel-by-Pixel Image Translation,” Am Soc Neuroradiol., doi: 10.3174/ajnr. A5927. DOI: https://doi.org/10.3174/ajnr
E. Dikici, L. M. Prevedello, M. Bigelow, R. D. White, and B. S. Erdal, “Constrained Generative Adversarial Network Ensembles for Sharable Synthetic Data Generation.” Accessed: Aug. 20, 2020. [Online]. Available: https://arxiv.org/abs/2003.00086.
Y. Koike, Y. Akino, I. Sumida, … H. S.-J. of R 2020, “Feasibility of synthetic computed tomography generated with an adversarial network for multi-sequence magnetic resonance-based brain radiotherapy,” academic.oup.com, Accessed: Aug. 21, 2020. [Online]. Available: https://academic.oup.com/jrr/article-abstract/61/1/92/5671792. DOI: https://doi.org/10.1093/jrr/rrz063
M. Hamghalam, T. Wang, J. Qin, and B. Lei, “Transforming Intensity Distribution of Brain Lesions Via Conditional Gans for Segmentation,” in Proceedings - International Symposium on Biomedical Imaging, Apr. 2020, vol. 2020-April, pp. 1499–1502, doi: 10.1109/ISBI45749.2020.9098347. DOI: https://doi.org/10.1109/ISBI45749.2020.9098347
S. U. H. Dar, M. Yurt, M. Shahdloo, M. Emrullah Ildız, B. Tınaz, and T. C. ¸ Ukur, “IEEE Journal of Selected Topics in Signal Processing SUBMITTED TO IEEE JOURNAL OF SELECTED TOPICS ON SIGNAL PROCESSING 1 Prior-Guided Image Reconstruction for Accelerated Multi-Contrast MRI via Generative Adversarial Networks,” ieeexplore.ieee.org, pp. 1932–4553, 2020, doi: 10.1109/JSTSP.2020.3001737. DOI: https://doi.org/10.1109/JSTSP.2020.3001737
Y. Li, J. Wei, Z. Qi, Y. Sun, Y. L.-M. I. 2020, 2020, “Synthesize CT from paired MRI of the same patient with patch-based generative adversarial network,” spiedigitallibrary.org, Accessed: Aug. 23, 2020. [Online]. Available: https://www.spiedigitallibrary.org/conference-proceedings-of-spie/11314/113143W/Synthesize-CT-from-paired-MRI-of-the-same-patient-with/10.1117/12.2551285.short. DOI: https://doi.org/10.1117/12.2551285
V. Bourbonne, V. Jaouen, C. Hognon, N. B.- Cancers, 2021, “Dosimetric validation of a GAN-based pseudo-CT generation for MRI-only stereotactic brain radiotherapy,” mdpi.com, Accessed: Sep. 04, 2024. [Online]. Available: https://www.mdpi.com/2072-6694/13/5/1082. DOI: https://doi.org/10.3390/cancers13051082
X. Gao, F. Shi, D. Shen, M. L.-I. journal of biomedical and, 2021, “Task-induced pyramid and attention GAN for multimodal brain image imputation and classification in Alzheimer’s disease,” ieeexplore.ieee.orgX Gao, F Shi, D Shen, M LiuIEEE J. Biomed. Heal. informatics, 2021•ieeexplore.ieee.org, Accessed: Sep. 04, 2024. [Online]. Available: https://ieeexplore.ieee.org/abstract/document/9490307/.
X. Liu et al., “Performance of deep learning synthetic CTs for MR‐only brain radiation therapy,” Wiley Online Libr., vol. 22, no. 1, pp. 308–317, Jan. 2021, doi: 10.1002/acm2.13139. DOI: https://doi.org/10.1002/acm2.13139
A. Abu-Srhan, I. Almallahi, … M. A.-C. in B 2021, “Paired-unpaired Unsupervised Attention Guided GAN with transfer learning for bidirectional brain MR-CT synthesis,” ElsevierA Abu-Srhan, I Almallahi, MAM Abus. W Mahafza, OS Al-KadiComputers Biol. Med. 2021•Elsevier, Accessed: Sep. 04, 2024. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0010482521005576. DOI: https://doi.org/10.1016/j.compbiomed.2021.104763
T. Matsui, M. Taki, T. Q. Pham, J. Chikazoe, and K. Jimura, “Counterfactual Explanation of Brain Activity Classifiers Using Image-To-Image Transfer by Generative Adversarial Network,” Front. Neuroinform., vol. 15, Mar. 2022, doi: 10.3389/FNINF.2021.802938/FULL. DOI: https://doi.org/10.3389/fninf.2021.802938
M. Mehmood, N. Alshammari, … S. A.-J. of K. S 2022, “Improved colorization and classification of intracranial tumor expanse in MRI images via hybrid scheme of Pix2Pix-cGANs and NASNet-large,” ElsevierM Mehmood, N Alshammari, SA Alanazi, A Basharat, F Ahmad, M Sajjad, K JunaidJournal King Saud Univ. Inf. Sci. 2022•Elsevier, Accessed: Sep. 04, 2024. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S1319157822001641. DOI: https://doi.org/10.1016/j.jksuci.2022.05.015
S. Hu, B. Lei, Y. Wang, Z. Feng, Y. Shen, and S. Wang, “Bidirectional mapping generative adversarial networks for brain MR to PET synthesis,” ieeexplore.ieee.orgS Hu, B Lei, S Wang, Y Wang, Z Feng, Y ShenIEEE Trans. Med. Imaging, 2021•ieeexplore.ieee.org, Accessed: Sep. 04, 2024. [Online]. Available: https://ieeexplore.ieee.org/abstract/document/9521163/.
D. Mukherkjee, P. Saha, D. Kaplun, A. Sinitca, R. S.-S. reports, 2022, “Brain tumor image generation using an aggregation of GAN models with style transfer,” nature.comD Mukherkjee, P Saha, D Kaplun, A Sinitca, R SarkarScientific reports, 2022•nature.com, Accessed: Sep. 04, 2024. [Online]. Available: https://www.nature.com/articles/s41598-022-12646-y.
B. Zhan et al., “D2FE-GAN: Decoupled dual feature extraction-based GAN for MRI image synthesis,” ElsevierB Zhan, L Zhou, Z Li, X Wu, Y Pu, J Zhou, Y Wang, D ShenKnowledge-Based Syst. 2022•Elsevier, Accessed: Sep. 04, 2024. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0950705122006839. DOI: https://doi.org/10.1016/j.knosys.2022.109362
X. Zhao et al., “sTBI-GAN: An adversarial learning approach for data synthesis on traumatic brain segmentation,” Elsevier, Accessed: Sep. 14, 2024. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0895611124000028.
J. Wang, G. Xie, Y. Huang, Y. Zheng, … Y. J.-P. of the 30th, 2022, “FedMed-ATL: Misaligned unpaired cross-modality neuroimage synthesis via affine transform loss,” dl.acm.orgJ Wang, G Xie, Y Huang, Y Zheng, Y Jin, F ZhengProceedings 30th ACM Int. Conf. Multimedia, 2022•dl.acm.org, pp. 1522–1531, Oct. 2022, doi: 10.1145/3503161.3547762. DOI: https://doi.org/10.1145/3503161.3547762
P. Huang et al., “Common feature learning for brain tumor MRI synthesis by context-aware generative adversarial network,” ElsevierP Huang, D Li, Z Jiao, D Wei, B Cao, Z Mo, Q Wang, H Zhang, D ShenMedical Image Anal. 2022•Elsevier, Accessed: Sep. 14, 2024. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S1361841522001190. DOI: https://doi.org/10.1016/j.media.2022.102472
Y. Luo et al., “Adaptive rectification based adversarial network with spectrum constraint for high-quality PET image synthesis,” ElsevierY Luo, L Zhou, B Zhan, Y Fei, J Zhou, Y Wang, D ShenMedical Image Anal. 2022•Elsevier, Accessed: Sep. 14, 2024. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S1361841521003807. DOI: https://doi.org/10.1016/j.media.2021.102335
Z. Qin, Z. Liu, P. Zhu, W. L.-C. in B. and Medicine, 2022, “Style transfer in conditional GANs for cross-modality synthesis of brain magnetic resonance images,” ElsevierZ Qin, Z Liu, P Zhu, W LingComputers Biol. Med. 2022•Elsevier, Accessed: Sep. 14, 2024. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0010482522006631.
X. Bai, S. Hu, J. Li, L. Wang, and D. Kong, “Brain MRI synthesis based on dual-generator generative adversarial network,” ACM Int. Conf. Proceeding Ser., pp. 1065–1069, Dec. 2022, doi: 10.1145/3584376.3584566. DOI: https://doi.org/10.1145/3584376.3584566
H. Alrashedy, A. Almansour, D. I.- Sensors, 2022, “BrainGAN: brain MRI image generation and classification framework using GAN architectures and CNN models,” mdpi.comHHN Alrashedy, AF Almansour, DM Ibrahim, MAA HammoudehSensors, 2022•mdpi.com, Accessed: Sep. 14, 2024. [Online]. Available: https://www.mdpi.com/1424-8220/22/11/4297. DOI: https://doi.org/10.3390/s22114297
A. Aljohani, N. A.- Electronics, 2022, “Generating synthetic images for healthcare with novel deep pix2pix gan,” mdpi.comA Aljohani, N AlharbeElectronics, 2022•mdpi.com, Accessed: Sep. 14, 2024. [Online]. Available: https://www.mdpi.com/2079-9292/11/21/3470. DOI: https://doi.org/10.3390/electronics11213470
T. Finck et al., “Uncertainty-Aware and Lesion-Specific Image Synthesis in Multiple Sclerosis Magnetic Resonance Imaging: A Multicentric Validation Study,” Front. Neurosci., vol. 16, Apr. 2022, doi: 10.3389/FNINS.2022.889808/FULL. DOI: https://doi.org/10.3389/fnins.2022.889808
J. Zhang, X. He, L. Qing, F. Gao, B. W.-C. M. and Programs, 2022, “BPGAN: Brain PET synthesis from MRI using generative adversarial network for multi-modal Alzheimer’s disease diagnosis,” ElsevierJ Zhang, X He, L Qing, F Gao, B WangComputer Methods Programs Biomed. 2022•Elsevier, Accessed: Sep. 14, 2024. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S016926072200061X. DOI: https://doi.org/10.1016/j.cmpb.2022.106676
J. Wang et al., “FedMed-GAN: Federated domain translation on unsupervised cross-modality brain image synthesis,” Elsevier, Accessed: Sep. 14, 2024. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0925231223004058.
X. Gu, Y. Zhang, W. Zeng, S. Zhong, … H. W.-C. M. and, 2023, “Cross-modality image translation: CT image synthesis of MR brain images using multi generative network with perceptual supervision,” ElsevierX Gu, Y Zhang, W Zeng, S Zhong, H Wang, D Liang, Z Li, Z HuComputer Methods Programs Biomed. 2023•Elsevier, Accessed: Sep. 14, 2024. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0169260723002365. DOI: https://doi.org/10.1016/j.cmpb.2023.107571
Y. Li, J. Shi, and S. K. Zhou, “Causal Image Synthesis of Brain MR in 3D,” Mar. 2023, Accessed: Sep. 14, 2024. [Online]. Available: http://arxiv.org/abs/2303.14349.
X. Zhang et al., “Combining physics-based models with deep learning image synthesis and uncertainty in intraoperative cone-beam CT of the brain,” Med. Phys., vol. 50, no. 5, pp. 2607–2624, May 2023, doi: 10.1002/MP.16351. DOI: https://doi.org/10.1002/mp.16351
Y. Jin et al., “Brain MRI to PET Synthesis and Amyloid Estimation in Alzheimer’s Disease via 3D Multimodal Contrastive GAN,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 14348 LNCS, pp. 94–103, 2024, doi: 10.1007/978-3-031-45673-2_10. DOI: https://doi.org/10.1007/978-3-031-45673-2_10
B. Wang et al., “Quantitative cerebral blood volume image synthesis from Standard MRI using image-to-image translation for brain tumors,” pubs.rsna.orgB Wang, Y Pan, S Xu, Y Zhang, Y Ming, L Chen, X Liu, C Wang, Y Liu, Y XiaRadiology, 2023•pubs.rsna.org, vol. 308, no. 2, Aug. 2023, doi: 10.1148/radiol.222471. DOI: https://doi.org/10.1148/radiol.222471
B. Cao, H. Cao, J. Liu, P. Zhu, … C. Z.-I. T. on, 2023, “Autoencoder-Based Collaborative Attention GAN for Multi-Modal Image Synthesis,” ieeexplore.ieee.orgB Cao, H Cao, J Liu, P Zhu, C Zhang, Q HuIEEE Trans. Multimedia, 2023•ieeexplore.ieee.org, Accessed: Sep. 14, 2024. [Online]. Available: https://ieeexplore.ieee.org/abstract/document/10124026/.
M. Hamghalam, A. S.-C. in B. and Medicine, 2024, “Medical image synthesis via conditional GANs: Application to segmenting brain tumours,” ElsevierM Hamghalam, AL SimpsonComputers Biol. Med. 2024•Elsevier, Accessed: Sep. 14, 2024. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0010482524000660. DOI: https://doi.org/10.1016/j.compbiomed.2024.107982
S. You, B. Yuan, Z. Lyu, … C. C.-I. T., 2024, “Generative AI Enables Synthesizing Cross-Modality Brain Image via Multi-Level-Latent Representation Learning,” ieeexplore.ieee.orgS You, B Yuan, Z Lyu, CK Chui, CLP Chen, B Lei, S WangIEEE Trans. Comput. Imaging, 2024•ieeexplore.ieee.org, Accessed: Sep. 14, 2024. [Online]. Available: https://ieeexplore.ieee.org/abstract/document/10614117/. DOI: https://doi.org/10.1109/TCI.2024.3434724
Y. Huang et al., “Multi-Constraint Transferable Generative Adversarial Networks for Cross-Modal Brain Image Synthesis,” Int. J. Comput. Vis., 2024, doi: 10.1007/S11263-024-02109-4. DOI: https://doi.org/10.1007/s11263-024-02109-4
Y. Zhang et al., “Unified multi-modal image synthesis for missing modality imputation,” ieeexplore.ieee.orgY Zhang, C Peng, Q Wang, D Song, K Li, SK ZhouIEEE Trans. Med. Imaging, 2024•ieeexplore.ieee.org, vol. XX, 2024, Accessed: Sep. 14, 2024. [Online]. Available: https://ieeexplore.ieee.org/abstract/document/10589432/.
M. Jiang et al., “Cross2SynNet: cross-device–cross-modal synthesis of routine brain MRI sequences from CT with brain lesion,” Magn. Reson. Mater. Physics, Biol. Med., vol. 37, no. 2, pp. 241–256, Apr. 2024, doi: 10.1007/S10334-023-01145-4. DOI: https://doi.org/10.1007/s10334-023-01145-4
A. S. Fard, D. C. Reutens, S. C. Ramsay, S. J. Goodman, S. Ghosh, and V. Vegh, “Image synthesis of interictal SPECT from MRI and PET using machine learning,” Front. Neurol., vol. 15, 2024, doi: 10.3389/FNEUR.2024.1383773/FULL. DOI: https://doi.org/10.3389/fneur.2024.1383773
M. Tabassum, E. S. Molina, A. Di Ieva, S. Liu, P. Rana, and E. Suero Molina, “Cross-Modality Synthesis of T1c MRI from Non-contrast Images Using GANs: Implications for Brain Tumor Research,” SpringerM Tabassum, P Rana, E Suero Molina, A Di Ieva, S LiuInternational Conf. Artif. Intell. Med. 2024•Springer, pp. 60–69, 2024, doi: 10.1007/978-3-031-66535-6_7. DOI: https://doi.org/10.1007/978-3-031-66535-6_7
A. Islam, S. M. S. Reza, and K. M. Iftekharuddin, “Multifractal texture estimation for detection and segmentation of brain tumors,” IEEE Trans. Biomed. Eng., vol. 60, no. 11, pp. 3204–3215, 2013, doi: 10.1109/TBME.2013.2271383. DOI: https://doi.org/10.1109/TBME.2013.2271383
C. Weber et al., “Extremely randomized trees-based brain tumor segmentation.” Accessed: Jan. 05, 2021. [Online]. Available: https://www.researchgate.net/publication/267762444.
J. Kleesiek, A. Biller, G. Urban, U. Köthe, M. Bendszus, and F. A. Hamprecht, “ilastik for Multi-modal Brain Tumor Segmentation.” Accessed: Jan. 05, 2021. [Online]. Available: https://github.com/ilastik.
R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature hierarchies for accurate object detection and semantic segmentation,” in Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Sep. 2014, pp. 580–587, doi: 10.1109/CVPR.2014.81. DOI: https://doi.org/10.1109/CVPR.2014.81
A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet Classification with Deep Convolutional Neural Networks,” Commun. ACM, vol. 60, no. 6, pp. 84–90, Jun. 2017, doi: 10.1145/3065386. DOI: https://doi.org/10.1145/3065386
J. Long, E. Shelhamer, and T. Darrell, “Fully Convolutional Networks for Semantic Segmentation.” Accessed: Jan. 05, 2021. [Online]. Available: https://www.cv-foundation.org/openaccess/content_cvpr_2015/html/Long_Fully_Convolutional_Networks_2015_CVPR_paper.html. DOI: https://doi.org/10.1109/CVPR.2015.7298965
G. Wang et al., “Slic-Seg: A minimally interactive segmentation of the placenta from sparse and motion-corrupted fetal MRI in multiple views,” Med. Image Anal., vol. 34, pp. 137–147, Dec. 2016, doi: 10.1016/j.media.2016.04.009. DOI: https://doi.org/10.1016/j.media.2016.04.009
B. Patenaude, S. M. Smith, D. N. Kennedy, and M. Jenkinson, “A Bayesian model of shape and appearance for subcortical brain segmentation,” Neuroimage, vol. 56, no. 3, pp. 907–922, Jun. 2011, doi: 10.1016/j.neuroimage.2011.02.046. DOI: https://doi.org/10.1016/j.neuroimage.2011.02.046
A. De Brébisson and G. Montana, “Deep Neural Networks for Anatomical Brain Segmentation.” Accessed: Jan. 05, 2021. [Online]. Available: https://www.cv-foundation.org/openaccess/content_cvpr_workshops_2015/W01/html/Brebisson_Deep_Neural_Networks_2015_CVPR_paper.html. DOI: https://doi.org/10.1109/CVPRW.2015.7301312
N. Gordillo, E. Montseny, and P. Sobrevilla, “State of the art survey on MRI brain tumor segmentation,” Magnetic Resonance Imaging, vol. 31, no. 8. Magn Reson Imaging, pp. 1426–1438, Oct. 2013, doi: 10.1016/j.mri.2013.05.002. DOI: https://doi.org/10.1016/j.mri.2013.05.002
L.-C. Chen, G. Papandreou, S. Member, I. Kokkinos, K. Murphy, and A. L. Yuille, “DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs.” Accessed: Jan. 05, 2021. [Online]. Available: http://liangchiehchen.com/projects/.
A. Tack, A. Mukhopadhyay, and S. Zachow, “Knee menisci segmentation using convolutional neural networks: data from the Osteoarthritis Initiative,” Osteoarthr. Cartil., vol. 26, no. 5, pp. 680–688, May 2018, doi: 10.1016/j.joca.2018.02.907. DOI: https://doi.org/10.1016/j.joca.2018.02.907
P. Moeskops, M. Veta, M. W. Lafarge, K. A. J. Eppenhof, and J. P. W. Pluim, “Adversarial training and dilated convolutions for brain MRI segmentation.” Accessed: Aug. 06, 2020. [Online]. Available: https://link.springer.com/chapter/10.1007/978-3-319-67558-9_7.
Z. Li, Y. Wang, and J. Yu, “Brain tumor segmentation using an adversarial network,” in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2018, vol. 10670 LNCS, pp. 123–132, doi: 10.1007/978-3-319-75238-9_11. DOI: https://doi.org/10.1007/978-3-319-75238-9_11
K. Kamnitsas et al., “Unsupervised domain adaptation in brain lesion segmentation with adversarial networks.” Accessed: Aug. 06, 2020. [Online]. Available: https://link.springer.com/chapter/10.1007/978-3-319-59050-9_47.
M. Rezaei et al., “Conditional Adversarial Network for Semantic Segmentation of Brain Tumor.” Accessed: Aug. 06, 2020. [Online]. Available: https://link.springer.com/chapter/10.1007/978-3-319-75238-9_21.
M. Rezaei, H. Yang, and C. Meinel, “Conditional Generative Refinement Adversarial Networks for Unbalanced Medical Image Semantic Segmentation,” Oct. 2018, Accessed: Aug. 06, 2020. [Online]. Available: http://arxiv.org/abs/1810.03871.
A. K. Mondal, J. Dolz, and C. Desrosiers, “Few-shot 3D Multi-modal Medical Image Segmentation using Generative Adversarial Learning,” Oct. 2018, Accessed: Aug. 12, 2020. [Online]. Available: http://arxiv.org/abs/1810.12241.
M. Rezaei, H. Yang, and C. Meinel, “Voxel-GAN: Adversarial framework for learning imbalanced brain tumor segmentation,” in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), Sep. 2019, vol. 11384 LNCS, pp. 321–333, doi: 10.1007/978-3-030-11726-9_29. DOI: https://doi.org/10.1007/978-3-030-11726-9_29
C. Baur, B. Wiestler, S. Albarqouni, and N. Navab, “Deep Autoencoding Models for Unsupervised Anomaly Segmentation in Brain MR Images.” Accessed: Aug. 20, 2020. [Online]. Available: https://link.springer.com/chapter/10.1007/978-3-030-11723-8_16. DOI: https://doi.org/10.1016/j.media.2020.101952
J. Zhu, G. Yang, and P. Lio, “Lesion Focused Super-Resolution.” Accessed: Aug. 24, 2020. [Online]. Available: https://www.spiedigitallibrary.org/conference-proceedings-of-spie/10949/109491L/Lesion-focused-super-resolution/10.1117/12.2512576.short.
H.-Y. Yang and J. Yang, “Automatic Brain Tumor Segmentation with Contour Aware Residual Network and Adversarial Quantitative Multimodal Image Guidance for Improved Liver Cancer Treatment View project Automatic Brain Tumor Segmentation with Contour Aware Residual Network and Adver,” Springer, vol. 11384 LNCS, pp. 267–278, 2018, doi: 10.1007/978-3-030-11726-9_24. DOI: https://doi.org/10.1007/978-3-030-11726-9_24
W. Yuan, J. Wei, J. Wang, Q. Ma, and T. Tasdizen, “Unified Attentional Generative Adversarial Network for Brain Tumor Segmentation from Multimodal Unpaired Images,” 2019. DOI: https://doi.org/10.1007/978-3-030-32248-9_26
M. Rezaei, H. Yang, C. M.-M. I. 2019, 2019, “Learning imbalanced semantic segmentation through cross-domain relations of multi-agent generative adversarial networks,” spiedigitallibrary.org, Accessed: Aug. 16, 2020. [Online]. Available: https://www.spiedigitallibrary.org/conference-proceedings-of-spie/10950/1095027/Learning-imbalanced-semantic-segmentation-through-cross-domain-relations-of-multi/10.1117/12.2512215.short. DOI: https://doi.org/10.1117/12.2512215
J. Liu, P. Yin, X. Wang, W. Yang, and K. Cheng, “Glioma subregions segmentation with a discriminative adversarial regularized 3D unet,” in ACM International Conference Proceeding Series, Aug. 2019, pp. 269–273, doi: 10.1145/3364836.3364891. DOI: https://doi.org/10.1145/3364836.3364891
L. Weninger, I. Krauhausen, and D. Merhof, “Semantic Segmentation of Brain Tumors in MRI data without any labels,” diglib.eg.org, doi: 10.2312/vcbm.20191230.
S. Cui, C. Liu, M. Chen, S. X.-J. of M. Imaging, 2019, “Brain Tumor Semantic Segmentation from MRI Image Using Deep Generative Adversarial Segmentation Network,” ingentaconnect.com, Accessed: Aug. 16, 2020. [Online]. Available: https://www.ingentaconnect.com/content/asp/jmihi/2019/00000009/00000009/art00019.
Y. Tokuoka, S. Suzuki, and Y. Sugawara, “An Inductive Transfer Learning Approach using Cycle-consistent Adversarial Domain Adaptation with Application to Brain Tumor Segmentation.” Accessed: Aug. 21, 2020. [Online]. Available: www.adni-info.org.
Y. Shi, K. Cheng, and Z. Liu, “Hippocampal subfields segmentation in brain MR images using generative adversarial networks,” Biomed. Eng. Online, vol. 18, no. 1, Jan. 2019, doi: 10.1186/s12938-019-0623-8. DOI: https://doi.org/10.1186/s12938-019-0623-8
M. Hamghalam, B. Lei, and T. Wang, “Brain Tumor Synthetic Segmentation in 3D Multimodal MRI Scans.”
Y. Sun, C. Zhou, Y. Fu, X. X.-2019 I. International 2019, “Parasitic GAN for Semi-Supervised Brain Tumor Segmentation,” ieeexplore.ieee.org, Accessed: Aug. 16, 2020. [Online]. Available: https://ieeexplore.ieee.org/abstract/document/8803073/. DOI: https://doi.org/10.1109/ICIP.2019.8803073
Q. Li, Z. Yu, Y. Wang, H. Z.- Sensors, 2020, “TumorGAN: A Multi-Modal Data Augmentation Framework for Brain Tumor Segmentation,” mdpi.com, Accessed: Aug. 16, 2020. [Online]. Available: https://www.mdpi.com/1424-8220/20/15/4203. DOI: https://doi.org/10.3390/s20154203
S. Nema, A. Dudhane, S. Murala, and S. Naidu, “RescueNet: An unpaired GAN for brain tumor segmentation,” Biomed. Signal Process. Control, vol. 55, p. 101641, 2020, doi: 10.1016/j.bspc.2019.101641. DOI: https://doi.org/10.1016/j.bspc.2019.101641
W. Yuan, J. Wei, J. Wang, Q. Ma, T. T.-M. I. Analysis 2020, “Unified generative adversarial networks for multimodal segmentation from unpaired 3D medical images,” Elsevier, Accessed: Aug. 16, 2020. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S1361841520300955. DOI: https://doi.org/10.1016/j.media.2020.101731
M. D. Cirillo, D. Abramian, and A. Eklund, “Vox2Vox: 3D-GAN for Brain Tumour Segmentation.” Accessed: Aug. 19, 2020. [Online]. Available: https://arxiv.org/abs/2003.13653.
E. Giacomello, D. Loiacono, and L. Mainardi, Brain MRI Tumor Segmentation with Adversarial Networks. .
S. Wang, Z. Chen, S. You, B. Wang, Y. Shen, and B. Lei, “Brain stroke lesion segmentation using consistent perception generative adversarial network,” SpringerS Wang, Z Chen, S You, B Wang, Y Shen, B LeiNeural Comput. Appl. 2022•Springer, Accessed: Oct. 31, 2024. [Online]. Available: https://link.springer.com/article/10.1007/s00521-021-06816-8. DOI: https://doi.org/10.1007/s00521-021-06816-8
S. Cui, M. Wei, C. Liu, and J. Jiang, “GAN-segNet: A deep generative adversarial segmentation network for brain tumor semantic segmentation,” Int. J. Imaging Syst. Technol., vol. 32, no. 3, pp. 857–868, May 2022, doi: 10.1002/IMA.22677. DOI: https://doi.org/10.1002/ima.22677
X. Zhao et al., “TBI-GAN: An Adversarial Learning Approach for Data Synthesis on Traumatic Brain Segmentation,” Comput. Med. Imaging Graph., vol. 112, Aug. 2022, doi: 10.1016/j.compmedimag.2024.102325. DOI: https://doi.org/10.1016/j.compmedimag.2024.102325
A. Khaled, “Transfer Learning using Generative Adversarial Networks for MRI Brain Image Segmentation,” 2022, Accessed: Oct. 31, 2024. [Online]. Available: https://www.preprints.org/manuscript/202208.0192. DOI: https://doi.org/10.20944/preprints202208.0192.v1
L. Zhu et al., “DualMMP-GAN: Dual-scale multi-modality perceptual generative adversarial network for medical image segmentation,” ElsevierL Zhu, Q He, Y Huang, Z Zhang, J Zeng, L Lu, W Kong, F ZhouComputers Biol. Med. 2022•Elsevier, Accessed: Oct. 31, 2024. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0010482522001792. DOI: https://doi.org/10.1016/j.compbiomed.2022.105387
G. Neelima, D. Chigurukota, … B. M.-… S. P. and, 2022, “Optimal DeepMRSeg based tumor segmentation with GAN for brain tumor classification,” ElsevierG Neelima, DR Chigurukota, B Maram, B GirirajanBiomedical Signal Process. Control. 2022•Elsevier, Accessed: Oct. 31, 2024. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S1746809422000593. DOI: https://doi.org/10.1016/j.bspc.2022.103537
A. Khaled, J. Han, T. G.-I. Access, 2022, “Multi-model medical image segmentation using multi-stage generative adversarial networks,” ieeexplore.ieee.orgA Khaled, JJ Han, TA GhalebIEEE Access, 2022•ieeexplore.ieee.org, Accessed: Oct. 31, 2024. [Online]. Available: https://ieeexplore.ieee.org/abstract/document/9732489/.
A. Zoghbi, M. Benleulmi, S. Cheriguene, N. Azizi, S. Lagrini, and S. N. Layeb, “Improved Cerebral Images Semantic Segmentation Using Advanced Approaches of Deep Learning,” Commun. Comput. Inf. Sci., vol. 1589 CCIS, pp. 65–77, 2022, doi: 10.1007/978-3-031-08277-1_6. DOI: https://doi.org/10.1007/978-3-031-08277-1_6
W. Zheng et al., “Fetalgan: automated segmentation of fetal functional brain mri using deep generative adversarial learning and multi-scale 3D u-Net,” Front. Asis-Cruz, D Krishnamurthy, C Jose, KM Cook, C LimperopoulosFrontiers Neurosci. 2022•frontiersin.org, 2022, doi: 10.3389/fnins.2022.887634. DOI: https://doi.org/10.3389/fnins.2022.887634
N. Pisarchik, A. E. Hramov, V. B. Kazantsev, R. Prajapati, and G.-R. Kwon, “Dissimilarity Corrective Generative Adversarial Network for Brain Image Segmentation,” mdpi.comR Prajapati, GR KwonApplied Sci. 2022•mdpi.com, 2022, doi: 10.3390/app122412944. DOI: https://doi.org/10.3390/app122412944
K. Niu et al., “Improving segmentation reliability of multi-scanner brain images using a generative adversarial network,” ncbi.nlm.nih.govK Niu, X Li, L Zhang, Z Yan, W Yu, P Liang, Y Wang, CP Lin, H Zhang, C Guo, K Li, T QianQuantitative Imaging Med. Surgery, 2022•ncbi.nlm.nih.gov, Accessed: Oct. 31, 2024. [Online]. Available: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8899955/.
L. Huang, E. Zhu, L. Chen, Z. Wang, S. Chai, and B. Zhang, “A transformer-based generative adversarial network for brain tumor segmentation,” Front. Neurosci., vol. 16, Nov. 2022, doi: 10.3389/FNINS.2022.1054948/FULL. DOI: https://doi.org/10.3389/fnins.2022.1054948
D. Dong, G. Fu, J. Li, Y. Pei, Y. C.-E. S. with Applications, 2022, “An unsupervised domain adaptation brain CT segmentation method across image modalities and diseases,” ElsevierD Dong, G Fu, J Li, Y Pei, Y ChenExpert Syst. with Appl. 2022•Elsevier, 2022, doi: 10.1016/j.eswa.2022.118016ï. DOI: https://doi.org/10.1016/j.eswa.2022.118016
B. Kiani Kalejahi, S. Meshgini, and S. Danishvar, “Brain tumor segmentation by auxiliary classifier generative adversarial network,” Signal, Image Video Process., vol. 17, no. 7, pp. 3339–3345, Oct. 2023, doi: 10.1007/S11760-023-02555-6. DOI: https://doi.org/10.1007/s11760-023-02555-6
S. J. Narayanan, A. S. Anil, C. Ashtikar, S. Chunduri, and S. Saman, “Automated Brain Tumor Segmentation Using GAN Augmentation and Optimized U-Net,” Lect. Notes Networks Syst., vol. 519 LNNS, pp. 635–646, 2023, doi: 10.1007/978-981-19-5191-6_51. DOI: https://doi.org/10.1007/978-981-19-5191-6_51
A.; Sharma et al., “A novel generative adversarial network-based approach for automated brain tumour segmentation,” mdpi.comR Sille, T Choudhury, A Sharma, P Chauhan, R Tomar, D SharmaMedicina, 2023•mdpi.com, 2023, doi: 10.3390/medicina59010119. DOI: https://doi.org/10.3390/medicina59010119
S. Güven, M. T.-B. S. P. and Control, 2023, “Brain MRI high resolution image creation and segmentation with the new GAN method,” ElsevierSA Güven, MF TaluBiomedical Signal Process. Control. 2023•Elsevier, Accessed: Oct. 31, 2024. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S1746809422007005.
B. Xie, H. Tang, B. Duan, … D. C.-I. 2023-2023 I., 2023, “Mlp-gan for brain vessel image segmentation,” ieeexplore.ieee.orgB Xie, H Tang, B Duan, D Cai, Y YanICASSP 2023-2023 IEEE Int. Conf. Acoust. 2023•ieeexplore.ieee.org, Accessed: Oct. 31, 2024. [Online]. Available: https://ieeexplore.ieee.org/abstract/document/10096997/. DOI: https://doi.org/10.1109/ICASSP49357.2023.10096997
C. Fan, H. Lin, and Y. Qiu, “U-Patch GAN: A Medical Image Fusion Method Based on GAN,” J. Digit. Imaging, vol. 36, no. 1, pp. 339–355, Feb. 2023, doi: 10.1007/S10278-022-00696-7. DOI: https://doi.org/10.1007/s10278-022-00696-7
C. Tao et al., “Hippocampus segmentation after brain tumor resection via postoperative region synthesis,” SpringerC Tao, D Gu, R Huang, L Zhou, Z Hu, Y Chen, X Zhang, H LiBMC Med. Imaging, 2023•Springer, vol. 23, no. 1, Dec. 2023, doi: 10.1186/s12880-023-01087-2. DOI: https://doi.org/10.1186/s12880-023-01087-2
P. Datta and R. Rohilla, “Brain tumor image pixel segmentation and detection using an aggregation of GAN models with vision transformer,” Int. J. Imaging Syst. Technol., vol. 34, no. 1, Jan. 2024, doi: 10.1002/IMA.22979. DOI: https://doi.org/10.1002/ima.22979
P. Raut, G. Baldini, M. Schöneck, and L. Caldeira, “Using a generative adversarial network to generate synthetic MRI images for multi-class automatic segmentation of brain tumors,” Front. Radiol., vol. 3, 2023, doi: 10.3389/FRADI.2023.1336902/FULL. DOI: https://doi.org/10.3389/fradi.2023.1336902
M. U. Akbar, M. Larsson, I. Blystad, A. E.-S. Data 2024, “Brain tumor segmentation using synthetic MR images-A comparison of GANs and diffusion models,” nature.comM Usman Akbar, M Larsson, I Blystad, A EklundScientific Data, 2024•nature.com, doi: 10.1038/s41597-024-03073-x. DOI: https://doi.org/10.1038/s41597-024-03073-x
F. Asadi, T. Angsuwatanakul, J. O.-I. N. Reports, 2024, “Evaluating synthetic neuroimaging data augmentation for automatic brain tumour segmentation with a deep fully-convolutional network,” Elsevier, Accessed: Oct. 31, 2024. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S2667242123022881. DOI: https://doi.org/10.1016/j.ibneur.2023.12.002
H. Shaari, J. Kevric, N. A.-2024 I. 4th International, 2024, “Domain Adaptation Generative Model for Segmenting 3D MRI Pediatric Brain,” ieeexplore.ieee.orgH Shaari, J Kevric, N Ahmed2024 IEEE 4th Int. Maghreb Meet. Conf. on, 2024•ieeexplore.ieee.org, Accessed: Oct. 31, 2024. [Online]. Available: https://ieeexplore.ieee.org/abstract/document/10599638/. DOI: https://doi.org/10.1109/MI-STA61267.2024.10599638
A. Paramarthalingam, … A. J.-A. C., 2024, “Brain tumour segmentation with a U-Net based GaN model using multi-modal MRI images,” pubs.aip.org, Accessed: Oct. 31, 2024. [Online]. Available: https://pubs.aip.org/aip/acp/article-abstract/3075/1/020219/3304995. DOI: https://doi.org/10.1063/5.0217229
M. D. Cirillo, D. Abramian, and A. Eklund, “Vox2Vox: 3D-GAN for Brain Tumour Segmentation,” Mar. 2020, Accessed: Aug. 19, 2020. [Online]. Available: http://arxiv.org/abs/2003.13653. DOI: https://doi.org/10.1007/978-3-030-72084-1_25
M. Rezaei et al., “A conditional adversarial network for semantic segmentation of brain tumor,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 10670 LNCS, pp. 241–252, 2018, doi: 10.1007/978-3-319-75238-9_21. DOI: https://doi.org/10.1007/978-3-319-75238-9_21
S. Yu et al., “Deep De-Aliasing for Fast Compressive Sensing MRI.” Accessed: Aug. 07, 2020. [Online]. Available: https://arxiv.org/abs/1705.07137.
G. Yang, S. Yu, H. Dong, … G. S.-I. transactions on, and U. 2017, “DAGAN: Deep de-aliasing generative adversarial networks for fast compressed sensing MRI reconstruction,” ieeexplore.ieee.org, Accessed: Jan. 08, 2021. [Online]. Available: https://ieeexplore.ieee.org/abstract/document/8233175/.
O. Shitrit and T. Riklin Raviv, “Accelerated magnetic resonance imaging by adversarial neural network,” in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2017, vol. 10553 LNCS, pp. 30–38, doi: 10.1007/978-3-319-67558-9_4. DOI: https://doi.org/10.1007/978-3-319-67558-9_4
K. Armanious, Y. Mecky, S. Gatidis, and B. Yang, “ADVERSARIAL INPAINTING OF MEDICAL IMAGE MODALITIES.” Accessed: Aug. 07, 2020. [Online]. Available: https://ieeexplore.ieee.org/abstract/document/8682677/.
T. Minh Quan, T. Nguyen-Duc, and W.-K. Jeong, “Compressed Sensing MRI Reconstruction using a Generative Adversarial Network with a Cyclic Loss.” Accessed: Aug. 07, 2020. [Online]. Available: https://ieeexplore.ieee.org/abstract/document/8327637/.
I. Sánchez and V. Vilaplana, “Brain MRI super-resolution using 3D generative adversarial networks.” Accessed: Aug. 07, 2020. [Online]. Available: https://github.com/imatge-upc/3D-GAN-superresolution.
Y. Chen, F. Shi, A. G. Christodoulou, Y. Xie, Z. Zhou, and D. Li, “Efficient and Accurate MRI Super-Resolution using a Generative Adversarial Network and 3D Multi-Level Densely Connected Network.” Accessed: Aug. 07, 2020. [Online]. Available: https://link.springer.com/chapter/10.1007/978-3-030-00928-1_11.
S. Ul, H. Dar, M. Yurt, M. Shahdloo, M. Emrullah Ildız, and T. Çukur, “Synergistic Reconstruction and Synthesis via Generative Adversarial Networks for Accelerated Multi-Contrast MRI Running title: Synergistic Reconstruction and Synthesis for Accelerated Multi-Contrast MRI.” Accessed: Aug. 07, 2020. [Online]. Available: https://arxiv.org/abs/1805.10704.
M. Ran et al., “Denoising of 3D Magnetic Resonance Images Using a Residual Encoder-Decoder Wasserstein Generative Adversarial Network.” Accessed: Aug. 08, 2020. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S1361841518306534. DOI: https://doi.org/10.1016/j.media.2019.05.001
P. Zhang, F. Wang, W. Xu, and Y. Li, “Multi-channel generative adversarial network for parallel magnetic resonance image reconstruction in k-space,” in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2018, vol. 11070 LNCS, pp. 180–188, doi: 10.1007/978-3-030-00928-1_21. DOI: https://doi.org/10.1007/978-3-030-00928-1_21
K. Armanious, S. Gatidis, K. Nikolaou, B. Yang, and T. Küstner, “RETROSPECTIVE CORRECTION OF RIGID AND NON-RIGID MR MOTION ARTIFACTS USING GANS.” Accessed: Aug. 09, 2020. [Online]. Available: https://ieeexplore.ieee.org/abstract/document/8759509/.
Y. Wang et al., “3D conditional generative adversarial networks for high-quality PET image estimation at low dose,” Neuroimage, vol. 174, pp. 550–562, Jul. 2018, doi: 10.1016/j.neuroimage.2018.03.045. DOI: https://doi.org/10.1016/j.neuroimage.2018.03.045
K. Armanious et al., “MedGAN: Medical Image Translation using GANs.” Accessed: Aug. 09, 2020. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0895611119300990. DOI: https://doi.org/10.1016/j.compmedimag.2019.101684
S. Latif, M. Asim, M. Usman, J. Qadir, and R. Rana, “Automating Motion Correction in Multishot MRI Using Generative Adversarial Networks.” Accessed: Aug. 19, 2020. [Online]. Available: https://arxiv.org/abs/1811.09750.
Y. Chen, A. Jakary, S. Avadiappan, C. P. Hess, and J. M. Lupo, “QSMGAN: Improved Quantitative Susceptibility Mapping using 3D Generative Adversarial Networks with increased receptive field,” Neuroimage, vol. 207, Feb. 2020, doi: 10.1016/j.neuroimage.2019.116389. DOI: https://doi.org/10.1016/j.neuroimage.2019.116389
R. Shaul, I. David, O. Shitrit, and T. Riklin Raviv, “Subsampled brain MRI reconstruction by generative adversarial neural networks,” Med. Image Anal., vol. 65, p. 101747, Oct. 2020, doi: 10.1016/j.media.2020.101747. DOI: https://doi.org/10.1016/j.media.2020.101747
M. Usman, S. Latif, M. Asim, B. Lee, J. Q.-S. Reports, and undefined 2020, “Retrospective motion correction in multishot MRI using generative adversarial network,” nature.com, Accessed: Aug. 18, 2020. [Online]. Available: https://www.nature.com/articles/s41598-020-61705-9.
G. Li, J. Lv, C. W.-I. Access, 2021, “A modified generative adversarial network using spatial and channel-wise attention for CS-MRI reconstruction,” ieeexplore.ieee.org, Accessed: Nov. 04, 2024. [Online]. Available: https://ieeexplore.ieee.org/abstract/document/9447721/. DOI: https://doi.org/10.1109/ACCESS.2021.3086839
J. Lv et al., “Transfer learning enhanced generative adversarial networks for multi-channel MRI reconstruction,” ElsevierJ Lv, G Li, X Tong, W Chen, J Huang, C Wang, G YangComputers Biol. Med. 2021•Elsevier, Accessed: Nov. 04, 2024. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0010482521002985. DOI: https://doi.org/10.1016/j.compbiomed.2021.104504
C. Han et al., “MADGAN: unsupervised medical anomaly detection GAN using multiple adjacent brain MRI slice reconstruction,” BMC Bioinformatics, vol. 22, Apr. 2021, doi: 10.1186/S12859-020-03936-1. DOI: https://doi.org/10.1186/s12859-020-03936-1
Y. Zhao, B. Ma, P. Jiang, … D. Z.-I. J. of 2020, “Prediction of Alzheimer’s disease progression with multi-information generative adversarial network,” ieeexplore.ieee.orgY Zhao, B Ma, P Jiang, D Zeng, X Wang, S LiIEEE J. Biomed. Heal. Informatics, 2020•ieeexplore.ieee.org, Accessed: Nov. 04, 2024. [Online]. Available: https://ieeexplore.ieee.org/abstract/document/9133262/.
B. Sandhiya, R. Priyatharshini, … B. R.-… conference on signal, 2021, “Reconstruction, identification and classification of brain tumor using gan and faster regional-CNN,” ieeexplore.ieee.orgB Sandhiya, R Priyatharshini, B Ramya, S Monish, GRS Raja2021 3rd Int. Conf. signal Process. and, 2021•ieeexplore.ieee.org, Accessed: Nov. 04, 2024. [Online]. Available: https://ieeexplore.ieee.org/abstract/document/9451747/. DOI: https://doi.org/10.1109/ICSPC51351.2021.9451747
Y. Fei et al., “Classification-Aided High-Quality PET Image Synthesis via Bidirectional Contrastive GAN with Shared Information Maximization,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 13436 LNCS, pp. 527–537, 2022, doi: 10.1007/978-3-031-16446-0_50. DOI: https://doi.org/10.1007/978-3-031-16446-0_50
J. Pan, C. Jing, Q. Zuo, M. Nieuwoudt, and S. Wang, “Cross-Modal Transformer GAN: A Brain Structure-Function Deep Fusing Framework for Alzheimer’s Disease,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 14374 LNAI, pp. 82–92, 2024, doi: 10.1007/978-981-97-1417-9_8.
X. Liu et al., “BTMF-GAN: A multi-modal MRI fusion generative adversarial network for brain tumors,” ElsevierX Liu, H Chen, C Yao, R Xiang, K Zhou, P Du, W Liu, J Liu, Z YuComputers Biol. Med. 2023•Elsevier, Accessed: Nov. 04, 2024. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0010482523002342. DOI: https://doi.org/10.1016/j.compbiomed.2023.106769
X. Li, H. Zhang, H. Yang, T. L.- Sensors, 2023, “CS-MRI reconstruction using an improved GAN with dilated residual networks and channel attention mechanism,” mdpi.comX Li, H Zhang, H Yang, TQ Lise. 2023•mdpi.com, Accessed: Nov. 04, 2024. [Online]. Available: https://www.mdpi.com/1424-8220/23/18/7685. DOI: https://doi.org/10.3390/s23187685
S. Cong et al., “DDASR: Domain-Distance Adapted Super-Resolution Reconstruction of MR Brain Images,” medrxiv.orgS Cong, K Cui, Y Yang, Y Zhou, X Wang, H Luo, Y Zhang, X YaomedRxiv, 2023•medrxiv.org, Accessed: Nov. 04, 2024. [Online]. Available: https://www.medrxiv.org/content/10.1101/2023.06.29.23292026.abstract. DOI: https://doi.org/10.1101/2023.06.29.23292026
P. Tudosiu, … W. P.-N. M., 2024, “Realistic morphology-preserving generative modelling of the brain,” nature.comPD Tudosiu, WHL Pinaya, P Ferreira Da Costa, J Dafflon, A Patel, P Borges, V FernandezNature Mach. Intell. 2024•nature.com, Accessed: Nov. 04, 2024. [Online]. Available: https://www.nature.com/articles/s42256-024-00864-0.
X. Zhou, A. Balachandra, M. Romano, … S. C.-I., 2024, “Adversarial learning for MRI reconstruction and classification of cognitively impaired individuals,” ieeexplore.ieee.org, Accessed: Nov. 04, 2024. [Online]. Available: https://ieeexplore.ieee.org/abstract/document/10546982/.
Q. Zuo et al., “U-shaped convolutional transformer GAN with multi-resolution consistency loss for restoring brain functional time-series and dementia diagnosis,” Front. Comput. Neurosci., vol. 18, 2024, doi: 10.3389/FNCOM.2024.1387004/FULL. DOI: https://doi.org/10.3389/fncom.2024.1387004
Y. Wang et al., “3D multi-modality Transformer-GAN for high-quality PET reconstruction,” ElsevierY Wang, Y Luo, C Zu, B Zhan, Z Jiao, X Wu, J Zhou, D Shen, L ZhouMedical Image Anal. 2024•Elsevier, Accessed: Nov. 04, 2024. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S1361841523002438. DOI: https://doi.org/10.1016/j.media.2023.102983
I. Sanchez and V. Vilaplana, “Brain MRI super-resolution using 3D generative adversarial networks,” no. Midl, pp. 1–8, 2018, [Online]. Available: http://arxiv.org/abs/1812.11440.
V. Alex, M. KP, … S. C.-… I. 2017: I., 2017, “Generative adversarial networks for brain lesion detection,” spiedigitallibrary.org, Accessed: Aug. 10, 2020. [Online]. Available: https://www.spiedigitallibrary.org/conference-proceedings-of-spie/10133/1/Generative-adversarial-networks-for-brain-lesion-detection/10.1117/12.2254487.short. DOI: https://doi.org/10.1117/12.2254487
X. Chen and E. Konukoglu, “Unsupervised Detection of Lesions in Brain MRI using constrained adversarial auto-encoders,” Jun. 2018, doi: 10.3929/ethz-b-000321650.
C. F. Baumgartner, L. M. Koch, K. Can Tezcan, J. X. Ang, and E. Konukoglu, “Visual Feature Attribution using Wasserstein GANs.” Accessed: Aug. 10, 2020. [Online]. Available: https://github.com/baumgach/.
C. Han et al., “CONFIDENTIAL EXTENDED ABSTRACT. DO NOT DISTRIBUTE ANYWHERE. The 21st Meeting on Image Recognition and Understanding Infinite Brain Tumor Images: Can GAN-based Data Augmentation Improve Tumor Detection on MR Images? Tumor Detection (Binary Classification).” Accessed: Aug. 16, 2020. [Online]. Available: http://www.nlab.ci.i.u-tokyo.ac.jp/pdf/MIRU_GAN.pdf.
C. Han, L. Rundo, R. Araki, Y. Nagano, … Y. F.-I., 2019, “Combining noise-to-image and image-to-image GANs: Brain MR image augmentation for tumor detection,” ieeexplore.ieee.org, Accessed: Aug. 16, 2020. [Online]. Available: https://ieeexplore.ieee.org/abstract/document/8869751/. DOI: https://doi.org/10.1109/ACCESS.2019.2947606
V. H. Son, U. Daisuke, H. Kiyoshi, M. Kazuki, S. Pranata, and S. M. Shen, “Anomaly Detection with Adversarial Dual Autoencoders.” Accessed: Aug. 22, 2020. [Online]. Available: https://arxiv.org/abs/1902.06924.
L. Sun, J. Wang, Y. Huang, X. Ding, H. Greenspan, and J. Paisley, “An Adversarial Learning Approach to Medical Image Synthesis for Lesion Detection.” Accessed: Aug. 10, 2020. [Online]. Available: https://ieeexplore.ieee.org/abstract/document/8950113/.
H. Shen, J. Chen, R. Wang, J. Z.-I. Access, 2020, “Counterfeit Anomaly Using Generative Adversarial Network for Anomaly Detection,” ieeexplore.ieee.org, Accessed: Aug. 21, 2020. [Online]. Available: https://ieeexplore.ieee.org/abstract/document/9144563/. DOI: https://doi.org/10.1109/ACCESS.2020.3010612
N. Hu et al., “Detecting brain lesions in suspected acute ischemic stroke with CT-based synthetic MRI using generative adversarial networks,” ncbi.nlm.nih.govN Hu, T Zhang, Y Wu, B Tang, M Li, B Song, Q Gong, M Wu, S Gu, S LuiAnnals Transl. Med. 2022•ncbi.nlm.nih.gov, Accessed: Nov. 12, 2024. [Online]. Available: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8848363/.
S. Saravanakumar, T. S.-2022 I. V. Device, 2022, “Early Alzheimer’s disease detection using semi-supervised GAN based on deep learning,” ieeexplore.ieee.orgS Saravanakumar, T Saravanan2022 IEEE VLSI Device Circuit Syst. (VLSI DCS), 2022•ieeexplore.ieee.org, Accessed: Nov. 12, 2024. [Online]. Available: https://ieeexplore.ieee.org/abstract/document/9811458/. DOI: https://doi.org/10.1109/VLSIDCS53788.2022.9811458
D. Kuttala, D. Mahapatra, … R. S.-J. of K. S., 2022, “Dense attentive GAN-based one-class model for detection of autism and ADHD,” ElsevierD Kuttala, D Mahapatra, R Subramanian, VRM Oru. King Saud Univ. Inf. Sci. 2022•Elsevier, Accessed: Nov. 12, 2024. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S1319157822003998.
K. Devika, D. Mahapatra, R. Subramanian, and V. R. M. Oruganti, “Outlier-Based Autism Detection Using Longitudinal Structural MRI,” IEEE Access, vol. 10, pp. 27794–27808, 2022, doi: 10.1109/ACCESS.2022.3157613. DOI: https://doi.org/10.1109/ACCESS.2022.3157613
J. Pan, C. Jing, Q. Zuo, M. Nieuwoudt, S. W.-I. C. on, 2023, “Cross-modal transformer GAN: a brain structure-function deep fusing framework for Alzheimer’s disease,” SpringerJ Pan, C Jing, Q Zuo, M Nieuwoudt, S WangInternational Conf. Brain Inspired Cogn. Syst. 2023•Springer, Accessed: Nov. 12, 2024. [Online]. Available: https://link.springer.com/chapter/10.1007/978-981-97-1417-9_8. DOI: https://doi.org/10.1007/978-981-97-1417-9_8
S. Sahoo, S. Mishra, B. Panda, A. Bhoi, P. B.- Sensors, 2023, “An Augmented Modulated Deep Learning Based Intelligent Predictive Model for Brain Tumor Detection Using GAN Ensemble,” mdpi.comS Sahoo, S Mishra, B Panda, AK Bhoi, P BarsocchiSensors, 2023•mdpi.com, Accessed: Nov. 12, 2024. [Online]. Available: https://www.mdpi.com/1424-8220/23/15/6930. DOI: https://doi.org/10.3390/s23156930
M. Siddiquee, J. Shah, … T. W.-P. of the, 2024, “Brainomaly: Unsupervised neurologic disease detection utilizing unannotated t1-weighted brain mr images,” openaccess.thecvf.com, Accessed: Nov. 12, 2024. [Online]. Available: https://openaccess.thecvf.com/content/WACV2024/html/Siddiquee_Brainomaly_Unsupervised_Neurologic_Disease_Detection_Utilizing_Unannotated_T1-Weighted_Brain_MR_WACV_2024_paper.html.
C. Ge, I. Gu, A. Jakola, J. Y.-I. Access 2020, “Enlarged training dataset by pairwise GANs for molecular-based brain tumor classification,” ieeexplore.ieee.org, Accessed: Aug. 15, 2020. [Online]. Available: https://ieeexplore.ieee.org/abstract/document/8970509/. DOI: https://doi.org/10.1109/ACCESS.2020.2969805
N. Ghassemi, A. Shoeibi, M. R.-B. S. P. and, 2020, “Deep neural network with generative adversarial networks pre-training for brain tumor classification based on MR images,” Elsevier, Accessed: Aug. 26, 2020. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S1746809419302599. DOI: https://doi.org/10.1016/j.bspc.2019.101678
Y. Cao, H. Kuai, P. Liang, J. S. Pan, J. Yan, and N. Zhong, “BNLoop-GAN: a multi-loop generative adversarial model on brain network learning to classify Alzheimer’s disease,” Front. Neurosci., vol. 17, 2023, doi: 10.3389/FNINS.2023.1202382/FULL. DOI: https://doi.org/10.3389/fnins.2023.1202382
M. Zhang et al., “Pyramid-attentive GAN for multimodal brain image complementation in Alzheimer’s disease classification,” ElsevierM Zhang, L Sun, Z Kong, W Zhu, Y Yi, F YanBiomedical Signal Process. Control. 2024•Elsevier, Accessed: Nov. 13, 2024. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S1746809423010856. DOI: https://doi.org/10.1016/j.bspc.2023.105652
J. Fan, X. Cao, Z. Xue, P. T. Yap, and D. Shen, “Adversarial similarity network for evaluating image alignment in deep learning-based registration,” in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2018, vol. 11070 LNCS, pp. 739–746, doi: 10.1007/978-3-030-00928-1_83. DOI: https://doi.org/10.1007/978-3-030-00928-1_83
D. Mahapatra, Z. G.-P. Recognition 2020, “Training data independent image registration using generative adversarial networks and domain adaptation,” Elsevier, Accessed: Aug. 24, 2020. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0031320319304108. DOI: https://doi.org/10.1016/j.patcog.2019.107109
Y. Zheng, X. Sui, Y. Jiang, T. Che, … S. Z.-I. transactions on, 2021, “SymReg-GAN: symmetric image registration with generative adversarial networks,” ieeexplore.ieee.orgY Zheng, X Sui, Y Jiang, T Che, S Zhang, J Yang, H LiIEEE Trans. pattern Anal. Mach. Intell. 2021•ieeexplore.ieee.org, Accessed: Nov. 13, 2024. [Online]. Available: https://ieeexplore.ieee.org/abstract/document/9440692/. DOI: https://doi.org/10.1109/TPAMI.2021.3083543
R. Han, C. Jones, P. Wu, … P. V.-M. I., 2022, “Deformable registration of MRI to intraoperative cone-beam CT of the brain using a joint synthesis and registration network,” spiedigitallibrary.orgR Han, CK Jones, P Wu, P Vagdargi, X Zhang, A Uneri, J Lee, M Luciano, WS AndersonMedical Imaging 2022 Image-Guided Proced. Robot. 2022•spiedigitallibrary.org, Accessed: Nov. 13, 2024. [Online]. Available: https://www.spiedigitallibrary.org/conference-proceedings-of-spie/12034/1203407/Deformable-registration-of-MRI-to-intraoperative-cone-beam-CT-of/10.1117/12.2611783.short. DOI: https://doi.org/10.1117/12.2611783
X. Zhu, Z. Huang, M. Ding, X. Z.- Neurocomputing, 2022, “non-rigid multi-modal brain image registration based on two-stage generative adversarial nets,” ElsevierX Zhu, Z Huang, M Ding, X ZhangNeurocomputing, 2022•Elsevier, Accessed: Nov. 13, 2024. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0925231222008724.
X. Zhu, M. Ding, and X. Zhang, “Free form deformation and symmetry constraint-based multi-modal brain image registration using generative adversarial nets,” CAAI Trans. Intell. Technol., vol. 8, no. 4, pp. 1492–1506, Dec. 2023, doi: 10.1049/CIT2.12159. DOI: https://doi.org/10.1049/cit2.12159
J. Fu, A. Tzortzakakis, J. Barroso, E. Westman, D. Ferreira, and R. Moreno, “Fast three-dimensional image generation for healthy brain aging using diffeomorphic registration,” Hum. Brain Mapp., vol. 44, no. 4, pp. 1289–1308, Mar. 2023, doi: 10.1002/HBM.26165. DOI: https://doi.org/10.1002/hbm.26165
M. Li et al., “The Successive Next Network as Augmented Regularization for Deformable Brain MR Image Registration,” mdpi.comM Li, S Hu, G Li, F Zhang, J Li, Y Yang, L Zhang, M Liu, Y Xu, D Fu, W Zhang, X WangSensors, 2023•mdpi.com, Accessed: Nov. 13, 2024. [Online]. Available: https://www.mdpi.com/1424-8220/23/6/3208. DOI: https://doi.org/10.3390/s23063208
S. L.-J. of P. C. Series 2023, “SCAM-GAN: Generating brain MR images from CT scan data based on CycleGAN combined with attention module,” iopscience.iop.orgS LiuJournal Phys. Conf. Ser. 2023•iopscience.iop.org, Accessed: Nov. 13, 2024. [Online]. Available: https://iopscience.iop.org/article/10.1088/1742-6596/2646/1/012018/meta.
M. Liu et al., “Style transfer generative adversarial networks to harmonize multisite MRI to a single reference image to avoid overcorrection,” Hum. Brain Mapp., vol. 44, no. 14, pp. 4875–4892, Oct. 2023, doi: 10.1002/HBM.26422. DOI: https://doi.org/10.1002/hbm.26422
K. Xie et al., “GAN-based metal artifacts region inpainting in brain MRI imaging with reflective registration,” Med. Phys., vol. 51, no. 3, pp. 2066–2080, Mar. 2024, doi: 10.1002/MP.16724. DOI: https://doi.org/10.1002/mp.16724
M. Rahmani, H. Moghaddasi, A. P.-R.- Diagnostics, 2024, “D2BGAN: Dual Discriminator Bayesian Generative Adversarial Network for Deformable MR–Ultrasound Registration Applied to Brain Shift Compensation,” mdpi.comM Rahmani, H Moghaddasi, A Pour-Rashidi, A Ahmadian, E Najafzadeh, P FarniaDiagnostics, 2024•mdpi.com, Accessed: Nov. 13, 2024. [Online]. Available: https://www.mdpi.com/2075-4418/14/13/1319. DOI: https://doi.org/10.3390/diagnostics14131319
Y. Park et al., “GAN-MAT: Generative adversarial network-based microstructural profile covariance analysis toolbox,” ElsevierY Park. MJ Lee, S Yoo, CY Kim, JY Namgung, Y Park. H Park. EC Lee, YD Yoon, C PaquolaNeuroImage, 2024•Elsevier, Accessed: Nov. 13, 2024. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S1053811924000909. DOI: https://doi.org/10.1016/j.neuroimage.2024.120595
D. M. A. B. Christilin and D. M. S. Mary, “Residual encoder-decoder up-sampling for structural preservation in noise removal,” Multimed. Tools Appl., vol. 80, no. 13, pp. 19441–19457, May 2021, doi: 10.1007/S11042-021-10582-Z. DOI: https://doi.org/10.1007/s11042-021-10582-z
M. Tian, K. S.-I. Access 2021, “Boosting magnetic resonance image denoising with generative adversarial networks,” ieeexplore.ieee.orgM Tian, K SongIEEE Access, 2021•ieeexplore.ieee.org, Accessed: Nov. 12, 2024. [Online]. Available: https://ieeexplore.ieee.org/abstract/document/9406803/.
Z. Li et al., “High-fidelity fast volumetric brain MRI using synergistic wave-controlled aliasing in parallel imaging and a hybrid denoising generative adversarial network (HDnGAN),” Med. Phys., vol. 49, no. 2, pp. 1000–1014, Feb. 2022, doi: 10.1002/MP.15427. DOI: https://doi.org/10.1002/mp.15427
M. Yu, M. Guo, S. Zhang, Y. Zhan, … M. Z.-C. in B., 2023, “RIRGAN: An end-to-end lightweight multi-task learning method for brain MRI super-resolution and denoising,” ElsevierM Yu, M Guo, S Zhang, Y Zhan, M Zhao, T Lukasiewicz, Z XuComputers Biol. Med. 2023•Elsevier, Accessed: Nov. 12, 2024. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0010482523010971. DOI: https://doi.org/10.1016/j.compbiomed.2023.107632
Q. Wang, L. Mahler, … J. S.-P. of the, 2023, “DISGAN: wavelet-informed discriminator guides GAN to MRI super-resolution with noise cleaning,” openaccess.thecvf.comQ Wang, L Mahler, J Steiglechner, F Birk, K Scheffler, G LohmannProceedings IEEE/CVF Int. Conf. on, 2023•openaccess.thecvf.com, Accessed: Nov. 12, 2024. [Online]. Available: https://openaccess.thecvf.com/content/ICCV2023W/CVAMD/html/Wang_DISGAN_Wavelet-Informed_Discriminator_Guides_GAN_to_MRI_Super-Resolution_with_Noise_ICCVW_2023_paper.html. DOI: https://doi.org/10.1109/ICCVW60793.2023.00259
Q. Zuo et al., “DiffGAN-F2S: Symmetric and Efficient Denoising Diffusion GANs for Structural Connectivity Prediction from Brain fMRI,” 2023, Accessed: Nov. 12, 2024. [Online]. Available: http://arxiv.org/abs/2309.16205.
Y. Fu et al., “MPGAN: Multi Pareto Generative Adversarial Network for the denoising and quantitative analysis of low-dose PET images of human brain,” ElsevierY Fu, S Dong, Y Huang, M Niu, C Ni, L Yu, K Shi, Z Yao, C ZhuoMedical Image Anal. 2024•Elsevier, Accessed: Nov. 12, 2024. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S1361841524002317. DOI: https://doi.org/10.1016/j.media.2024.103306
Y. Wu, Y. Du, Z. Peng, F. Zhang, Y. Wang, and G. Mok, “Frequency Specific Deep Learning-based Low Dose FDG Brain PET Denoising Incorporating CT Priors,” 2024, Accessed: Nov. 12, 2024. [Online]. Available: https://jnm.snmjournals.org/content/65/supplement_2/241201.abstract.
J. Cui, Y. Wang, L. Zhou, Y. Fei, … J. Z.-I. T. on, 2024, “3D Point-based Multi-Modal Context Clusters GAN for Low-Dose PET Image Denoising,” ieeexplore.ieee.orgJ Cui, Y Wang, L Zhou, Y Fei, J Zhou, D ShenIEEE Trans. Circuits Syst. Video Technol. 2024•ieeexplore.ieee.org, Accessed: Nov. 12, 2024. [Online]. Available: https://ieeexplore.ieee.org/abstract/document/10526270/. DOI: https://doi.org/10.1109/TCSVT.2024.3398686
A. Creswell, T. White, V. Dumoulin, K. Arulkumaran, B. Sengupta, and A. A. Bharath, “Generative Adversarial Networks: An Overview,” 2017. DOI: https://doi.org/10.1109/MSP.2017.2765202
A. Borji, “Pros and cons of GAN evaluation measures,” Comput. Vis. Image Underst., vol. 179, pp. 41–65, 2019, doi: 10.1016/j.cviu.2018.10.009. DOI: https://doi.org/10.1016/j.cviu.2018.10.009
M. Lucic, K. Kurach, M. M. Google, B. O. Bousquet, and S. Gelly, “Are GANs Created Equal? A Large-Scale Study.” Accessed: Jan. 13, 2021. [Online]. Available: https://papers.nips.cc/paper/7350-are-gans-created-equal-a-large-scale-study.
“Healthcare Developer Resources | NVIDIA Developer.” https://developer.nvidia.com/industries/healthcare (accessed Feb. 18, 2025).
“ADNI | Alzheimer’s Disease Neuroimaging Initiative.” https://adni.loni.usc.edu/ (accessed Feb. 18, 2025).
“Deep Resolve - Siemens Healthineers USA.” https://www.siemens-healthineers.com/en-us/magnetic-resonance-imaging/technologies-and-innovations/deep-resolve (accessed Feb. 18, 2025).
S. Kazemifar et al., “Dosimetric evaluation of synthetic CT generated with GANs for MRI-only proton therapy treatment planning of brain tumors,” J. Appl. Clin. Med. Phys., vol. 21, no. 5, pp. 76–86, May 2020, doi: 10.1002/acm2.12856. DOI: https://doi.org/10.1002/acm2.12856
“Software in radiation therapy and oncology | RaySearch Laboratories.” https://www.raysearchlabs.com/ (accessed Feb. 18, 2025).
Maciej Serda et al., “Synteza i aktywność biologiczna nowych analogów tiosemikarbazonowych chelatorów żelaza,” Uniw. śląski, vol. 7, no. 1, pp. 343–354, 2013, doi: 10.2/JQUERY.MIN.JS.
“Medical Imaging Cloud AI for Radiology | Arterys.” https://www.arterys.com/ (accessed Feb. 18, 2025).
“FDA Clearance for SubtleMR. https://www.fda.gov - Google (accessed Feb. 18, 2025).
“Synthetic Data | European Data Protection Supervisor.” https://www.edps.europa.eu/press-publications/publications/techsonar/synthetic-data_en (accessed Feb. 18, 2025).
A. Beduschi, “Synthetic data protection: Towards a paradigm change in data regulation?” https://doi.org/10.1177/20539517241231277, vol. 11, no. 1, Feb. 2024, doi: 10.1177/20539517241231277. DOI: https://doi.org/10.1177/20539517241231277
M. Ali, M. Ali, M. Hussain, and D. Koundal, “Generative Adversarial Networks (GANs) for Medical Image Processing: Recent Advancements,” Arch. Comput. Methods Eng., pp. 1–14, Oct. 2024, doi: 10.1007/S11831-024-10174-8/METRICS. DOI: https://doi.org/10.1007/s11831-024-10174-8
M. H. Akpinar et al., “Synthetic Data Generation via Generative Adversarial Networks in Healthcare: A Systematic Review of Image- and Signal-Based Studies,” IEEE Open J. Eng. Med. Biol., 2024, doi: 10.1109/OJEMB.2024.3508472. DOI: https://doi.org/10.1109/OJEMB.2024.3508472
“Council Post: Healthcare Trends Shaping 2025 And Insights for Industry Leaders.” https://www.forbes.com/councils/forbesbusinesscouncil/2025/01/14/healthcare-trends-shaping-2025-and-insights-for-industry-leaders/ (accessed Feb. 19, 2025).
“Health in 2025: balancing progress and pressure.” https://impact.economist.com/i/health-in-2025-balancing-progress-and-pressure-3ZjWMjmYIfuQhYwOghgUSC (accessed Feb. 19, 2025).
Authors
Copyright (c) 2025 Journal of Pure & Applied Sciences

This work is licensed under a Creative Commons Attribution 4.0 International License.
In a brief statement, the rights relate to the publication and distribution of research published in the journal of the University of Sebha where authors who have published their articles in the journal of the university of Sebha should how they can use or distribute their articles. They reserve all their rights to the published works, such as (but not limited to) the following rights:
- Copyright and other property rights related to the article, such as patent rights.
- Research published in the journal of the University of Sebha and used in its future works, including lectures and books, the right to reproduce articles for their own purposes, and the right to self-archive their articles.
- The right to enter a separate article, or for a non-exclusive distribution of their article with an acknowledgment of its initial publication in the journal of Sebha University.
Privacy Statement The names and e-mail addresses entered on the Sabha University Journal site will be used for the aforementioned purposes only and for which they were used.