تقييم دور المبيدات الميكروبية في تطور مقاومة المضادات الحيوية في مسببات الأمراض السريرية
محتوى المقالة الرئيسي
الملخص
تُستخدم مجموعة من مبيدات الميكروبات مثل المطهرات والمعقمات بشكل شائع في بيئات الرعاية الصحية للسيطرة على التلوث المتبادل وتفشي الأمراض والعدوى المكتسبة من المستشفيات. ومع ذلك، أثيرت مخاوف في السنوات الأخيرة بشأن الاختيار المشترك لمقاومة المضادات الحيوية بين أنواع البكتيريا المسببة للأمراض بعد التعرض المتكرر للمبيدات الميكروبية. لذلك كان الهدف من هذه الدراسة هو تقييم تأثير التعرض المتكرر لبوفيدون اليود (PVP-I) وسيرفانيوس بريميوم بتركيزات دون المثبطة على مقاومة المضادات الحيوية في K. pneumoniae. الطرق والمواد: تم الحصول على عشرين مسببًا للأمراض السريرية من سلالات K. pneumoniae من عينات سريرية مختلفة من المرضى الذين تم إدخالهم إلى مستشفى الجلاء للصدمات، بنغازي، ليبيا، وتم التعرف عليها بالطرق الميكروبيولوجية والكيميائية القياسية في مختبر علم الأحياء الدقيقة بالمستشفى. تم تحديد الحد الأدنى المثبط للمبيدات الحيوية بطريقة تخفيف المرق، وتم إجراء اختبار حساسية المضادات الحيوية باستخدام طريقة انتشار القرص كيربي وباور. تم تحديد MICs وحساسية المضادات الحيوية قبل وبعد التعرض المتكرر لتركيزات دون المثبطة من المبيدات الحيوية (sub-MICs) لاختبار التغيرات في تحمل المبيدات الحيوية ومقاومة الاختيار المشترك للمضادات الحيوية. النتيجة: تظهر نتائجنا أن 7 من أصل 20 عزلة (35٪) أظهرت تحملًا مكتسبًا لـ PVP-I وأظهرت 5 من أصل 20 عزلة (25٪) تحملًا مكتسبًا لـ surfanios premium. في هذه الدراسة، كشفت النتائج أن التعرض لفترات طويلة لـ PVP-I أو surfanios بتركيزات دون المثبطة أدى إلى تغييرات كبيرة في تغيرات حساسية المضادات الحيوية لسيفترياكسون وسيفوتاكسيم وسيبروفلوكساسين وليفوفلوكساسين وأميكاسين في عزلات K. pneumoniae. الاستنتاجات: قد يؤدي استخدام تركيزات منخفضة دون المستوى الأمثل من المبيدات الحيوية إلى زيادة مقاومة المضادات الحيوية في البكتيريا ذات الصلة السريرية مثل K. pneumoniae. ومن ثم، هناك حاجة إلى مزيد من الدراسات لتقييم ما إذا كانت هذه الارتباطات سببية.
تفاصيل المقالة
هذا العمل مرخص بموجب Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
المراجع
Murray, L. M., Hayes, A., Snape, J. ., Kasprzyk-Hordern, B., Gaze, W. H., Murray, A. K., (2024), Co-selection for antibiotic resistance by environmental contaminants., npj Antimicrobials & Resistance., 2:9, 1–13. https://doi.org/10.1038/s44259-024-00026-7.
Barakat, N. A., Rasmy, S. A., Hosny, A. M. S., Kashef, M. T., (2022), Effect of povidone‑iodine and propanol‑based mecetronium ethyl sulphate on antimicrobial resistance and virulence in Staphylococcus aureus., Antimicrobial Resistance & Infection Control ; 11:139, 2–14. https://doi.org/10.1186/s13756-022-01178-9.
Wales, A. D., Davies, R. H., (2015), Co-Selection of Resistance to Antibiotics, Biocides and Heavy Metals, and Its Relevance to Foodborne Pathogens., Antibiotics ; 4, 567-604; doi:10.3390/antibiotics4040567.
Ali, N. E., Morsi, S. S., Elgohary, E. A., (2014), Association Between Antibiotics And Disinfectants Resistance profiles Among Acinetobacter Baumannii Isolates In Zagazig University Hospitals Intensive Care Unit., Life Sci J. 11(10):1–8. http://www.lifesciencesite.com.
Daniel S.A, Shawky M.S, Omar H.M.G, Abou-Shleib H.M, El-Nakeeb M.A ., (2014), Antibiotic resistance and its association with biocide susceptibilities among microbial isolates in an Egyptian hospital. Int Arab J Antimicrob Agents ;4(4):1–11.doi:10.3390/antibiotics4040567.
Chapman, J. S. (2003). Disinfectant resistance mechanisms, cross resistance, and co-resistance. Int. Biodeterior. Biodegrad. 51, 271–276 .
Baker-Austin, C., Wright, M. S., Stepanauskas, R. & McArthur, J. V. (2006). Co-selection of antibiotic and metal resistance. Trends Microbiol. 14, 176–182.
Wand, M. E., Bock, L. J., Bonney, L. C. & Sutton, J. M. (2017). Mechanisms of increased resistance to chlorhexidine and cross-resistance to colistin following exposure of klebsiella pneumoniae clinical isolates to chlorhexidine. Antimicrob. Agents Chemother. 61.
Hérault, H.S. (2019). Impact of commonly used antimicrobial biocides on resistance and cross-resistance in carbapenemase-producing Enterobacteriaceae., PhD Thesis, School of Pharmacy and Pharmaceutical Sciences, Cardiff University.
Copin R., Sause W.E., Fulmer Y., Balasubramanian D., Dyzenhaus S., Ahmed J.M, et al. (2019). Sequential evolution of virulence and resistance during clonal spread of community-acquired methicillin-resistant Staphylococcus aureus. Proc Natl Acad Sci U S A. ;116(5):1745–54.
Nojookambari, N. Y., Eslami, G, Sadredinamin, M., Vaezjalali, M ., Nikmanesh, B., Dehbanipour, R., Yazdansetad, S & Ghalavand Z. (2024), Sub-minimum inhibitory concentrations (sub-MICs) of colistin on Acinetobacter baumannii biofilm formation potency, adherence, and invasion to epithelial host cells: an experimental study in an Iranian children’s referral hospital. Antimicrob. Microbiology Spectrum. ;2 (12):1–15. https://journals.asm.org/journal/spectrum 41.254.66.47.
Liu H., Xiang Y., Xiong M., Xiao X., Zhou J., Tian H., Chen Q & Li Y. (2024). Prevalence of ST1049-KL5 carbapenem resistant Klebsiella pneumoniae with a blaKPC-2 and blaNDM-1 co-carrying hyper transmissible IncM1 plasmid. communications biology. ;695(7):1–13. https://doi.org/10.1038/s42003-024-06398-w.
SCENIHR. (2009). Assessment of the Antibiotic Resistance Effects of Biocides; Scientific Committee on
Emerging and Newly Identified Health Risks, European Commission: Brussels, Belgium, pp. 1–87.
Edgeworth J.D. (2011). Has decolonization played a central role in the decline in UK methicillin-resistant Staphylococcus aureus transmission? A focus on evidence from intensive care. J Antimicrob Chemother 66(Suppl 2):ii41–ii47. https://doi.org/10.1093/jac/dkq325.
Septimus E.J. (2019). Nasal decolonization: what antimicrobials are most effective prior to surgery? Am J Infect Control 47s:A53–A57. https://doi .org/10.1016/j.ajic.2019.02.028.
Lepelletier D., Maillard J.Y., Pozzetto B., Simon A, . (2024). Povidone Iodine: Properties, Mechanisms of Action, and Role in Infection Control and Staphylococcus aureus Decolonization. Antimicrobial Agents and Chemotherapy ; 64(9):1–13. https://doi.org/10.1128/AAC00682-20.
Poovelikunnel T, Gethin G, Humphreys H. (2015). Mupirocin resistance: clinical implications and potential alternatives for the eradication of MRSA. J Antimicrob Chemother 70:2681–2692. https://doi.org/10.1093/jac/dkv169.
Kunisada T, Yamada K, Oda S, Hara O. (1997). Investigation on the efficacy of povidone-iodine against antiseptic-resistant species. Dermatology 195(Suppl 2):14 –18. https://doi.org/10.1159/000246025.
Kunisada T, Yamada K, Oda S, Hara O. (1997). Investigation on the efficacy of povidone-iodine against antiseptic-resistant species. Dermatology 195(Suppl 2):14 –18. https://doi.org/10.1159/000246025.
Lachapelle J-M, Castel O, Casado AF, Leroy B, Micali G, Tennstedt D, Lambert J. 2013. Antiseptics in the era of bacterial resistance: a focus on povidone iodine. Clin Pract 10:579–592. https://doi.org/10.2217/cpr.13.50.
Laboratoires Anios .(02-01-2019). Surfanios Premium 1917_FIRG_FR-EN_13-11-2014 v2 Version 2. https://www.free-med.com/cache/documents/product/surfaniospremium_md-fr-583.pdf.
Coombs, K., Rodriguez-Quijada, C., Clevenger, J. O., and Sauer-Budge, A. F .(2023). Current Understanding of Potential Linkages between Biocide Tolerance and Antibiotic Cross-Resistance. https://doi.org/10.3390/ microorganisms11082000.
Clinical and Laboratory Standards Institute (CLSI). (2016). Performance Standards for Antimicrobial Susceptibility Testing. CLSI document M100S. 26th ed.
Jorgensen H, Faller MAP, Carroll K.C. (2015). Manual of clinical microbiology. Edition : Print book: English: 11th edition/Publisher: Washington, DC: ASM Press, pp.1258-1270.
Balouiri M, Sadiki M, Ibnsouda S.K. (2016). Methods for in vitro evaluating antimicrobial activity. J Pharm Anal,, 6(2): 71–79: PMC5762448.
Ebrahimi A, Arvaneh Z, Mahzounieh M, Lotfalian S,.(2017). Antibiotic Resistance Induction by Benzalkonium Chloride Exposure in Nosocomial Pathogens. Int J Infect, 4(2): 1-5: e40296.
Levinson W, Jawetz E. (2004). Medical Microbiology and Immunology. Examination and board Review. 8th ed Lang Medical Brooks McGraw- Hill New York, pp. 143-187.
Alsaady KA. (2011). The Selective Pressure Effect of Antiseptics on the Patterns of Resistance in Staphylococcus aureus. J Kerbala Univ, 9(4): 299–304.
Vijayakumar R , Sandle T. (2019). A review on biocide reduced susceptibility due to plasmid-borne antiseptic-resistant genes-special notes on pharmaceutical environmental isolates. Review J Appl Microbiol ; 126(4):1011-1022. doi: 10.1111/jam.14118.
Fox, L. J., Kelly, P. P., Humphreys, G. J., Waigh, T. A., Lu, J. R., and McBain, A. J. (2022). Assessing the risk of resistance to cationic biocides incorporating realism-based and biophysical approaches. J Ind Microbiol Biotechnol. 49(1).
Kampf, G. Acquired resistance to chlorhexidine – is it time to establish an ‘antiseptic stewardship’ initiative? J. Hospital Infect. 94, 213–227 (2016).
Capita, R., Riesco-Peláez, F., Alonso-Hernando, A. & Alonso-Calleja, C. (2014). Exposure of Escherichia coli ATCC 12806 to sub lethal concentrations of food-grade biocides influences its ability to form biofilm, resistance to antimicrobials, and ultrastructure. Appl. Environ. Microbiol. 80(4), 1268–1280.
Muñoz, M., El Bakali, N.B., Ennahar S., Abriouel, H. (2016). Comparative proteomic analysis of a potentially probiotic Lactobacillus pentosus MP-10 for the identification of key proteins involved in antibiotic resistance and biocide tolerance. Review International Journal of Food Microbiology ; 222, 8–15. doi: 10.1016/j.ijfoodmicro.2016.01.012.
Eggers M. (2019). Infectious disease management and control with povidone iodine. Infect Dis Ther ;8(4):581–93.
Barreto R, Barrois B, Lambert J, Malhotra-Kumar S, Santos-Fernandes V, Monstrey S. (2020). Addressing the challenges in antisepsis: focus on povidone iodine. Int J Antimicrob Agents;56(3):106064. https:// doi. org/ 10. 1016/j. ijant imicag. 2020. 106064.
Nasr A.M, Mostafa MS, Arnaout H.H, Elshimy A.A. (2018). The effect of exposure to sub-inhibitory concentrations of hypochlorite and quaternary ammonium compounds on antimicrobial susceptibility of P. aeruginosa. AJIC 46 e57-e63.
Al-abdli, N., Boulifa, A., and Trabelsi, I. (2020). Effect of sub-minimum inhibitory concentrations of biocides on the selective pressure towards antibiotic resistance of Staphylococcus aureus strains. Microbiology Research International, 8(4): 76-82.
Thomas L. Maillard J-Y, Lambert R.J, Russell A.D. (2000). Development of resistance to chlorhexidine diacetate in P. aeruginosa and the effect of 'residual' concentration. J Hosp Infect; 46:297-303.
Tattawasart U, Maillard J-Y, Furr J.R, Russell A.D. (1999). Development of resistance to chlorhexidine diacetate and cetylpyridinium chloride in Pseudomonas stutzeri and changes in antibiotic susceptibility. J Hosp Infect; 42:219-29.
Walsh SE, Maillard J-Y, Russell AD, Charbonneau DL, Bartolo RG, Catrenich C. (2003). Development of bacterial resistance to several biocides and effects on antibiotic susceptibility. J Hosp Infect ; 55:98-107.
Noel, D.J. (2023). The Antibacterial Efficacy of Disinfectants used for Infection Control, PhD Thesis, Faculty of Environmental and Life Sciences School of Biological Sciences, University of Southampton of England, United Kingdom.
Gaze W.H, Abdouslam N, Hawkey P.M, Wellington E.M. (2005). Incidence of class-1 integrons in a quaternary ammonium compound- polluted environment. Antimicrob Agents Chemother; 49:1802-7.
Abdel Malek S.M, Al-Adham I.S, Winder CL, Buuljens T.E, Gartland K.M, Collier P.J. (2002). Antimicrobial susceptibility changes and T-OMP shifts in pythione-passaged planktonic cultures of Pseudomonas aeruginosa PAO1. J Appl Microbiol; 92:729-36.
Jian Z, Zeng L, Xu T, Sun Sh, Yan Sh, Yang L, Huang Y, Jia J, Dou T. (2021). Antibiotic resistance genesin bacteria: Occurrence, spread, and control. J Basic Microbiol; 61:1049-70. DOI: 10.1002/jobm.202100201.
Petersen, M.S. (2013). Development of bacterial resistance to biocides and antimicrobial agents as a consequence of biocide usage, PhD Thesis, Institute Technical University of Denmark Kemitorvet Kongens Lyngby, Denmark.
Rozman U, Pušnik M, Kmetec S, Duh D and Turk S Š . (2021). Reduced Susceptibility and Increased Resistance of Bacteria against Disinfectants: A Systematic Review. J Microorganisms.; 9(12): 2550. doi: 10.3390/microorganisms9122550.
Sheldon AT Jr. (2005). Antiseptic ‘resistance’: real or perceived threat? Clin Infect Dis ;40(11):1650–6.
Adkin, P., Hitchcock, A., Smith, L.J., and Walsh, S.E. (2022). Priming with biocides: A pathway to antibiotic resistance?. J Appl Microbiol. 00:1–12. DOI: 10.1111/jam.15564.
Li, X. Z., Plésiat, P. & Nikaido, H. (2015). The challenge of efflux-mediated antibiotic resistance in Gram-negative bacteria. Clin. Microbiol. Rev. 28, 337–418.
Bigliardi P.L, Alsagoff SAL, El-Kafrawi HY, Pyon JK, Wa CTC, Villa MA. (2017). Povidone iodine in wound healing: a review of current concepts and practices. Int J Surg 44:260 –268. https://doi.org/10.1016/j.ijsu..06.073.