وقيمته الاقتصادية (Ammi visnaga) تأثير مستويات مختلفة من حمض الهيوميك ومعدلات مستخلص الأعشاب البحرية على إنتاجية نبات الخلة

محتوى المقالة الرئيسي

عصام علي حسن
عبد اللطيف أحمد أبو شوفه
ربيعة الترهوني
جابر عبد الهادي منصور

الملخص

لتحسين نمو نباتات الخلة وزيادة مكونات المحصول  ومحتوى المكونات الفعاله وكذا القيمة الاقتصادية، أُجريت تجربة حقلية في مزرعة كلية الزراعة بجامعة الأزهر بأسيوط، مصر، خلال موسمي 2022/2023 و2023/2024. دُرست مستويات مختلفة من حمض الهيوميك (0.0، 5.0، 10.0، و15.0 كجم/هكتار)، وتركيزات مختلفة من مستخلص الأعشاب البحرية (0.0، 1.0، 3.0، و6.0 مل/لتر)، وكذا المعاملات المركبه المتداخله بين هذين العاملين. أشارت النتائج إلى أن استخدام حمض الهيوميك (HA) بمعدل 15 كجم/هكتار أدى إلى زيادة معنوية في نمو نباتات الخلة (ارتفاع النبات، وعدد الأفرع، ووزن النباتات الطازج والجاف)، وإنتاجية الثمار للنبات (جم) والهكتار (كجم) ، والنسبة المؤية لمادتي الخلين والفيسناجين والكرومون الكلي، مقارنةً بالمجموعة الضابطة والمعاملات الأخرى قيد الدراسة. سُجِّلت أعلى قيم لصفات النمو، ومكونات المحصول، ونسب الخلين والفيسناجين والكرومون الكلي عند رش نباتات الخلة بمستخلص الأعشاب البحرية (SE) بتركيز 3 مل/لتر مقارنةً بالشاهد. وبشكل عام، كانت أفضل معاملة مركبة بين مستويات حمض الهيوميك وتركيزات مستخلص الأعشاب البحرية فيما يتعلق بمكونات محصول الخلة هي 15 كجم/هكتار من حمض الهيوميك + 6 مل/لتر من مستخلص الأعشاب البحرية، مقارنةً بالمعاملات المركبة الأخرى قيد الدراسة في كلا الموسمين

تفاصيل المقالة

كيفية الاقتباس
Hassan E. A, Abushoufa A. A, Rabeeah S. Altarhouni, & Mansour J. A. (2025). وقيمته الاقتصادية (Ammi visnaga) تأثير مستويات مختلفة من حمض الهيوميك ومعدلات مستخلص الأعشاب البحرية على إنتاجية نبات الخلة . وقائع مؤتمرات جامعة سبها, 4(3), 230–236. https://doi.org/10.51984/sucp.v4i3.4050
القسم
مقالة مؤتمر

المراجع

References:

Saima, H., A. Jan, K. M. Bahadar and M. A. Khan (2014). Phytochemistry and medicinal properties of Ammi visnaga (Apiacae). Pak. J. Bot., 46 : 861-867. https://www.pakbs.org/pjbot/PDFs/46(3)/13.pdf

Akshaya, S. B., A. J. M. Al-Khatib, A. A. Elnour, N. M. S. Al Kalbani and A. Shehab (2015). Ammi visnaga in treatment of urolithiasis and hypertriglyceridemia. Pharmacognosy Res., 7: 397-400. https://pmc.ncbi.nlm.nih.gov/articles/PMC4660521/pdf/PR-7-397.pdf

Menesi, F.A. (1995). Effect of NPK fertilization on the growth of Ammi visnaga, L. plants. J. Agric. Res. Tanta Univ., 21 (4): 714-723. https://aasj.journals.ekb.eg/article_318552_e19636dd5f471c300ed880d5ffcea006.pdf

Evans, C.W. (1998). Trees and Evans, Pharmacognosy. Fourteenth Edition. Printed and Bound in Great Britain. Second Printing. pp. 251. https://search.worldcat.org/title/trease-and-evans-pharmacognosy/oclc/34974405

Plettenberg, H., A. Till and R. Thomas (2003). Childhood vitiligo and tacrolimus. Arch. Dermatol. 139 (5): 651–654. doi:10.1001/archderm.139.5.651. PMID 1275610

Anonymous, W.H.O. (2007). WHO monographs on selected medicinal plants, Vol 3. WHO Library Cataloguing in Publication Data. Pp 23-32. https://iris.who.int/bitstream/handle/10665/42052/9789241547024_eng.pdf

Valkova, S., M. Trashlieva and P. Christova (2004). Treatment of vitaligo with local khellin and UVA: Comparison with systemic PUVA. Clin. Exp. Dermatol., 29: 180-184. https://doi.org/10.1111/j.1365-2230.2004.01462.x

Mikkelsen, R. L. (2005). Humic materials for agriculture. Better Crops, 89 (3): 6-10. https://my.ucanr.edu/sites/nm/files/76657.pdf?fbclid=IwAR10xypBKpknPLHx3Ulq69uKu80uM-CxxB6svvvaykrK_jEcxzKaaZWKpQ8

Sangeetha, N., S. Palani and U. Ramar (2006). Effect of lignite humic acid and fertilizers on the yield of onion and nutrient availability.18th word congress of soil science, Philadelphia, Pencilvania ,USA. https://crops.confex.com/crops/wc2006/techprogram/P13539.HTM

Hoseini, M., F. Paknejad and M. N. Ilkaee (2023). Evaluation of humic acid and iron and zinc nanochelates effect on Italian basil (Ocimum basilicum L.) in salinity stress condition. Journal of Organic Farming of Medicinal Plants, 2(1): 44-51.‏ https://jofmp.areeo.ac.ir/article_131630_935f12a6401538a2c0113085ab65b922.pdf

Feizi, H., S. Z. Hosseini and R. Moradi (2025). Synergistic effects of humic acid and foliar application of micronutrients (Fe, Zn, Mn, Cu) on saffron (Crocus sativus L.) growth and biochemical compounds. Journal of Agriculture and Food Research, 19: 1-11.‏ https://doi.org/10.1016/j.jafr.2024.101601

Herna´ndez-Herrera, R. M., G. Virgen-Calleros, M. Ruiz-Lo´pez, J. Zañudo-Herna´ndez, J. P. De´lano-Frier, C. S. Herna´ndez (2014). Extracts from green and brown seaweeds protect tomato (Solanum lycopersicum) against the necrotrophic fungus Alternaria solani. Journal Applied Phycology, 26 (3):1607-1614. https://doi.org/10.1007/s10811-013-0193-2.

Spinelli, F., G. Fiori, M. Noferini, M. Sprocatti, G. Costa (2009). Perspectives on the use of a seaweed extract to moderate the negative effects of alternate bearing in apple trees. Journal of Horticultural Science Biotechnology, 84: 131–137. https://doi.org/10.1080/14620316.2009.11512610.

Khan, W., U. P. Rayirath, S. Subramanian, M. N. Jithesh, P. Rayorath and D. M. Hodges (2009). Seaweed extracts as biostimulants of plant growth and development. Journal of Plant Growth Regulation, 28: 386– 399. https://doi.org/10.1007/s00344-009-9103-x.

Karthikeyan, K. and M. Shanmugam (2016). Development of a protocol for the application of commercial bio-stimulant manufactured from Kappaphycus alvarezii in selected vegetable crops. Journal of Experimental Biology and Agricultural Sciences, 4 (1): 92–102. http://dx.doi.org/10.18006/2016.4(1).92.102.

Ali, O., A. Ramsubhag and J. Jayaraman (2019). Biostimulatory activities of Ascophyllum nodosum extract in tomato and sweet pepper crops in a tropical environment. PLoS One, 14 (5): 1-19. https://doi.org/10.1371/journal.pone.0216710

Ali, O., A. Ramsubhag and J. Jayaraman (2021). Biostimulant properties of seaweed extracts in plants: Implications towards sustainable crop production. Plants, 10 (3): 1-27. https://doi.org/10.3390/plants10030531

Chapman, H.D. and Pratt, P.F. (1978): Methods of Analysis for Soil, Plant and Water Calif. Univ. Division of Agric. Sci., 172-174.

Egyptian Pharmacopoeia (1984). General Organization for Governmental Printing Office, Ministry of Health, Cairo, Egypt, pp.31-33. https://healthresearchwebafrica.org.za/en/egypt/institution_54

Analytical Software (2008). Statistix Version 9, Analytical Software, Tallahassee, Florida, USA.

Akinci, S., T. Bueyuekkeskin, A. Eroğlu and B. E. Erdoğan (2009). The effect of humic acid on nutrient composition in broad bean (Vicia faba L.) roots. Notulae Scientia Biologicae, 1 (1): 81-87.‏ file:///C:/Users/n/Downloads/The_Effect_of_Humic_Acid_on_Nutrient_Composition_i.pdf

Büyükkeskin, T. and Ş. Akinci (2011). The effects of humic acid on above-ground parts of broad bean (Vicia faba L.) seedlings under Al3+ toxicity. Fresenius Environmental Bulletin, 20 (3): 539-548.‏

Salama, M. M. A., J. A. Mansour, A. A. Mahmoud and E. A. Hassan (2023). Response of Nigella sativa L. plants to humic acid and seaweed extract treatments. International Journal of Chemical and Biochemical Sciences, 24 (12): 828-837. ‏ https://www.iscientific.org/wp-content/uploads/85-ijcbs-23-24-12-85n.pdf

Yakhin, O. I., A. A. Lubyanov, I. A. Yakhin and P. H. Brown (2017). Biostimulants in plant science: A global perspective. Frontiers in Plant Science, 7: 20-49. file:///C:/Users/n/Downloads/fpls-07-02049.pdf

Ronga, D., E. Biazzi, K. Parati, D. Carminati, E. Carminati and A. Tava (2019). Microalgal biostimulants and biofertilisers in crop productions. Agronomy, 192 (9): 2-22. https://doi.org/10.3390/agronomy9040192

Yusuf, R., A. Syakur, Y. Kalaba and F. Fatmawati (2020). Application of some types of local seaweed extract for the growth and yield of shallot (Allium wakegi). Aquaculture, Aquarium, Conservation & Legislation, 13 (4): 2203-2210.‏ https://www.cabidigitallibrary.org/doi/pdf/10.5555/20203458456

Shafi, M.I., M. Adnan, S. Fahad, F. Wahid, A. Khan, Z. Yue, S. Danish, M. Zafar-ulHye, M. Brtnicky and R. Datta (2020). Application of single superphosphate with humic acid improves the growth, yield and phosphorus uptake of wheat (Triticum aestivum L.) in calcareous soil. Agronomy-Basel., 10: 1-15. https://doi.org/10.3390/agronomy10091224

Noroozisharaf, A. and M. Kaviani (2018). Effect of soil application of humic acid on nutrients uptake, essential oil and chemical compositions of garden thyme (Thymus vulgaris L.) under greenhouse conditions. Physiology and Molecular Biology of Plants, 24(3): 423-431.‏ https://doi.org/10.1007/s12298-018-0510-y

Yogendra, N. D., P.R. Ravikumara, R.C. Padalia and A. Ghosh (2024). Effect of Kappaphycus alvarezii seaweed liquid extract on growth, yield and chemical constituents of geranium (Pelargonium graveolens l’ Herit. ex Aiton). Journal of Plant Nutrition, 48(6): 907–920. https://doi.org/10.1080/01904167.2024.2415478

Jamwal, S., A. Kumari, V. Veeragurunathan, K. Prasad, A. Ghosh and R. Kumar (2025). Enhancing growth, yield, essential oil content, and composition of holy basil (Ocimum tenuiflorum L.) using red algae-based bio-stimulant under acidic conditions of the Western Himalayas. BMC Plant Biology, 25(1): 1-11.‏ file:///C:/Users/n/Downloads/s12870-025-06064-1%20(1).pdf

Canellas, L.P., D.M. Balmori, L.O. Me´dici, N.O. Aguiar, E. Campostrini, R.C. Rosa, A.R. Fac¸anha and F.L. Olivares (2013). A combination of humic substances and Herbaspirillum seropedicae inoculation enhances the growth of maize (Zea mays L.). Plant Soil, 366: 119–132. file:///C:/Users/n/Downloads/s11104-012-1382-5.pdf

Hernandez, O.L., A. Calderı´n, R. Huelva, D. Martı´nez-Balmori, F. Guridi, N.O. Aguiar, F.L. Olivares and L.P. Canellas (2015). Humic substances from vermicompost enhance urban lettuce production. Agron. Sustain. Dev., 35: 225–232. file:///C:/Users/n/Downloads/s13593-014-0221-x.pdf

Proklamasiningsih, E., P. Widodo and E. Sudiana, (2023). Effects of humic acid and planting media on antioxidant production in the medicinal plant valerian (Valeriana officinalis L.). Agriculturae Conspectus Scientificus, 88 (3): 193-197.‏

Khashan, A. A. A., H. S. M. Khalaf, A. A. Hassan and I. H. H. Al-Hilfy (2021). The effect of seaweed Spirulina platensis extract and micronutrients on wheat yield and yield components. IOP Conference Series: Earth and Environmental Science, 923(1): 1-10. https://doi:10.1088/1755-1315/923/1/012052.

Al-Taweel, S. K. and A. A. Mohammed (2023). Effect of exogenous application of nano fertilizers and seaweeds extract on the growth, yield, and total alkaloids content of Hyoscyamus niger. In IOP Conference Series: Earth and Environmental Science 1262 (5): 1-7. https://iopscience.iop.org/article/10.1088/1755-1315/1262/5/052010/pdf

file:///C:/Users/n/Downloads/A7AKINCI.pdf

Mafakheri, S. and B. Asghari (2018). Effect of seaweed extract, humic acid and chemical fertilizers on morphological, physiological and biochemical characteristics of Trigonella foenum-graecum L. Journal of Agricultural Science and Technology, 20 (7): 1505-1516.‏ https://www.cabidigitallibrary.org/doi/pdf/10.5555/20193014622

Pljevljakušić, D. and S. Brkić (2020). Cultivation cost-benefit analysis of some important medicinal plants in Serbia.‏ Natural Medicinal Materials, 40: 13-21. file:///C:/Users/n/Downloads/13_PljevljakusicandBrkic.pdf

Rathore, R. (2024). A review on cost and return of medicinal and aromatic plants cultivation in India. International Journal of Economic Plants, 11(1): 65-69.file:///C:/Users/n/Downloads/11+IJEP+Feb+2024+Vol+11_issue+1+Rathore.pdf